1
|
Ali M, Ji Y, Xu C, Hina Q, Javed U, Li K. Food and Waterborne Cryptosporidiosis from a One Health Perspective: A Comprehensive Review. Animals (Basel) 2024; 14:3287. [PMID: 39595339 PMCID: PMC11591251 DOI: 10.3390/ani14223287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
A sharp rise in the global population and improved lifestyles has led to questions about the quality of both food and water. Among protozoan parasites, Cryptosporidium is of great importance in this regard. Hence, Cryptosporidium's associated risk factors, its unique characteristics compared to other protozoan parasites, its zoonotic transmission, and associated economic losses in the public health and livestock sectors need to be focused on from a One Health perspective, including collaboration by experts from all three sectors. Cryptosporidium, being the fifth largest food threat, and the second largest cause of mortality in children under five years of age, is of great significance. The contamination of vegetables, fresh fruits, juices, unpasteurized raw milk, uncooked meat, and fish by Cryptosporidium oocysts occurs through infected food handlers, sewage-based contamination, agricultural effluents, infected animal manure being used as biofertilizer, etc., leading to severe foodborne outbreaks. The only Food and Drug Administration (FDA)-approved drug, Nitazoxanide (NTZ), provides inconsistent results in all groups of patients, and currently, there is no vaccine against it. The prime concerns of this review are to provide a deep insight into the Cryptosporidium's global burden, associated water- and foodborne outbreaks, and some future perspectives in an attempt to effectively manage this protozoal disease. A thorough literature search was performed to organize the most relevant, latest, and quantified data, justifying the title. The estimation of its true burden, strategies to break the transmission pathways and life cycle of Cryptosporidium, and the search for vaccine targets through genome editing technology represent some future research perspectives.
Collapse
Affiliation(s)
- Munwar Ali
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaru Ji
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qazal Hina
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Usama Javed
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Shanawany EEE, Abouelmagd F, Taha NM, Zalat RS, Abdelrahman EH, Abdel-Rahman EH. Myristica fragrans Houtt. methanol extract as a promising treatment for Cryptosporidium parvum infection in experimentally immunosuppressed and immunocompetent mice. Vet World 2024; 17:2062-2071. [PMID: 39507782 PMCID: PMC11536736 DOI: 10.14202/vetworld.2024.2062-2071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/05/2024] [Indexed: 11/08/2024] Open
Abstract
Background and Aim Cryptosporidiosis is a major waterborne disease affecting ruminants and humans worldwide. It causes diarrhea and neonatal mortality in buffalo calves, and watery diarrhea and mortality in children and immunodeficient patients. This study aimed to investigate the efficacy of Myristica fragrans methanolic extract in treatment of C. parvum infection in comparison with nitazoxanide (NZX) (a Food and Drug Administration-approved drug control) in immunosuppressed and immunocompetent mice. Materials and Methods One hundred laboratory-bred male Swiss albino mice were equally divided into immunocompetent and immunosuppressed groups. Each group was further divided into five subgroups: (1) non-infected and non-treated control, (2) infected and non-treated control (infected with Cryptosporidium parvum oocysts 3 × 103), (3) NZX-treated (100 mg/kg, 200 μL/mouse), (4) M. fragrans Houtt. methanol extract-treated (500 mg/kg), and (5) combination-treated (NZX + M. fragrans extract). Number of oocysts/g of feces, serum immunoglobulin (Ig) G level, and interferon (IFN)-γ, and interleukin (IL)-4 levels were used to evaluate the therapeutic effect. Results C. parvum oocyst shedding in stool samples was significantly decreased in all treatment groups, with 79.7%, 81.2 %, and 85.5 % reduction in immunocompetent mice treated with NZX, M. fragrans, and their combination, respectively. In immunosuppressed mice, oocyst shedding was reduced by 77.7%, 80.5 %, and 83.7 % upon NZX, M. fragrans, and their combination treatments, respectively. The serum IgG level was lowest in mice treated with a mixture of M. fragrans and NZX, followed by those treated with NZX, and was highest in mice treated with M. fragrans alone. Regarding cytokine levels, all groups treated with M. fragrans had low levels of IFN-γ and IL4 on day 21 post-infection. Conclusion Collectively, the treatment of cryptosporidiosis with M. fragrans extract was successful in mice, as demonstrated by the measured parameters. M. fragrans reduced C. parvum oocyst shedding and serum IgG, IFN-γ, and IL-4 levels in immunocompetent and immunosuppressed mice.
Collapse
Affiliation(s)
- Eman E. El Shanawany
- Department of Parasitology and Animal Diseases, National Research Centre, Dokki-Giza, Egypt
| | - Faten Abouelmagd
- Department of Medical Parasitology, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| | - Noha Madbouly Taha
- Department of Parasitology, Kasr Al-Ainy School of Medicine, Cairo University, Egypt
| | - Rabab S. Zalat
- Department of Parasitology, Theodor Bilharz Research Institute, Egypt
| | - Enas H. Abdelrahman
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt
| | - Eman H. Abdel-Rahman
- Department of Parasitology and Animal Diseases, National Research Centre, Dokki-Giza, Egypt
| |
Collapse
|
3
|
Mwaba F, Robertson LJ, Tembo R, Zulu M, Ngalamika O, Phiri AM, Siwila J. Occurrence and factors associated with Cryptosporidium infection in livestock in three districts of Zambia. Vet Parasitol Reg Stud Reports 2024; 52:101057. [PMID: 38880570 DOI: 10.1016/j.vprsr.2024.101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/23/2024] [Accepted: 06/01/2024] [Indexed: 06/18/2024]
Abstract
Cryptosporidium is one of the most important enteric diarrhoeal parasites that infect humans and animals worldwide. The current study investigated the occurrence and risk factors associated with Cryptosporidium infection in ruminants aged ≤6 months in Monze, Mumbwa, and Lusaka districts of Zambia. Faecal samples were collected from 328 calves, 190 lambs, and 245 goat kids and analysed for Cryptosporidium oocysts using modified Ziehl Neelsen staining. A closed structured questionnaire was used to obtain epidemiological characteristics and potential risk factors for Cryptosporidium infection. The overall occurrence of Cryptosporidium was 7.9% (60/763), while that in calves, lambs and goat kids was 14.5% (47/328), 5.3% (10/190), and 1.2% (3/245) respectively. Watery/pasty stool and sampling during the rainy season were independently associated with increased risk of infection. In calves, the odds of infection increased during the rainy season, while daily kraal cleaning reduced the infection risk. Lambs showed increased odds of infection with pasty/watery stool and male sex, whereas the wearing of protective clothing by handlers significantly reduced the risk. There were district variations in infection occurrence with Mumbwa district having higher prevalence. The findings of this study show that livestock in Zambia continue to be frequently infected with Cryptosporidium. Protective measures and appropriate farm cleanliness should be implemented in control of this infection. Regional and host-species-specific variations emphasize the need for targeted interventions. These findings, therefore, contribute to effective strategies for Cryptosporidium control, promoting good livestock health and management.
Collapse
Affiliation(s)
- Florence Mwaba
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, P. O. Box 32379, Lusaka, Zambia; Department of Clinical Studies, School of Veterinary Medicine, University of Zambia, P. O. Box 32379, Lusaka, Zambia; Africa Centre of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka, Zambia.
| | - Lucy J Robertson
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, Ås 1432, Norway
| | - Rabecca Tembo
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, P. O. Box 32379, Lusaka, Zambia; Africa Centre of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka, Zambia
| | - Mildred Zulu
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, P. O. Box 32379, Lusaka, Zambia; Africa Centre of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka, Zambia
| | - Owen Ngalamika
- School of Medicine, University of Zambia, P. O. Box 32379, Lusaka, Zambia
| | - Andrew M Phiri
- Department of Clinical Studies, School of Veterinary Medicine, University of Zambia, P. O. Box 32379, Lusaka, Zambia; Africa Centre of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka, Zambia
| | - Joyce Siwila
- Department of Clinical Studies, School of Veterinary Medicine, University of Zambia, P. O. Box 32379, Lusaka, Zambia
| |
Collapse
|
4
|
Li J, Fan Y, Li N, Guo Y, Wang W, Feng K, He W, Li F, Huang J, Xu Y, Xiao L, Feng Y. Comparative genomics analysis reveals sequence characteristics potentially related to host preference in Cryptosporidium xiaoi. Int J Parasitol 2024; 54:379-390. [PMID: 38492779 DOI: 10.1016/j.ijpara.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Cryptosporidium spp. are important diarrhea-associated pathogens in humans and livestock. Among the known species, Cryptosporidium xiaoi, which causes cryptosporidiosis in sheep and goats, was previously recognized as a genotype of the bovine-specific Cryptosporidium bovis based on their high sequence identity in the ssrRNA gene. However, the lack of genomic data has limited characterization of the genetic differences between the two closely related species. In this study, we sequenced the genomes of two C. xiaoi isolates and performed comparative genomic analysis to identify the sequence uniqueness of this ovine-adapted species compared with other Cryptosporidium spp. Our results showed that C. xiaoi is genetically related to C. bovis as shown by their 95.8% genomic identity and similar gene content. Consistent with this, both C. xiaoi and C. bovis appear to have fewer genes encoding mitochondrial metabolic enzymes and invasion-related protein families. However, they appear to possess several species-specific genes. Further analysis indicates that the sequence differences between these two Cryptosporidium spp. are mainly in 24 highly polymorphic genes, half of which are located in the subtelomeric regions. Some of these subtelomeric genes encode secretory proteins that have undergone positive selection. In addition, the genomes of two C. xiaoi isolates, identified as subtypes XXIIIf and XXIIIh, share 99.9% nucleotide sequence identity, with six highly divergent genes encoding putative secretory proteins. Therefore, these species-specific genes and sequence polymorphism in subtelomeric genes probably contribute to the different host preference of C. xiaoi and C. bovis.
Collapse
Affiliation(s)
- Jiayu Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Fan
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Weijian Wang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Kangli Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Wei He
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Falei Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Jianbo Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Yanhua Xu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China.
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Egan S, Barbosa AD, Feng Y, Xiao L, Ryan U. Minimal zoonotic risk of cryptosporidiosis and giardiasis from frogs and reptiles. Eur J Protistol 2024; 93:126066. [PMID: 38442435 DOI: 10.1016/j.ejop.2024.126066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
The zoonotic potential of the protist parasites Cryptosporidium spp. and Giardia duodenalis in amphibians and reptiles raises public health concerns due to their growing popularity as pets. This review examines the prevalence and diversity of these parasites in wild and captive amphibians and reptiles to better understand the zoonotic risk. Research on Giardia in both groups is limited, and zoonotic forms of Cryptosporidium or Giardia have not been reported in amphibians. Host-adapted Cryptosporidium species dominate in reptiles, albeit some reptiles have been found to carry zoonotic (C. hominis and C. parvum) and rodent-associated (C. tyzzeri, C. muris and C. andersoni) species, primarily through mechanical carriage. Similarly, the limited reports of Giardia duodenalis (assemblages A, B and E) in reptiles may also be due to mechanical carriage. Thus, the available evidence indicates minimal zoonotic risk associated with these organisms in wild and captive frogs and reptiles. The exact transmission routes for these infections within reptile populations remain poorly understood, particularly regarding the importance of mechanical carriage. Although the risk appears minimal, continued research and surveillance efforts are necessary to gain a more comprehensive understanding of the transmission dynamics and ultimately improve our ability to safeguard human and animal health.
Collapse
Affiliation(s)
- Siobhon Egan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Amanda D Barbosa
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia; CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF 70040-020, Brazil
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Una Ryan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
6
|
Golomazou E, Mamedova S, Eslahi AV, Karanis P. Cryptosporidium and agriculture: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170057. [PMID: 38242460 DOI: 10.1016/j.scitotenv.2024.170057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Cryptosporidiosis is a significant contributor to global foodborne and waterborne disease burden. It is a widespread cause of diarrheal diseases that affect humans and animals worldwide. Agricultural environments can become a source of contamination with Cryptosporidium species through faecal material derived from humans and animals. This review aims to report the main findings of scientific research on Cryptosporidium species related to various agricultural sectors, and highlights the risks of cryptosporidiosis in agricultural production, the contamination sources, the importance of animal production in transmission, and the role of farmed animals as hosts of the parasites. Agricultural contamination sources can cause water pollution in groundwater and different surface waters used for drinking, recreational purposes, and irrigation. The application of contaminated manure, faecal sludge management, and irrigation with inadequately treated water are the main concerns associated with foodborne and waterborne cryptosporidiosis related to agricultural activities. The review emphasizes the public health implications of agriculture concerning the transmission risk of Cryptosporidium parasites and the urgent need for a new concept in the agriculture sector. Furthermore, the findings of this review provide valuable information for developing appropriate measures and monitoring strategies to minimize the risk of infection.
Collapse
Affiliation(s)
- Eleni Golomazou
- Department of Ichthyology and Aquatic Environment - Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, Fytokou str., 38446 Volos, Greece
| | - Simuzer Mamedova
- Institute of Zoology, Ministry of Science and Education Republic of Azerbaijan, Baku, Azerbaijan & Department of Life Sciences, Khazar University, Baku, Azerbaijan
| | - Aida Vafae Eslahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Panagiotis Karanis
- University of Cologne, Medical Faculty and University Hospital, 50931 Cologne, Germany; University of Nicosia Medical School, Department of Basic and Clinical Sciences, Anatomy Centre, 2408 Nicosia, Cyprus.
| |
Collapse
|
7
|
Egan S, Barbosa AD, Feng Y, Xiao L, Ryan U. Critters and contamination: Zoonotic protozoans in urban rodents and water quality. WATER RESEARCH 2024; 251:121165. [PMID: 38290188 DOI: 10.1016/j.watres.2024.121165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Rodents represent the single largest group within mammals and host a diverse array of zoonotic pathogens. Urbanisation impacts wild mammals, including rodents, leading to habitat loss but also providing new resources. Urban-adapted (synanthropic) rodents, such as the brown rat (R. norvegicus), black rat (R. rattus), and house mouse (Mus musculus), have long successfully adapted to living close to humans and are known carriers of zoonotic pathogens. Two important enteric, zoonotic protozoan parasites, carried by rodents, include Cryptosporidium and Giardia. Their environmental stages (oocysts/cysts), released in faeces, can contaminate surface and wastewaters, are resistant to common drinking water disinfectants and can cause water-borne related gastritis outbreaks. At least 48 species of Cryptosporidium have been described, with C. hominis and C. parvum responsible for the majority of human infections, while Giardia duodenalis assemblages A and B are the main human-infectious assemblages. Molecular characterisation is crucial to assess the public health risk linked to rodent-related water contamination due to morphological overlap between species. This review explores the global molecular diversity of these parasites in rodents, with a focus on evaluating the zoonotic risk from contamination of water and wasterwater with Cryptosporidium and Giardia oocysts/cysts from synanthropic rodents. Analysis indicates that while zoonotic Cryptosporidium and Giardia are prevalent in farmed and pet rodents, host-specific Cryptosporidium and Giardia species dominate in urban adapted rodents, and therefore the risks posed by these rodents in the transmission of zoonotic Cryptosporidium and Giardia are relatively low. Many knowledge gaps remain however, and therefore understanding the intricate dynamics of these parasites in rodent populations is essential for managing their impact on human health and water quality. This knowledge can inform strategies to reduce disease transmission and ensure safe drinking water in urban and peri‑urban areas.
Collapse
Affiliation(s)
- Siobhon Egan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Amanda D Barbosa
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia; CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF 70040-020, Brazil
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Una Ryan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
8
|
Barbosa AD, Egan S, Feng Y, Xiao L, Balogun S, Ryan U. Zoonotic Cryptosporidium and Giardia in marsupials-an update. Parasitol Res 2024; 123:107. [PMID: 38253768 PMCID: PMC10803519 DOI: 10.1007/s00436-024-08129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Marsupials, inhabiting diverse ecosystems, including urban and peri-urban regions in Australasia and the Americas, intersect with human activities, leading to zoonotic spill-over and anthroponotic spill-back of pathogens, including Cryptosporidium and Giardia. This review assesses the current knowledge on the diversity of Cryptosporidium and Giardia species in marsupials, focusing on the potential zoonotic risks. Cryptosporidium fayeri and C. macropodum are the dominant species in marsupials, while in possums, the host-specific possum genotype dominates. Of these three species/genotypes, only C. fayeri has been identified in two humans and the zoonotic risk is considered low. Generally, oocyst shedding in marsupials is low, further supporting a low transmission risk. However, there is some evidence of spill-back of C. hominis into kangaroo populations, which requires continued monitoring. Although C. hominis does not appear to be established in small marsupials like possums, comprehensive screening and analysis are essential for a better understanding of the prevalence and potential establishment of zoonotic Cryptosporidium species in small marsupials. Both host-specific and zoonotic Giardia species have been identified in marsupials. The dominance of zoonotic G. duodenalis assemblages A and B in marsupials may result from spill-back from livestock and humans and it is not yet understood if these are transient or established infections. Future studies using multilocus typing tools and whole-genome sequencing are required for a better understanding of the zoonotic risk from Giardia infections in marsupials. Moreover, much more extensive screening of a wider range of marsupial species, particularly in peri-urban areas, is required to provide a clearer understanding of the zoonotic risk of Cryptosporidium and Giardia in marsupials.
Collapse
Affiliation(s)
- Amanda D Barbosa
- Harry Butler Institute, Vector- and Water-Borne Pathogens Research Group, Murdoch University, Murdoch, Western Australia, 6150, Australia.
- CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF, 70040-020, Brazil.
| | - Siobhon Egan
- Harry Butler Institute, Vector- and Water-Borne Pathogens Research Group, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Samson Balogun
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Wales, United Kingdom
| | - Una Ryan
- Harry Butler Institute, Vector- and Water-Borne Pathogens Research Group, Murdoch University, Murdoch, Western Australia, 6150, Australia
| |
Collapse
|
9
|
Wang Z, Peng X, Bo X, Zhang B, Zhang Y, Yu F, Zhao A, Zhang Z, Qi M. Molecular evaluation of Cryptosporidium spp. in sheep in southern Xinjiang, China. Parasitol Res 2023; 122:2989-2997. [PMID: 37792051 DOI: 10.1007/s00436-023-07988-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023]
Abstract
Cryptosporidium spp. are diarrheagenic intestinal parasites with multiple hosts worldwide. A total of 1252 fresh fecal samples of sheep were collected from 10 large-scale farms in southern Xinjiang. Based on the small subunit ribosomal (SSU rRNA) gene of Cryptosporidium, 100 Cryptosporidium-positive samples (8.0%, 100/1252) were detected by PCR. Nine out of 10 farms were positive for Cryptosporidium, with the highest infection rate being 18.4% (23/125) on farm 9 in Qira. The infection rates of Cryptosporidium in pre-weaned lambs, weaned lambs, fattening sheep, and adult sheep were 20.3% (61/301), 10.3% (34/329), 0.9% (3/327), and 0.7% (2/295), respectively. Three Cryptosporidium species were identified, namely, C. xiaoi (n = 61), C. parvum (n = 22), and C. ubiquitum (n = 17). Of them, C. xiaoi was detected on all positive farms and in different age groups of sheep. The subtypes of C. parvum and C. ubiquitum were identified by PCR at the 60 kDa glycoprotein (gp60) gene. Two C. parvum subtypes were identified: IIdA19G1 (n = 21) and IIdA15G1 (n = 1). One C. ubiquitum subtype was identified with XIIa (n = 17). These results indicated the common transmission and genetic diversity of Cryptosporidium in sheep in southern Xinjiang, and further investigations are needed on the zoonotic potential of C. parvum and C. ubiquitum in this region.
Collapse
Affiliation(s)
- Zhengrong Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China
| | - Xia Peng
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China
| | - Xinwen Bo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China
| | - Bowen Zhang
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China
| | - Yanyan Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Fuchang Yu
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China
| | - Aiyun Zhao
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China
| | - Zhenjie Zhang
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China.
| | - Meng Qi
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China.
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China.
| |
Collapse
|
10
|
Gomes-Gonçalves S, Palmeira JD, Ferreira H, Santos-Silva S, Mesquita JR. Occurrence and Phylogenetic Analysis of Zoonotic Enteropathogenic Protist Parasites in Asymptomatic Domestic Ruminants from Portugal. Pathogens 2023; 12:1341. [PMID: 38003805 PMCID: PMC10675233 DOI: 10.3390/pathogens12111341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Enteropathogenic parasites are of significant concern for public health due to their zoonotic potential and their impact on human and animal health. In this study, we investigated their occurrence and characterized these enteropathogens in asymptomatic domestic ruminants from Portugal. A total of 302 stool samples were collected from cattle (n = 166), sheep (n = 73), and goats (n = 63) in various regions of Portugal and tested for Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi, Blastocystis sp., and Balantioides coli by PCR. The occurrence of Cryptosporidium spp. was found to be 12.7% (8/63, 95% confidence interval [CI]: 5.65-23.5) in goats; however, no sample was found to be positive for Cryptosporidium spp. in cattle and sheep. For E. bieneusi, 6.35% (4/63; 95%CI: 1.76-15.47) of goats were found to be positive; however, no cattle or sheep were found to be positive. Blastocystis sp. was found in sheep (9.59%; 7/73; 95% [CI]: 0.394-18.76) and goats (12.70%; 8/63; 95% [CI]: 5.65-23.50) but none was found in cattle. No positive results for G. duodenalis or B. coli were detected in this study. This study provides essential baseline information for understanding the silent shedding and epidemiology of these enteropathogens in Portugal, contributing to overall livestock health and related occupational safety. Raising awareness among consumers, veterinarians, and farm owners is crucial to minimize the risk of transmission and promote effective disease control strategies.
Collapse
Affiliation(s)
- Sara Gomes-Gonçalves
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal;
| | - Josman Dantas Palmeira
- UCIBIO—Applied Molecular Biosciences Unit, University of Porto, 4050-313 Porto, Portugal; (J.D.P.); (H.F.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal
- Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, 4050-313 Porto, Portugal
| | - Helena Ferreira
- UCIBIO—Applied Molecular Biosciences Unit, University of Porto, 4050-313 Porto, Portugal; (J.D.P.); (H.F.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal
- Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, 4050-313 Porto, Portugal
| | - Sérgio Santos-Silva
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
| | - João R. Mesquita
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| |
Collapse
|
11
|
Tako S, Fleiderovitz L, Markovich MP, Mazuz ML, Behar A, Yasur-Landau D. Cryptosporidium parvum gp60 subtypes in diarrheic lambs and goat kids from Israel. Parasitol Res 2023; 122:2237-2241. [PMID: 37462744 DOI: 10.1007/s00436-023-07925-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023]
Abstract
Cryptosporidium parvum is the second-most prevalent Cryptosporidium species that infects humans worldwide. In European countries, it is the most prevalent species in sheep, suggesting that these animals are a source of zoonotic infection. Preweaned lambs and goats are particularly susceptible to infection by the parasite and may suffer from severe diarrhea whilst excreting large quantities of infectious oocysts. Fifty fecal samples from preweaned lambs and goats with diarrhea from 35 farms across Israel, found to be Cryptosporidium-positive by microscopy, were tested by PCR and sequence analyses to determine the infective species and subtypes. Cryptosporidium parvum DNA was detected in most samples from both lambs and goats (46/50). Cryptosporidium xiaoi DNA was detected in three samples from kids, with co-infection detected in a single sample. Eleven different C. parvum subtypes were found, 10 in lambs and 5 in goats. All subtypes were from the IIa and IId subtype families, with subtypes IIdA20G1 and IIaA15G2R1 being the most prevalent and widespread. These subtypes were previously found in calves and humans in Israel and are considered the most prevalent C. parvum subtypes in small ruminants globally. These results underline the zoonotic potential of C. parvum from small ruminants and the high subtype diversity compared to previous reports from other Middle Eastern countries. In addition, this is the first report of C. xiaoi in Israel.
Collapse
Affiliation(s)
- Sivan Tako
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel
| | - Ludmila Fleiderovitz
- Division of Parasitology, Kimron Veterinary Institute, P.O. Box 12, 50250, Bet Dagan, Israel
| | - Michal Perry Markovich
- Poultry Health Division, Israeli Veterinary Services, P.O. Box 12, 50250, Bet Dagan, Israel
| | - Monica Leszkowicz Mazuz
- Division of Parasitology, Kimron Veterinary Institute, P.O. Box 12, 50250, Bet Dagan, Israel
| | - Adi Behar
- Division of Parasitology, Kimron Veterinary Institute, P.O. Box 12, 50250, Bet Dagan, Israel
| | - Daniel Yasur-Landau
- Division of Parasitology, Kimron Veterinary Institute, P.O. Box 12, 50250, Bet Dagan, Israel.
| |
Collapse
|
12
|
Zhao L, Chai HL, Wang MY, Zhang ZS, Han WX, Yang B, Wang Y, Zhang S, Zhao WH, Ma YM, Zhan YJ, Wang LF, Ding YL, Wang JL, Liu YH. Prevalence and molecular characterization of Cryptosporidium spp. in dairy cattle in Central Inner Mongolia, Northern China. BMC Vet Res 2023; 19:134. [PMID: 37626358 PMCID: PMC10464073 DOI: 10.1186/s12917-023-03696-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Cryptosporidium is a gastrointestinal protozoan that widely exists in nature, it is an established zoonotic pathogen. Infected cattle are considered to be associated with cryptosporidiosis outbreaks in humans. In the present study, we aimed to assess the prevalence and species distribution of Cryptosporidium in dairy cattle in Central Inner Mongolia. METHODS We focused on the small subunit ribosomal RNA gene (SSU rRNA) of Cryptosporidium and 60-kDa glycoprotein gene (gp60) of Cryptosporidium parvum. We collected 505 dairy cattle manure samples from 6 sampling sites in Inner Mongolia in 2021; the samples were divided into 4 groups based on age. DNA extraction, polymerase chain reaction (PCR), sequence analysis, and restriction fragment length polymorphism (RFLP) using SspI and MboII restriction endonucleases were performed. RFLP analysis was performed to determine the prevalence and species distribution of Cryptosporidium. RESULTS SSU rRNA PCR revealed that the overall prevalence of Cryptosporidium infection was 29.90% (151/505), with a prevalence of 37.67% (55/146) and 26.74% (96/359) in diarrheal and nondiarrheal samples, respectively; these differences were significant. The overall prevalence of Cryptosporidium infection at the 6 sampling sites ranged from 0 to 47.06% and that among the 4 age groups ranged from 18.50 to 43.81%. SSU rRNA sequence analysis and RFLP analysis revealed the presence of 4 Cryptosporidium species, namely, C. bovis (44.37%), C. andersoni (35.10%), C. ryanae (21.85%), and C. parvum (11.92%), along with a mixed infection involving two or three Cryptosporidium species. Cryptosporidium bovis or C. andersoni was the most common cause of infection in the four age groups. The subtype of C. parvum was successfully identified as IIdA via gp60 analysis; all isolates were identified as the subtype IIdA19G1. CONCLUSIONS To the best of our knowledge, this is the first report of dairy cattle infected with four Cryptosporidium species in Inner Mongolia, China, along with a mixed infection involving two or three Cryptosporidium species, with C. bovis and C. andersoni as the dominant species. Moreover, this is the first study to identify C. parvum subtype IIdA19G1 in cattle in Inner Mongolia. Our study findings provide detailed information on molecular epidemiological investigation of bovine cryptosporidiosis in Inner Mongolia, suggesting that dairy cattle in this region are at risk of transmitting cryptosporidiosis to humans.
Collapse
Affiliation(s)
- Li Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Hai-Liang Chai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Ming-Yuan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhan-Sheng Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wen-Xiong Han
- Inner Mongolia Saikexing Reproductive Biotechnology (Group) Co.,Ltd, Hohhot, China
| | - Bo Yang
- Animal Disease Control Center of Ordos, Ordos, China
| | - Yan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Shan Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wei-Hong Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yi-Min Ma
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong-Jie Zhan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Li-Feng Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu-Lin Ding
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Jin-Ling Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Yong-Hong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China.
| |
Collapse
|
13
|
Chen Y, Huang J, Qin H, Wang L, Li J, Zhang L. Cryptosporidium parvum and gp60 genotype prevalence in dairy calves worldwide: a systematic review and meta-analysis. Acta Trop 2023; 240:106843. [PMID: 36738819 DOI: 10.1016/j.actatropica.2023.106843] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
Cryptosporidium is a significant zoonotic pathogen that often occurs in dairy cattle. We conducted a systematic review and meta-analysis of the prevalence of Cryptosporidium parvum infection in dairy calves worldwide to help improve global animal husbandry and public policy implementation. Published articles were obtained from PubMed and Web of Science from January 1, 2000 to December 31, 2021. The prevalence of C. parvum infection in dairy calves was estimated using a random effects model, and the sources of heterogeneity were explored using meta-regression. In total, 118 datasets were included in the final quantitative analysis. The results showed that the global prevalence of C. parvum in dairy calves was 21.9% (7755/42,890; 95% confidence interval: 19.9-23.9%). C. parvum infection was high in pre-weaned dairy calves (24.9%, 6706/29,753) and diarrhea dairy calves (33.6%, 1637/6077). In countries with low dairy stocking density (<10 cows/farm), the prevalence of C. parvum in dairy calves was also relatively low (15.2%, 1960/16,584). Three subtype families [IIa (72.2%, 2293/3177), IId (27.4%, 872/3177), and IIl (0.4%, 12/3177)] were detected in dairy calves globally from selected studies. C. parvum IIa was the dominant zoonotic subtype. In the IIa subtype family of C. parvum, the proportions of subtypes from high to low (top nine) were IIaA15G2R1 (32.4%, 742/2293), IIaA18G3R1 (11.8%, 271/2293), IIaA13G2R1 (8.2%, 187/2293), IIaA16G1R1 (6.4%, 147/2293), IIaA20G1R1 (3.5%, 81/2293), IIaA16G3R1 (3.4%, 78/2293), IIaA17G2R1 (2.7%, 62/2293), IIaA18G1R1 (2.5%, 58/2293), and IIaA15G1R1 (2.4%, 56/2293). In the IId subtype family of C. parvum, the proportions of subtypes (top four) were IIdA19G1 (36.0%, 314/872), IIdA15G1 (27.3%, 238/872), IIdA20G1 (16.2%, 141/872), and IIdA14G1 (13.0%, 113/872). Furthermore, IId is commonly found in China (771/872). The study results indicated that the IIa subtype family is globally prevalent, while IId is found in Asia, Europe, and Africa and IIl is only found in Europe. Diarrhea in dairy calves is associated with C. parvum infection and a significantly higher prevalence is observed in diarrheic calves. Age and stock density are two significant risk factors in the prevalence of C. parvum in dairy calves. The prevention and control of this zoonosis in dairy calves should receive greater attention, especially in regions with a high degree of intensive dairy farming.
Collapse
Affiliation(s)
- Yuancai Chen
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou 450002, China
| | - Jianying Huang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou 450002, China
| | - Huikai Qin
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou 450002, China
| | - Lu Wang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou 450002, China
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou 450002, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou 450002, China.
| |
Collapse
|
14
|
Diverse Genotypes of Cryptosporidium in Sheep in California, USA. Pathogens 2022; 11:pathogens11091023. [PMID: 36145455 PMCID: PMC9504958 DOI: 10.3390/pathogens11091023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Cryptosporidium spp. is a parasite that can infect a wide variety of vertebrate species. The parasite has been detected in sheep worldwide with diverse species and genotypes of various levels of zoonotic potential and public health concern. The purpose of this study was to determine the distribution of genotypes of Cryptosporidium in sheep in California, USA. Microscopic positive samples from individual sheep from central and northern California ranches were genotyped by sequencing a fragment of the 18S rRNA gene and BLAST analysis. Eighty-eight (63.8%) of the microscopic positive samples were genotyped, and multiple genotypes of Cryptosporidium were identified from sheep in the enrolled ranches. Approximately 89% of isolates (n = 78) were C. xiaoi or C. bovis, 10% of isolates (n = 9) were C. ubiquitum, and 1% of isolates (n = 1) were C. parvum. The C. parvum and C. ubiquitum isolates were detected only from lambs and limited to four farms. Given that the majority of Cryptosporidium species (i.e., C. xiaoi and C. bovis) were of minor zoonotic concern, the results of this study suggest that sheep are not a reservoir of major zoonotic Cryptosporidium in California ranches.
Collapse
|
15
|
Krumkamp R, Conraths FJ, Caccio S, Schares G, Hogan B, Winter D, Jaeger A, Melhem S, Rakotozandrindrainy N, May J, Rakotozandrindrainy R, Eibach D. Clustering of Cryptosporidium species infections among sheep and cattle but not children in remote highland communities of Madagascar. Parasit Vectors 2022; 15:304. [PMID: 36031635 PMCID: PMC9422120 DOI: 10.1186/s13071-022-05434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
Background The aim of this study was to identify local transmission patterns of Cryptosporidium spp. infections among livestock and humans in four extremely rural and remote highland communities in Madagascar. Methods In this cross-sectional study, households were randomly sampled throughout a 1-year study period, with one feces sample collected from each child (≤ 5 years old), sheep and cattle. Cryptosporidium spp. were identified using a nested PCR assay targeting the 18S ribosomal RNA gene. All samples positive for Cryptosporidium hominis were further subtyped by sequencing the 60-kDa glycoprotein gene (gp60). Spatial clustering methods were applied to analyze potential transmission patterns. Results In total, 252 households participated in the study, and samples from 197 children, 862 cattle and 334 sheep were collected and included in the study. Of the samples collected, 11 (5.6%) from children, 30 (3.5%) from cattle and 42 (12.6%) from sheep tested positive for Cryptosporidium spp. Very little overlap in the species distribution between human and animal infections was found. Global (overall) and local (spatially defined) clustering was observed for Cryptosporidium spp. infections in sheep and for Cryptosporidium xiaoi/bovis infections among sheep and cattle. Discussion The results of this analysis do not support the occurrence of defined disease outbreaks, rather they point to a continuous series of transmission events that are spatially aggregated. Despite the close coexistence between humans, sheep and cattle in the study area, mutual transmission was not observed. Hence, the study underlines the importance of sustained sanitation and hygiene measures to prevent cryptosporidiosis transmission among infants, since asymptomatic children serve as an infection reservoir. Similarly, the study highlights the importance of improving hygiene to reduce the transmission of Cryptosporidium spp. in livestock, an infection with serious consequences, especially in newborn calves. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05434-0.
Collapse
|
16
|
Wang T, Guo Y, Roellig DM, Li N, Santín M, Lombard J, Kváč M, Naguib D, Zhang Z, Feng Y, Xiao L. Sympatric Recombination in Zoonotic Cryptosporidium Leads to Emergence of Populations with Modified Host Preference. Mol Biol Evol 2022; 39:6625830. [PMID: 35776423 PMCID: PMC9317183 DOI: 10.1093/molbev/msac150] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genetic recombination plays a critical role in the emergence of pathogens with phenotypes such as drug resistance, virulence, and host adaptation. Here, we tested the hypothesis that recombination between sympatric ancestral populations leads to the emergence of divergent variants of the zoonotic parasite Cryptosporidium parvum with modified host ranges. Comparative genomic analyses of 101 isolates have identified seven subpopulations isolated by distance. They appear to be descendants of two ancestral populations, IIa in northwestern Europe and IId from southwestern Asia. Sympatric recombination in areas with both ancestral subtypes and subsequent selective sweeps have led to the emergence of new subpopulations with mosaic genomes and modified host preference. Subtelomeric genes could be involved in the adaptive selection of subpopulations, while copy number variations of genes encoding invasion-associated proteins are potentially associated with modified host ranges. These observations reveal ancestral origins of zoonotic C. parvum and suggest that pathogen import through modern animal farming might promote the emergence of divergent subpopulations of C. parvum with modified host preference.
Collapse
Affiliation(s)
- Tianpeng Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yaqiong Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Dawn M Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA
| | - Na Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Mónica Santín
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| | - Jason Lombard
- Center for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, US Department of Agriculture, Fort Collins, CO 80526, USA
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Doaa Naguib
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
17
|
Molecular identification of Cryptosporidium species from domestic ruminants and wild reptiles in Cyprus. Parasitol Res 2022; 121:2193-2198. [PMID: 35488924 PMCID: PMC9055218 DOI: 10.1007/s00436-022-07527-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/18/2022] [Indexed: 11/14/2022]
Abstract
The presence of Cryptosporidium species in faecal samples of 32 sheep (Aries bovis), 10 goats (Capra circus), 1 blunt nose viper (Macrovipera lebetina lebetina), 3 Kotschy’s geckos (Mediodactylus kotschyi) and 6 wild stellagamas (Stellagama stellio cypriaca) in Cyprus were investigated by polymerase chain reaction (PCR) and sequencing. Cryptosporidium species were found in 9/32 sheep, 5/10 goats, 2/3 Kotschy’s geckos and 2/6 stellagamas faecal samples based on the sequencing of the 18S rRNA gene. Subtyping was achieved based on the sequencing of the gp60 gene. Four different species have been identified: Cryptosporidium parvum in goats (subtype IIaA15G1R1), C. xiaoi (subtypes XXIIId and XXIIIl) and C. ubiquitum (subtype XIIa) in sheep and C. varanii and C. parvum in lizards; the viper snake sample was negative. This is the first report on the molecular identification of a variety of Cryptosporidium species from domestic ruminants and wild reptiles in the Republic of Cyprus.
Collapse
|
18
|
Hijjawi N, Zahedi A, Al-Falah M, Ryan U. A review of the molecular epidemiology of Cryptosporidium spp. and Giardia duodenalis in the Middle East and North Africa (MENA) region. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105212. [PMID: 35065302 DOI: 10.1016/j.meegid.2022.105212] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Cryptosporidium spp. and Giardia duodenalis are important protozoan parasites which are associated with diarrheal diseases in humans and animals worldwide. Relatively little is known about the molecular epidemiology of Cryptosporidium spp. and Giardia duodenalis in the Middle East Countries and North Africa (MENA region). Therefore, this review aimed to inspect published genotyping and subtyping studies on Cryptosporidium spp. and Giardia duodenalis in the MENA region. These studies indicate that both anthroponotic and zoonotic transmission of Cryptosporidium occurs with the predominance of zoonotic transmission in most countries. Seven Cryptosporidium species were identified in humans (C. parvum, C. hominis, Cryptosporidium meleagridis, C. felis, Cryptosporidium muris, C. canis and C. bovis), with C. parvum by far being the most prevalent species (reported in 95.4% of the retrieved studies). Among C. parvum gp60 subtype families, IIa and IId predominated, suggesting potential zoonotic transmission. However, in four MENA countries (Lebanon, Israel, Egypt and Tunisia), C. hominis was the predominant species with five subtype families reported including Ia, Ib, Id, If and Ie, all of which are usually anthroponotically transmitted between humans. In animals, the majority of studies were conducted mainly on livestock and poultry, 15 species were identified (C. parvum, C. hominis, C. muris, Cryptosporidium cuniculus, C. andersoni, C. bovis, C. meleagridis, C. baileyi, C. erinacei, C. ryanae, C. felis, C. suis, Cryptosporidium galli, C. xiaoi and C. ubiquitum) with C. parvum (IIa and IId subtypes) the dominant species in livestock and C. meleagridis and C. baileyi the dominant species in poultry. With G. duodenalis, five assemblages (A, B, C, E and F) were identified in humans and six (A, B, C, E, D and F) in animals in MENA countries with assemblages A and B commonly reported in humans, and assemblages A and E dominant in livestock. This review also identified a major knowledge gap in the lack of Cryptosporidium spp. and Giardia duodenalis typing studies in water and food sources in the MENA region. Of the few studies conducted on water sources (including drinking and tap water), ten Cryptosporidium species and four genotypes were identified, highlighting the potential role of water as the major route of Cryptosporidium spp. transmission in the region. In addition, three G. duodenalis assemblages (A, B and E) were detected in different water sources with AI, AII and BIV being the main sub-assemblages reported. More research is required in order to better understand the molecular diversity and transmission dynamics of Cryptsporidum spp. and Giardia duodenalis in humans, animals, water and food sources in MENA region.
Collapse
Affiliation(s)
- Nawal Hijjawi
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan.
| | - Alizera Zahedi
- The Centre of Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | | | - Una Ryan
- The Centre of Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
19
|
Guo Y, Ryan U, Feng Y, Xiao L. Association of Common Zoonotic Pathogens With Concentrated Animal Feeding Operations. Front Microbiol 2022; 12:810142. [PMID: 35082774 PMCID: PMC8784678 DOI: 10.3389/fmicb.2021.810142] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Animal farming has intensified significantly in recent decades, with the emergence of concentrated animal feeding operations (CAFOs) in industrialized nations. The congregation of susceptible animals in CAFOs can lead to heavy environmental contamination with pathogens, promoting the emergence of hyper-transmissible, and virulent pathogens. As a result, CAFOs have been associated with emergence of highly pathogenic avian influenza viruses, hepatitis E virus, Escherichia coli O157:H7, Streptococcus suis, livestock-associated methicillin-resistant Staphylococcus aureus, and Cryptosporidium parvum in farm animals. This has led to increased transmission of zoonotic pathogens in humans and changes in disease patterns in general communities. They are exemplified by the common occurrence of outbreaks of illnesses through direct and indirect contact with farm animals, and wide occurrence of similar serotypes or subtypes in both humans and farm animals in industrialized nations. Therefore, control measures should be developed to slow down the dispersal of zoonotic pathogens associated with CAFOs and prevent the emergence of new pathogens of epidemic and pandemic potential.
Collapse
Affiliation(s)
- Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Una Ryan
- Vector- and Water-Borne Pathogen Research Group, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
20
|
Kifleyohannes T, Nødtvedt A, Debenham JJ, Terefe G, Robertson LJ. Cryptosporidium and Giardia in Livestock in Tigray, Northern Ethiopia and Associated Risk Factors for Infection: A Cross-Sectional Study. Front Vet Sci 2022; 8:825940. [PMID: 35097057 PMCID: PMC8795829 DOI: 10.3389/fvets.2021.825940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence and species/genotypes of Cryptosporidium and Giardia duodenalis infecting young livestock in selected districts of Tigray, Ethiopia were investigated, along with risks associated with infection. A total of 757 faecal samples were collected from calves, lambs, and goat kids from four rural districts in Tigray, and also from calves in periurban Mekelle, Tigray's main city, and analysed for Cryptosporidium oocysts and Giardia cysts. Farmers answered questionnaires regarding potential risk factors at sample collection. Immunofluorescent antibody staining was used for parasite detection, and PCR at selected genes and sequencing of positive samples was used for molecular characterisation. The occurrence of Cryptosporidium infection was 10, 9, and 4% in calves, lambs, and goat kids, respectively; equivalent figures for Giardia infection were 39, 32, and 21%. Molecular characterisation of Cryptosporidium isolates revealed C. ubiquitum, subtype XIIa in all three host species; C. ryanae in calves and goat kids; C. andersoni and C. bovis were identified only in calves, and C. xiaoi was identified in lambs. For Giardia, Assemblage E predominated in all host species, but among calf isolates we also identified a few potentially zoonotic genotypes (assemblages A (AI) and Assemblage B). Periparturient care was shown to be a particularly relevant risk factor for infection, and infections were less likely to occur under extensive management systems. Our major findings were widespread occurrence of both parasites in livestock, and the apparent lack of the most common zoonotic species. Our results are discussed in relation to other relevant studies. As our study was conducted in Tigray, further investigation in different settings in Ethiopia could provide relevant information on transmission and zoonotic potential. In addition, given the dependency on healthy animals for the livelihoods of the population of Tigray, investigation of the effect of these common parasites on livestock productivity is important.
Collapse
|
21
|
Guo Y, Ryan U, Feng Y, Xiao L. Emergence of zoonotic Cryptosporidium parvum in China. Trends Parasitol 2021; 38:335-343. [PMID: 34972653 DOI: 10.1016/j.pt.2021.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/29/2022]
Abstract
Zoonotic cryptosporidiosis is a major public health problem in industrialized nations; in those countries it is caused mainly by Cryptosporidium parvum IIa subtypes that are prevalent in dairy calves. Because of the short history of intensive animal farming in China, strains of C. parvum are found only on some dairy farms in this country and are the IId subtypes. However, the prevalence of C. parvum is increasing rapidly, with IIa subtypes recently detected in a few grazing animals, and both IIa and IId subtypes are emerging in humans. As animal farming intensifies, China may follow in the footsteps of industrialized nations where zoonotic cryptosporidiosis is rampant. One Health and biosecurity measures are urgently needed to slow down the dispersal of autochthonous IId subtypes and imported IIa subtypes.
Collapse
Affiliation(s)
- Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Una Ryan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
22
|
Ryan U, Zahedi A, Feng Y, Xiao L. An Update on Zoonotic Cryptosporidium Species and Genotypes in Humans. Animals (Basel) 2021; 11:3307. [PMID: 34828043 PMCID: PMC8614385 DOI: 10.3390/ani11113307] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
The enteric parasite, Cryptosporidium is a major cause of diarrhoeal illness in humans and animals worldwide. No effective therapeutics or vaccines are available and therefore control is dependent on understanding transmission dynamics. The development of molecular detection and typing tools has resulted in the identification of a large number of cryptic species and genotypes and facilitated our understanding of their potential for zoonotic transmission. Of the 44 recognised Cryptosporidium species and >120 genotypes, 19 species, and four genotypes have been reported in humans with C. hominis, C. parvum, C. meleagridis, C. canis and C. felis being the most prevalent. The development of typing tools that are still lacking some zoonotic species and genotypes and more extensive molecular epidemiological studies in countries where the potential for transmission is highest are required to further our understanding of this important zoonotic pathogen. Similarly, whole-genome sequencing (WGS) and amplicon next-generation sequencing (NGS) are important for more accurately tracking transmission and understanding the mechanisms behind host specificity.
Collapse
Affiliation(s)
- Una Ryan
- Harry Butler Institute, Murdoch University, Perth, WA 6152, Australia;
| | - Alireza Zahedi
- Harry Butler Institute, Murdoch University, Perth, WA 6152, Australia;
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.F.); (L.X.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.F.); (L.X.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
23
|
Ryan UM, Feng Y, Fayer R, Xiao L. Taxonomy and molecular epidemiology of Cryptosporidium and Giardia - a 50 year perspective (1971-2021). Int J Parasitol 2021; 51:1099-1119. [PMID: 34715087 DOI: 10.1016/j.ijpara.2021.08.007] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
The protozoan parasites Cryptosporidium and Giardia are significant causes of diarrhoea worldwide and are responsible for numerous waterborne and foodborne outbreaks of diseases. Over the last 50 years, the development of improved detection and typing tools has facilitated the expanding range of named species. Currently at least 44 Cryptosporidium spp. and >120 genotypes, and nine Giardia spp., are recognised. Many of these Cryptosporidium genotypes will likely be described as species in the future. The phylogenetic placement of Cryptosporidium at the genus level is still unclear and further research is required to better understand its evolutionary origins. Zoonotic transmission has long been known to play an important role in the epidemiology of cryptosporidiosis and giardiasis, and the development and application of next generation sequencing tools is providing evidence for this. Comparative whole genome sequencing is also providing key information on the genetic mechanisms for host specificity and human infectivity, and will enable One Health management of these zoonotic parasites in the future.
Collapse
Affiliation(s)
- Una M Ryan
- Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia.
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Ronald Fayer
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Avenue, BARC-East, Building 173, Beltsville, MD 20705, USA
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
|
25
|
Long-Term Preservation and Storage of Faecal Samples in Whatman ® Cards for PCR Detection and Genotyping of Giardia duodenalis and Cryptosporidium hominis. Animals (Basel) 2021; 11:ani11051369. [PMID: 34065892 PMCID: PMC8151430 DOI: 10.3390/ani11051369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Preservation and conservation of biological specimens, including faecal samples, is a challenge in remote areas or poor-resource settings where the cold chain cannot be maintained. This study aims at evaluating the suitability of filter cards for long-term storage of faecal samples of animal and human origin positive to the diarrhoea-causing protozoan parasites, Giardia duodenalis and Cryptosporidium hominis. Three commercially available Whatman® Filter Cards were comparatively assessed: the FTA® Classic Card, the FTA® Elute Micro Card, and the 903 Protein Saver Card. Human faecal samples positive to G. duodenalis (n = 5) and C. hominis (n = 5) were used to impregnate the selected cards at given storage (1 month, 3 months, and 6 months) periods and temperature (-20 °C, 4 °C, and room temperature) conditions. Parasite DNA was detected by PCR-based methods. Sensitivity assays and quality control procedures to assess suitability for genotyping purposes were conducted. Overall, all three Whatman® cards were proven useful for the detection and molecular characterisation of G. duodenalis and C. hominis under the evaluated conditions. Whatman® cards represent a simple, safe, and cost-effective option for the transportation, preservation, and storage of faecal samples without the need of the cold chain.
Collapse
|