1
|
Cao B, Bai C, Wu K, La T, Chen W, Liu L, Zhou X, Chen C, Li X, Su Y, Che L, Li G. Ticks jump in a warmer world: Global distribution shifts of main pathogenic ticks are associated with future climate change. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124129. [PMID: 39823935 DOI: 10.1016/j.jenvman.2025.124129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/22/2024] [Accepted: 01/10/2025] [Indexed: 01/20/2025]
Abstract
In recent decades, the threats of ticks and tick-borne diseases (TBDs) increased extensively with environmental change, urbanization, and rapidly changing interactions between human and animals. However, large-scale distribution of tick and TBD risks as well as their relationship with environmental change remain inadequately unclear. Here, we first proposed a "tick-pathogen-habitat-human" model to project the global potential distribution of main pathogenic ticks using a total of 70,714 occurrence records. Meanwhile, the effects of ecological factors and socio-economic factors driving the distribution pattern were evaluated. Based on this, the risk distribution of TBDs was projected by large-scale "tick-pathogen-disease" analysis. Furthermore, the distribution shifts of tick suitability were projected under different shared socio-economic pathways in the future. Our findings demonstrate that warm temperate countries (e.g., the United States, China and European countries) in the Northern Hemisphere represent significant high risk regions for ticks and TBDs. Specifically, solar radiation of January emerges as the main decisive factor determining the risk distribution pattern. Future shifts of tick suitability showed decrease trend under low greenhouse gas emission scenarios but increase trend under high scenarios. These suitability shifts were significantly correlated with future temperature- (9 species) and precipitation- (19 species) related factors. Collectively, in this study we first shaped the global risk distribution of main ticks and TBDs as well as tick suitability shifts correlated with future global climate change, which will provide helpful references for disease prevention and administration. The methods proposed here will also shed light on other emerging and recurrent zoonotic diseases (e.g., COVID-19, monkeypox) in the future.
Collapse
Affiliation(s)
- Bo Cao
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China; Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China; Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710004, China; College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Chengke Bai
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Kunyi Wu
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ting La
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wenwen Chen
- Department of Dermatology, Yangling Demonstration Zone Hospital, Yangling, 712100, China
| | - Lianjin Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiaofang Zhou
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Chong Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xian Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Yiyang Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lingyu Che
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Guishuang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
2
|
Djiman TA, Biguezoton AS, Saegerman C. Tick-Borne Diseases in Sub-Saharan Africa: A Systematic Review of Pathogens, Research Focus, and Implications for Public Health. Pathogens 2024; 13:697. [PMID: 39204297 PMCID: PMC11356977 DOI: 10.3390/pathogens13080697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Sub-Saharan Africa, with its hot and humid climate, is a conducive zone for tick proliferation. These vectors pose a major challenge to both animal and human health in the region. However, despite the relevance of emerging diseases and evidence of tick-borne disease emergence, very few studies have been dedicated to investigating zoonotic pathogens transmitted by ticks in this area. To raise awareness of the risks of tick-borne zoonotic diseases in sub-Saharan Africa, and to define a direction for future research, this systematic review considers the trends of research on tick-borne bacteria, parasites, and viruses from 2012 to 2023, aiming to highlight the circulation of these pathogens in ticks, cattle, sheep, goats, and humans. For this purpose, three international databases were screened to select 159 papers fitting designed inclusion criteria and used for qualitative analyses. Analysis of these studies revealed a high diversity of tick-borne pathogens in sub-Saharan Africa, with a total of 37 bacterial species, 27 parasite species, and 14 viruses identified. Among these, 27% were zoonotic pathogens, yet only 11 studies investigated their presence in humans. Furthermore, there is growing interest in the investigation of bacteria and parasites in both ticks and ruminants. However, research into viruses is limited and has only received notable interest from 2021 onwards. While studies on the detection of bacteria, including those of medical interest, have focused on ticks, little consideration has been given to these vectors in studies of parasites circulation. Regarding the limited focus on zoonotic pathogens transmitted by ticks, particularly in humans, despite documented cases of emerging zoonoses and the notable 27% proportion reported, further efforts should be made to fill these gaps. Future studies should prioritize the investigation of zoonotic pathogens, especially viruses, which represent the primary emerging threats, by adopting a One Health approach. This will enhance the understanding of their circulation and impact on both human and animal health. In addition, more attention should be given to the risk factors/drivers associated to their emergence as well as the perception of the population at risk of infection from these zoonotic pathogens.
Collapse
Affiliation(s)
- Tidjani A. Djiman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animals and Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liege, 4000 Liège, Belgium;
- Vector-Borne Diseases and Biodiversity Unit (UMaVeB), International Research and Development Centre on Livestock in Sub-humid Areas (CIRDES), Bobo-Dioulasso 454, Burkina Faso;
| | - Abel S. Biguezoton
- Vector-Borne Diseases and Biodiversity Unit (UMaVeB), International Research and Development Centre on Livestock in Sub-humid Areas (CIRDES), Bobo-Dioulasso 454, Burkina Faso;
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animals and Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liege, 4000 Liège, Belgium;
| |
Collapse
|
3
|
Díaz-Sánchez S, Hernández-Triana LM, Labruna MB, Merino O, Mosqueda J, Nava S, Szabó M, Tarragona E, Venzal JM, de la Fuente J, Estrada-Peña A. Low Genetic Diversity of the Only Clade of the Tick Rhipicephalus microplus in the Neotropics. Pathogens 2023; 12:1344. [PMID: 38003808 PMCID: PMC10675012 DOI: 10.3390/pathogens12111344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
This study addresses the variability of the mitochondrial cytochrome oxidase subunit I (COI) and 16S rDNA (16S), and nuclear internal transcriber spacer ITS2 (ITS2) genes in a set of field-collected samples of the cattle tick, Rhipicephalus microplus (Canestrini, 1888), and in geo-referenced sequences obtained from GenBank. Since the tick is currently considered to be a complex of cryptic taxa in several regions of the world, the main aims of the study are (i) to provide evidence of the clades of the tick present in the Neotropics, (ii) to explore if there is an effect of climate traits on the divergence rates of the target genes, and (iii) to check for a relationship between geographical and genetic distance among populations (the closest, the most similar, meaning for slow spread). We included published sequences of Rhipicephalus annulatus (Nearctic, Afrotropical, and Mediterranean) and R. microplus (Afrotropical, Indomalayan) to fully characterize the Neotropical populations (total: 74 16S, 44 COI, and 49 ITS2 sequences included in the analysis). Only the clade A of R. microplus spread in the Nearctic-Neotropics. Both the K and Lambda's statistics, two measures of phylogenetic signal, support low divergence rates of the tested genes in populations of R. microplus in the Neotropics. These tests demonstrate that genetic diversity of the continental populations does not correlate either with the geographic distance among samples or with environmental variables. The low variability of these genes may be due to a combination of factors like (i) the recent introduction of the tick in the Neotropics, (ii) a large, effective, and fast exchange of populations, and (iii) a low effect of climate on the evolution rates of the target genes. These results have implications for the ecological studies and control of cattle tick infestations.
Collapse
Affiliation(s)
- Sandra Díaz-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.D.-S.); (J.d.l.F.)
| | | | | | - Octavio Merino
- Faculty of Veterinary Medicine, Universidad Autónoma de Tamaulipas, Tamaulipas 87000, Mexico;
| | - Juan Mosqueda
- Laboratory for Research on Immunology and Vaccines, Facultad de Veterinaria, Querétaro 76230, Mexico;
| | - Santiago Nava
- IDICAL (INTA-CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), E.E.A. Rafaela, Rafaela 2300, Santa Fe, Argentina; (S.N.); (E.T.)
| | - Matias Szabó
- Hospital Veterinário, Universidade Federal de Uberlândia, Uberlândia 38405-314, MG, Brazil;
| | - Evelina Tarragona
- IDICAL (INTA-CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), E.E.A. Rafaela, Rafaela 2300, Santa Fe, Argentina; (S.N.); (E.T.)
| | - José M. Venzal
- Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto 50000, Uruguay;
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.D.-S.); (J.d.l.F.)
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Agustín Estrada-Peña
- Department of Animal Health, Faculty of Veterinary Medicine, 50009 Zaragoza, Spain
- Group of Research on Emerging Zoonoses, Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain
| |
Collapse
|
4
|
Diarra AZ, Kelly P, Davoust B, Parola P. Tick-Borne Diseases of Humans and Animals in West Africa. Pathogens 2023; 12:1276. [PMID: 38003741 PMCID: PMC10675719 DOI: 10.3390/pathogens12111276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/26/2023] Open
Abstract
Ticks are a significant group of arthropod vectors that transmit a large variety of pathogens responsible for human and animal diseases worldwide. Ticks are the second biggest transmitters of vector-borne diseases, behind mosquitoes. However, in West Africa, there is often only limited knowledge of tick-borne diseases. With the scarcity of appropriate diagnostic services, the prevalence of tick-borne diseases is generally underestimated in humans. In this review, we provide an update on tick-borne pathogens reported in people, animals and ticks in West Africa by microscopic, immunological and molecular methods. A systematic search was conducted in PubMed and Google Scholar. The selection criteria included all studies conducted in West Africa reporting the presence of Rickettsia, Borrelia, Anaplasma, Ehrlichia, Bartonella, Coxiella burnetii, Theileria, Babesia, Hepatozoon and Crimean-Congo haemorrhagic fever viruses in humans, animals or ticks. Our intention is to raise awareness of tick-borne diseases amongst human and animal health workers in West Africa, and also physicians working with tourists who have travelled to the region.
Collapse
Affiliation(s)
- Adama Zan Diarra
- IHU-Méditerranée Infection, 13005 Marseille, France; (A.Z.D.); (B.D.)
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
| | - Patrick Kelly
- Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis;
| | - Bernard Davoust
- IHU-Méditerranée Infection, 13005 Marseille, France; (A.Z.D.); (B.D.)
- Aix Marseille Univ, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Philippe Parola
- IHU-Méditerranée Infection, 13005 Marseille, France; (A.Z.D.); (B.D.)
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
| |
Collapse
|
5
|
Mucheka VT, Pillay A, Mukaratirwa S. Prevalence of tick-borne pathogens in Rhipicephalus species infesting domestic animals in Africa: A systematic review and meta-analysis. Acta Trop 2023; 246:106994. [PMID: 37516420 DOI: 10.1016/j.actatropica.2023.106994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Rhipicephalus ticks transmit important tick-borne pathogens (TBPs) such as Anaplasma, Babesia, and Theileria spp. which cause major economic losses in livestock production and contribute to emerging zoonotic diseases. A vast amount of data is available based on the demonstration of these pathogens in various host tissues, with limited information on the prevalence of these TBPs and their vectors. Quantifying TBPs infection rates among Rhipicephalus spp. is essential for the effective control and management of TBDs in domestic animals and surveillance of emerging diseases in humans, as they have close social associations. This review summarizes the prevalence of TBPs in Rhipicephalus spp. from domestic animals of Africa. A thorough search was done in SCOPUS, Web of Knowledge, PubMed, Google Scholar, and library sources from 2000 to 2022. All research in Africa reporting TBPs infection rates in Rhipicephalus spp. were included in the selection criteria. The meta-analysis evaluated publication bias using funnel plots to analyze the observed heterogeneity and applied a quality effects model. Prevalence estimates were based on data from 46 studies reporting TBPs infection rates in Rhipicephalus spp. from northern and sub-Saharan Africa. Sub-group analysis was done by geographic region and tick genus. A total of 12,368 Rhipicephalus spp. collected from domestic animals in Africa were used in the meta-analysis. The quality effects model revealed a high degree of heterogeneity among studies on the various TBPs. The overall prevalence of detected TBPs such as Theileria spp. was 8% (95% CI: 3-15%), Rickettsia spp. 3% (95% CI: 0-9%), Ehrlichia spp. 7% (95% CI: 2-14%), Anaplasma spp. 8% (95% CI: 2-16%), Coxiella spp. 10% (95% CI: 1-26%) and Babesia spp. 6% (95% CI: 2-12%). Northern Africa had the highest prevalence of Anaplasma spp. 12% (95% CI: 3-25%) and Theileria spp. 16% (95% CI: 0-42%). Whilst West Africa had the highest prevalence for Ehrlichia spp. 12% (95% CI: 3-24%) and eastern Africa for Rickettsia spp. 8% (95% CI: 4-12%). This is a systematic and quantitative investigation of the various TBPs detected in Rhipicephalus tick vectors from domestic animal hosts in Africa. The findings demonstrate considerable species variation across the African continent and offer preliminary estimates of infection rates for the continent.
Collapse
Affiliation(s)
- Vimbai Tendai Mucheka
- School of Life Sciences, Biological Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Alicia Pillay
- School of Life Sciences, Biological Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa.
| | - Samson Mukaratirwa
- School of Life Sciences, Biological Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa; One Health Centre for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
| |
Collapse
|
6
|
Distribution and Prevalence of Anaplasmataceae, Rickettsiaceae and Coxiellaceae in African Ticks: A Systematic Review and Meta-Analysis. Microorganisms 2023; 11:microorganisms11030714. [PMID: 36985288 PMCID: PMC10051480 DOI: 10.3390/microorganisms11030714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
In Africa, ticks continue to be a major hindrance to the improvement of the livestock industry due to tick-borne pathogens that include Anaplasma, Ehrlichia, Rickettsia and Coxiella species. A systemic review and meta-analysis were conducted here and highlighted the distribution and prevalence of these tick-borne pathogens in African ticks. Relevant publications were searched in five electronic databases and selected using inclusion/exclusion criteria, resulting in 138 and 78 papers included in the qualitative and quantitative analysis, respectively. Most of the studies focused on Rickettsia africae (38 studies), followed by Ehrlichia ruminantium (27 studies), Coxiella burnetii (20 studies) and Anaplasma marginale (17 studies). A meta-analysis of proportions was performed using the random-effects model. The highest prevalence was obtained for Rickettsia spp. (18.39%; 95% CI: 14.23–22.85%), R. africae (13.47%; 95% CI: 2.76–28.69%), R. conorii (11.28%; 95% CI: 1.77–25.89%), A. marginale (12.75%; 95% CI: 4.06–24.35%), E. ruminantium (6.37%; 95% CI: 3.97–9.16%) and E. canis (4.3%; 95% CI: 0.04–12.66%). The prevalence of C. burnetii was low (0%; 95% CI: 0–0.25%), with higher prevalence for Coxiella spp. (27.02%; 95% CI: 10.83–46.03%) and Coxiella-like endosymbionts (70.47%; 95% CI: 27–99.82%). The effect of the tick genera, tick species, country and other variables were identified and highlighted the epidemiology of Rhipicephalus ticks in the heartwater; affinity of each Rickettsia species for different tick genera; dominant distribution of A. marginale, R. africae and Coxiella-like endosymbionts in ticks and a low distribution of C. burnetii in African hard ticks.
Collapse
|
7
|
Remesar S, Castro-Scholten S, Morrondo P, Díaz P, Jiménez-Martín D, Rouco C, Camacho-Sillero L, Cano-Terriza D, García-Bocanegra I. Molecular detection of Ehrlichia spp. in ticks parasitizing wild lagomorphs from Spain: characterization of a novel Ehrlichia species. Parasit Vectors 2022; 15:467. [DOI: 10.1186/s13071-022-05600-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Several species belonging to the genus Ehrlichia are considered pathogenic for animals and humans. Although wildlife are known to play an important role in the epidemiology of these bacteria, information on the role of wild lagomorphs in their sylvatic cycle is limited. Thus, the objective of the present study was to assess the occurrence of Ehrlichia spp. in ticks collected from wild lagomorphs in Spanish Mediterranean ecosystems.
Methods
A total of 1122 pooled ticks (254 pools) collected from 506 wild rabbits (Oryctolagus cuniculus) and 29 Iberian hares (Lepus granatensis) were analysed using a nested PCR assay targeting the partial groEL gene. Ehrlichia spp.-positive samples were further subjected to a second PCR assay targeting 16S rRNA.
Results
Three (1.2%) tick pools comprising Rhipicephalus pusillus collected from nine wild rabbits were positive for Ehrlichia spp. All the Ehrlichia DNA sequences were identical, and use of sequence and phylogenetic analyses allowed us to identify a novel Ehrlichia species.
Conclusions
We provide evidence that a novel Ehrlichia species, named herein as ‘Candidatus Ehrlichia andalusi’, which may be of concern for animal and public health, is circulating in R. pusillus in Spanish Mediterranean ecosystems. Further studies are warranted to assess the epidemiology, pathogenicity and zoonotic potential of this Ehrlichia species.
Graphical Abstract
Collapse
|
8
|
Hasan M, Roohi N, Rashid MI, Ali S, Ul-Rehman Z. Occurrence of ticks and tick-borne mixed parasitic microbiota in cross-bred cattle in District Lahore, Pakistan. BRAZ J BIOL 2022; 82:e266721. [PMID: 36515298 DOI: 10.1590/1519-6984.266721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/23/2022] [Indexed: 12/14/2022] Open
Abstract
The present study was focused on the incidence of ticks and tick-borne diseases (TTBD) in cross-bred cattle (Friesian x Sahiwal) of two farms (n = 2548) in district Lahore, Pakistan. We collected total of 572 ticks (adults and nymphs) and blood samples (10 ml) for microscopic i.e., blood smear test - Giemsa Stain (BST) and molecular analysis; Reverse Line Blot-General Primer-PCR (RLB-PCR) and Specie Specific Primer PCR (SP-PCR) from infested cattle (n = 100) from months of April to September. Results: The tick specie identified was Rhipicephalus microplus at both farms, with significant difference in infestations rate amongst both farms (p< 0.0001). The cross-bred cattle having higher ratio of Friesian blood and lower ratio of Sahiwal blood were mostly infested by ticks (p < 0.0458) and haemoparasites (p <0.474) and vice versa. The SP-PCR showed higher number of haemoparasites infection than BST, which revealed 16% T. annulata (p < 0.0001 and k value 0.485, 0.0001), 51% B. bigemina (p < 0.0001 and k value 0.485, 0.0001) and 15% A. marginale (p < 0.001 and k value 0.207, 0.001), respectively. The single infection with B. bigemina was 34% (n = 34/100) and A. marginale 6% (n = 6/100). The double infection with T. annulata/B. bigemina was 8% (n = 8/100) and B. bigemina/A. marginale 1% (n = 1/100). Whereas the triple infection with T. annulata/B. bigemina/A .marginale was 8% (n = 8/100). The phylogenetic study of isolated sequence of T. annulata revealed close homology to isolates from Iran (87%), B. bigemina to isolates from Cuba (94 to 100%) and A. marginale with isolates from Pakistan (99 to 98%).
Collapse
Affiliation(s)
- M Hasan
- University of the Punjab, Institute of Zoology, Lahore, Pakistan
| | - N Roohi
- University of the Punjab, Institute of Zoology, Lahore, Pakistan
| | - M I Rashid
- University of Veterinary and Animal Sciences, Department of Parasitology, Lahore, Pakistan
| | - S Ali
- University of Veterinary and Animal Sciences, Department of Parasitology, Lahore, Pakistan
| | - Z Ul-Rehman
- University of Veterinary and Animal Sciences, Department of Parasitology, Lahore, Pakistan
| |
Collapse
|
9
|
Denisov SS, Dijkgraaf I. Immunomodulatory Proteins in Tick Saliva From a Structural Perspective. Front Cell Infect Microbiol 2021; 11:769574. [PMID: 34722347 PMCID: PMC8548845 DOI: 10.3389/fcimb.2021.769574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022] Open
Abstract
To feed successfully, ticks must bypass or suppress the host’s defense mechanisms, particularly the immune system. To accomplish this, ticks secrete specialized immunomodulatory proteins into their saliva, just like many other blood-sucking parasites. However, the strategy of ticks is rather unique compared to their counterparts. Ticks’ tendency for gene duplication has led to a diverse arsenal of dozens of closely related proteins from several classes to modulate the immune system’s response. Among these are chemokine-binding proteins, complement pathways inhibitors, ion channels modulators, and numerous poorly characterized proteins whose functions are yet to be uncovered. Studying tick immunomodulatory proteins would not only help to elucidate tick-host relationships but would also provide a rich pool of potential candidates for the development of immunomodulatory intervention drugs and potentially new vaccines. In the present review, we will attempt to summarize novel findings on the salivary immunomodulatory proteins of ticks, focusing on biomolecular targets, structure-activity relationships, and the perspective of their development into therapeutics.
Collapse
Affiliation(s)
- Stepan S Denisov
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, Netherlands
| | - Ingrid Dijkgraaf
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, Netherlands
| |
Collapse
|