1
|
Visagie JL, Aruwajoye GS, van der Sluis R. Pharmacokinetics of aspirin: evaluating shortcomings in the literature. Expert Opin Drug Metab Toxicol 2024:1-14. [PMID: 39092921 DOI: 10.1080/17425255.2024.2386368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Aspirin is known for its therapeutic benefits in preventing strokes and relieving pain. However, it is toxic to some individuals, and the biological mechanisms causing toxicity are unknown. Limited literature is available on the role of glycine conjugation as the principal pathway in aspirin detoxification. Previous studies have quantified this two-step enzyme reaction as a singular enzymatic process. Consequently, the individual contributions of these enzymes to the kinetics remain unclear. AREAS COVERED This review summarized the available information on the pharmacokinetics and detoxification of aspirin by the glycine conjugation pathway. Literature searches were conducted using Google Scholar and the academic journal databases accessible through the North-West University Library. Furthermore, the factors affecting interindividual variation in aspirin metabolism and what is known regarding aspirin toxicity were discussed. EXPERT OPINION The greatest drawback in understanding the pharmacokinetics of aspirin is the limited information available on the substrate preference of the xenobiotic ligase (ACSM) responsible for activating salicylate to salicyl-CoA. Furthermore, previous pharmacokinetic studies did not consider the contribution of other substrates from the diet or genetic variants, to the detoxification rate of glycine conjugation. Impaired glycine conjugation might contribute to adverse health effects seen in Reye's syndrome and cancer.
Collapse
Affiliation(s)
- Jacobus Lukas Visagie
- Focus Area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | | | - Rencia van der Sluis
- Focus Area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Xu Z, Yu H, Meng X, Yu Z. Lipid metabolizing enzyme ACSM2B is a potential negative regulator of liver cancer progression. Asian J Surg 2024; 47:2517-2519. [PMID: 38278728 DOI: 10.1016/j.asjsur.2024.01.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Affiliation(s)
- Zhengfeng Xu
- Department of General Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilong jiang Province, China; The Laboratory of Cytobiology and Molecular Biology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang Province, China
| | - Hongwei Yu
- Department of General Surgery, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang Province, China
| | - Xingchu Meng
- Department of General Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilong jiang Province, China.
| | - Ze Yu
- Department of General Surgery, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang Province, China; The Laboratory of Cytobiology and Molecular Biology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang Province, China.
| |
Collapse
|
3
|
Niu B, Pan T, Xiao Y, Wang H, Zhu J, Tian F, Lu W, Chen W. The therapeutic potential of dietary intervention: based on the mechanism of a tryptophan derivative-indole propionic acid on metabolic disorders. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38189263 DOI: 10.1080/10408398.2023.2299744] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Tryptophan (TRP) contributes to individual immune homeostasis and good condition via three complex metabolism pathways (5-hydroxytryptamine (5-HT), kynurenine (KP), and gut microbiota pathway). Indole propionic acid (IPA), one of the TRP derivatives of the microbiota pathway, has raised more attention because of its impact on metabolic disorders. Here, we retrospect increasing evidence that TRP metabolites/IPA derived from its proteolysis impact host health and disease. IPA can activate the immune system through aryl hydrocarbon receptor (AHR) and/or Pregnane X receptor (PXR) as a vital mediator among diet-caused host and microbe cross-talk. Different levels of IPA in systemic circulation can predict the risk of NAFLD, T2DM, and CVD. IPA is suggested to alleviate cognitive impairment from oxidative damage, reduce gut inflammation, inhibit lipid accumulation and attenuate the symptoms of NAFLD, putatively enhance the intestinal epithelial barrier, and maintain intestinal homeostasis. Now, we provide a general description of the relationships between IPA and various physiological and pathological processes, which support an opportunity for diet intervention for metabolic diseases.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tong Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Kühn S, Williams ME, Dercksen M, Sass JO, van der Sluis R. The glycine N-acyltransferases, GLYAT and GLYATL1, contribute to the detoxification of isovaleryl-CoA - an in-silico and in vitro validation. Comput Struct Biotechnol J 2023; 21:1236-1248. [PMID: 36817957 PMCID: PMC9932296 DOI: 10.1016/j.csbj.2023.01.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023] Open
Abstract
Isovaleric acidemia (IVA), due to isovaleryl-CoA dehydrogenase (IVD) deficiency, results in the accumulation of isovaleryl-CoA, isovaleric acid and secondary metabolites. The increase in these metabolites decreases mitochondrial energy production and increases oxidative stress. This contributes to the neuropathological features of IVA. A general assumption in the literature exists that glycine N-acyltransferase (GLYAT) plays a role in alleviating the symptoms experienced by IVA patients through the formation of N-isovalerylglycine. GLYAT forms part of the phase II glycine conjugation pathway in the liver and detoxifies excess acyl-CoA's namely benzoyl-CoA. However, very few studies support GLYAT as the enzyme that conjugates isovaleryl-CoA to glycine. Furthermore, GLYATL1, a paralogue of GLYAT, conjugates phenylacetyl-CoA to glutamine. Therefore, GLYATL1 might also be a candidate for the formation of N-isovalerylglycine. Based on the findings from the literature review, we proposed that GLYAT or GLYATL1 can form N-isovalerylglycine in IVA patients. To test this hypothesis, we performed an in-silico analysis to determine which enzyme is more likely to conjugate isovaleryl-CoA with glycine using AutoDock Vina. Thereafter, we performed in vitro validation using purified enzyme preparations. The in-silico and in vitro findings suggested that both enzymes could form N-isovaleryglycine albeit at lower affinities than their preferred substrates. Furthermore, an increase in glycine concentration does not result in an increase in N-isovalerylglycine formation. The results from the critical literature appraisal, in-silico, and in vitro validation, suggest the importance of further investigating the reaction kinetics and binding behaviors between these substrates and enzymes in understanding the pathophysiology of IVA.
Collapse
Affiliation(s)
- Stefan Kühn
- Focus Area for Human Metabolomics, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Monray E. Williams
- Focus Area for Human Metabolomics, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Marli Dercksen
- Focus Area for Human Metabolomics, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Jörn Oliver Sass
- Research Group Inborn Errors of Metabolism, Institute for Functional Gene Analytics, Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany
| | - Rencia van der Sluis
- Focus Area for Human Metabolomics, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa,Corresponding author.
| |
Collapse
|
5
|
Extensive Summary of the Important Roles of Indole Propionic Acid, a Gut Microbial Metabolite in Host Health and Disease. Nutrients 2022; 15:nu15010151. [PMID: 36615808 PMCID: PMC9824871 DOI: 10.3390/nu15010151] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence suggests that metabolites produced by the gut microbiota play a crucial role in host-microbe interactions. Dietary tryptophan ingested by the host enters the gut, where indole-like metabolites such as indole propionic acid (IPA) are produced under deamination by commensal bacteria. Here, we summarize the IPA-producing bacteria, dietary patterns on IPA content, and functional roles of IPA in various diseases. IPA can not only stimulate the expression of tight junction (TJ) proteins to enhance gut barrier function and inhibit the penetration of toxic factors, but also modulate the immune system to exert anti-inflammatory and antioxidant effects to synergistically regulate body physiology. Moreover, IPA can act on target organs through blood circulation to form the gut-organ axis, which helps maintain systemic homeostasis. IPA shows great potential for the diagnosis and treatment of various clinical diseases, such as NAFLD, Alzheimer's disease, and breast cancer. However, the therapeutic effect of IPA depends on dose, target organ, or time. In future studies, further work should be performed to explore the effects and mechanisms of IPA on host health and disease to further improve the existing treatment program.
Collapse
|
6
|
Teng L, Li Z, Shi Y, Gao Z, Yang Y, Wang Y, Bi L. Development and validation of a microenvironment-related prognostic model for hepatocellular carcinoma patients based on histone deacetylase family. Transl Oncol 2022; 26:101547. [PMID: 36191460 PMCID: PMC9531286 DOI: 10.1016/j.tranon.2022.101547] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/25/2022] [Accepted: 09/26/2022] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Histone deacetylase (HDAC) family can remove acetyl groups from histone lysine residues, and their high expression is closely related to the poor prognosis of hepatocellular carcinoma (HCC) patients. Recently, it has been reported to play an immunosuppressive role in the microenvironment, but little is known about the mechanism. METHODS Through machine learning, we trained and verified the prognostic model composed of HDACs. CIBERSORT was used to calculate the percentage of immune cells in the microenvironment. Based on co-expression network, potential targets of HDACs were screened. After that, qRT-PCR was employed to evaluate the expression of downstream genes of HDACs, while HPLC-CAD analysis was applied to detect the concentration of arachidonic acid (AA). Finally, Flow cytometry, WB and IHC experiments were used to detect CD86 expression in RAW246.7. RESULTS We constructed a great prognostic model composed of HDAC1 and HDAC11 that was significantly associated with overall survival. These HDACs were related to the abundance of macrophages, which might be attributed to their regulation of fatty-acid-metabolism related genes. In vitro experiments, the mRNA expression of ACSM2A, ADH1B, CYP2C8, CYP4F2 and SLC27A5 in HCC-LM3 was significantly down-regulated, and specific inhibitors of HDAC1 and HDAC11 significantly promoted the expression of these genes. HDAC inhibitors can promote the metabolism of AA, which may relieve the effect of AA on the polarization of M1 macrophages. CONCLUSIONS Our study revealed the blocking effect of HDAC1 and HDAC11 on the polarization of macrophages M1 in the microenvironment by inhibiting fatty acid metabolism.
Collapse
Affiliation(s)
- Linxin Teng
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China; Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing 210023, China
| | - Zhengjun Li
- College of Health Economics Management, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China; Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing 210023, China
| | - Yipeng Shi
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zihan Gao
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yang Yang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, China
| | - Lei Bi
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China; Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing 210023, China.
| |
Collapse
|
7
|
Zhang F, Luo J, Shi C, Zhu L, He Q, Tian H, Wu J, Zhao J, Li C. Genome-wide analysis of the acyl-coenzyme A synthetase family and their association with the formation of goat milk flavour. Front Genet 2022; 13:980463. [PMID: 36160020 PMCID: PMC9490004 DOI: 10.3389/fgene.2022.980463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Goat milk is rich in fat and protein, thus, has high nutritional values and benefits human health. However, goaty flavour is a major concern that interferes with consumer acceptability of goat milk and the 4-alkyl-branched-chain fatty acids (vBCFAs) are the major substances relevant to the goaty flavour in goat milk. Previous research reported that the acyl-coenzyme A synthetases (ACSs) play a key role in the activation of fatty acids, which is a prerequisite for fatty acids entering anabolic and catabolic processes and highly involved in the regulation of vBCFAs metabolism. Although ACS genes have been identified in humans and mice, they have not been systematically characterized in goats. In this research, we performed genome-wide characterization of the ACS genes in goats, identifying that a total of 25 ACS genes (without ACSM2A) were obtained in the Capra hircus and each ACS protein contained the conserved AMP-binding domain. Phylogenetic analysis showed that out of the 25 genes, 21 belonged to the ACSS, ACSM, ACSL, ACSVL, and ACSBG subfamilies. However, AACS, AASDH, ACSF, and ACSF3 genes were not classified in the common evolutionary branch and belonged to the ACS superfamily. The genes in the same clade had similar conserved structures, motifs and protein domains. The expression analysis showed that the majority of ACS genes were expressed in multi tissues. The comparative analysis of expression patterns in non-lactation and lactation mammary glands of goat, sheep and cow indicated that ACSS2 and ACSF3 genes may participate in the formation mechanisms of goaty flavour in goat milk. In conclusion, current research provides important genomic resources and expression information for ACSs in goats, which will support further research on investigating the formation mechanisms of the goaty flavour in goat milk.
Collapse
Affiliation(s)
| | - Jun Luo
- *Correspondence: Jun Luo, ; Cong Li,
| | | | | | | | | | | | | | - Cong Li
- *Correspondence: Jun Luo, ; Cong Li,
| |
Collapse
|
8
|
Guijas C, To A, Montenegro-Burke JR, Domingo-Almenara X, Alipio-Gloria Z, Kok BP, Saez E, Alvarez NH, Johnson KA, Siuzdak G. Drug-Initiated Activity Metabolomics Identifies Myristoylglycine as a Potent Endogenous Metabolite for Human Brown Fat Differentiation. Metabolites 2022; 12:749. [PMID: 36005620 PMCID: PMC9415469 DOI: 10.3390/metabo12080749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Worldwide, obesity rates have doubled since the 1980s and in the USA alone, almost 40% of adults are obese, which is closely associated with a myriad of metabolic diseases such as type 2 diabetes and arteriosclerosis. Obesity is derived from an imbalance between energy intake and consumption, therefore balancing energy homeostasis is an attractive target for metabolic diseases. One therapeutic approach consists of increasing the number of brown-like adipocytes in the white adipose tissue (WAT). Whereas WAT stores excess energy, brown adipose tissue (BAT) can dissipate this energy overload in the form of heat, increasing energy expenditure and thus inhibiting metabolic diseases. To facilitate BAT production a high-throughput screening approach was developed on previously known drugs using human Simpson-Golabi-Behmel Syndrome (SGBS) preadipocytes. The screening allowed us to discover that zafirlukast, an FDA-approved small molecule drug commonly used to treat asthma, was able to differentiate adipocyte precursors and white-biased adipocytes into functional brown adipocytes. However, zafirlukast is toxic to human cells at higher dosages. Drug-Initiated Activity Metabolomics (DIAM) was used to investigate zafirlukast as a BAT inducer, and the endogenous metabolite myristoylglycine was then discovered to mimic the browning properties of zafirlukast without impacting cell viability. Myristoylglycine was found to be bio-synthesized upon zafirlukast treatment and was unique in inducing brown adipocyte differentiation, raising the possibility of using endogenous metabolites and bypassing the exogenous drugs to potentially alleviate disease, in this case, obesity and other related metabolic diseases.
Collapse
Affiliation(s)
- Carlos Guijas
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA 92037, USA
| | - Andrew To
- California Institute for Biomedical Research (Calibr), Scripps Research, La Jolla, CA 92037, USA
| | - J. Rafael Montenegro-Burke
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA 92037, USA
- Department of Molecular Genetics, Donnelly Center, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Xavier Domingo-Almenara
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA 92037, USA
- Computational Metabolomics for Systems Biology Lab, Omics Sciences Unit, Eurecat—Technology Centre of Catalonia, 08005 Barcelona, Spain
| | - Zaida Alipio-Gloria
- California Institute for Biomedical Research (Calibr), Scripps Research, La Jolla, CA 92037, USA
| | - Bernard P. Kok
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Enrique Saez
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Nicole H. Alvarez
- California Institute for Biomedical Research (Calibr), Scripps Research, La Jolla, CA 92037, USA
| | - Kristen A. Johnson
- California Institute for Biomedical Research (Calibr), Scripps Research, La Jolla, CA 92037, USA
| | - Gary Siuzdak
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA 92037, USA
- Departments of Chemistry, Molecular, and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
Zhang Y, Cai J, Lu W, Xu S, Qu M, Zhao S, Ding X. Comprehensive Network-Based Analyses Reveal Novel Renal Function-Related Targets in Acute Kidney Injury. Front Genet 2022; 13:907145. [PMID: 35860471 PMCID: PMC9289212 DOI: 10.3389/fgene.2022.907145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Acute kidney injury (AKI) is a common clinical syndrome with limited methods of treatment and diagnosis. Although several molecules associated with AKI have been discovered, molecular mechanisms underlying AKI still remain unclear. Weighted gene co-expression network analysis (WGCNA) is a novel method to uncover the relationship between co-expression genes and clinical traits at the system level. Methods: First, by employing WGCNA in transcriptional data on 30 patients with well/poor functioning kidney graft, we identified two co-expression modules that were significantly related to serum creatinine (SCr). Second, based on the modules, potential small molecular compound candidates for developing targeted therapeutics were obtained by connectivity map analysis. Furthermore, multiple validations of expression in space/time were carried out with two classical AKI models in vivo and other five databases of over 152 samples. Results: Two of the 14 modules were found to be closely correlated with SCr. Function enrichment analysis illustrated that one module was enriched in the immune system, while the other was in the metabolic process. Six key renal function-related genes (RFRGs) were finally obtained. Such genes performed well in cisplatin-induced or cecal ligation and puncture-induced AKI mouse models. Conclusion: The analysis suggests that WGCNA is a proper method to connect clinical traits with genome data to find novel targets in AKI. The kidney tissue with worse renal function tended to develop a “high immune but low metabolic activity” expression pattern. Also, ACSM2A, GLYAT, CORO1A, DPEP1, ALDH7A1, and EPHX2 are potential targets of molecular diagnosis and treatment in AKI.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jieru Cai
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Kidney and Dialysis Institute of Shanghai, Shanghai, China
- Kidney and Blood Purification Key Laboratory of Shanghai, Shanghai, China
| | - Wei Lu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sujuan Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuan Zhao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Kidney and Dialysis Institute of Shanghai, Shanghai, China
- Kidney and Blood Purification Key Laboratory of Shanghai, Shanghai, China
- *Correspondence: Xiaoqiang Ding, ; Shuan Zhao,
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Kidney and Dialysis Institute of Shanghai, Shanghai, China
- Kidney and Blood Purification Key Laboratory of Shanghai, Shanghai, China
- *Correspondence: Xiaoqiang Ding, ; Shuan Zhao,
| |
Collapse
|
10
|
Junková K, Mirchi LF, Chylíková B, Janků M, Šilhavý J, Hüttl M, Marková I, Miklánková D, Včelák J, Malínská H, Pravenec M, Šeda O, Liška F. Hepatic Transcriptome Profiling Reveals Lack of Acsm3 Expression in Polydactylous Rats with High-Fat Diet-Induced Hypertriglyceridemia and Visceral Fat Accumulation. Nutrients 2021; 13:nu13051462. [PMID: 33923085 PMCID: PMC8147112 DOI: 10.3390/nu13051462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome (MetS) is an important cause of worldwide morbidity and mortality. Its complex pathogenesis includes, on the one hand, sedentary lifestyle and high caloric intake, and, on the other hand, there is a clear genetic predisposition. PD (Polydactylous rat) is an animal model of hypertriglyceridemia, insulin resistance, and obesity. To unravel the genetic and pathophysiologic background of this phenotype, we compared morphometric and metabolic parameters as well as liver transcriptomes among PD, spontaneously hypertensive rat, and Brown Norway (BN) strains fed a high-fat diet (HFD). After 4 weeks of HFD, PD rats displayed marked hypertriglyceridemia but without the expected hepatic steatosis. Moreover, the PD strain showed significant weight gain, including increased weight of retroperitoneal and epididymal fat pads, and impaired glucose tolerance. In the liver transcriptome, we found 5480 differentially expressed genes, which were enriched for pathways involved in fatty acid beta and omega oxidation, glucocorticoid metabolism, oxidative stress, complement activation, triacylglycerol and lipid droplets synthesis, focal adhesion, prostaglandin synthesis, interferon signaling, and tricarboxylic acid cycle pathways. Interestingly, the PD strain, contrary to SHR and BN rats, did not express the Acsm3 (acyl-CoA synthetase medium-chain family member 3) gene in the liver. Together, these results suggest disturbances in fatty acid utilization as a molecular mechanism predisposing PD rats to hypertriglyceridemia and fat accumulation.
Collapse
Affiliation(s)
- Kristýna Junková
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, 128 00 Prague, Czech Republic; (K.J.); (L.F.M.); (B.C.); (M.J.); (M.P.); (O.Š.)
| | - Lukáš F. Mirchi
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, 128 00 Prague, Czech Republic; (K.J.); (L.F.M.); (B.C.); (M.J.); (M.P.); (O.Š.)
| | - Blanka Chylíková
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, 128 00 Prague, Czech Republic; (K.J.); (L.F.M.); (B.C.); (M.J.); (M.P.); (O.Š.)
| | - Michaela Janků
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, 128 00 Prague, Czech Republic; (K.J.); (L.F.M.); (B.C.); (M.J.); (M.P.); (O.Š.)
| | - Jan Šilhavý
- Department of Genetics of Model Diseases, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic;
| | - Martina Hüttl
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.H.); (I.M.); (D.M.); (H.M.)
| | - Irena Marková
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.H.); (I.M.); (D.M.); (H.M.)
| | - Denisa Miklánková
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.H.); (I.M.); (D.M.); (H.M.)
| | - Josef Včelák
- Institute of Endocrinology, 116 94 Prague, Czech Republic;
| | - Hana Malínská
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.H.); (I.M.); (D.M.); (H.M.)
| | - Michal Pravenec
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, 128 00 Prague, Czech Republic; (K.J.); (L.F.M.); (B.C.); (M.J.); (M.P.); (O.Š.)
- Department of Genetics of Model Diseases, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic;
| | - Ondřej Šeda
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, 128 00 Prague, Czech Republic; (K.J.); (L.F.M.); (B.C.); (M.J.); (M.P.); (O.Š.)
| | - František Liška
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, 128 00 Prague, Czech Republic; (K.J.); (L.F.M.); (B.C.); (M.J.); (M.P.); (O.Š.)
- Department of Genetics of Model Diseases, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic;
- Correspondence: ; Tel.: +420-224-968-154
| |
Collapse
|
11
|
Functional Characterisation of Three Glycine N-Acyltransferase Variants and the Effect on Glycine Conjugation to Benzoyl-CoA. Int J Mol Sci 2021; 22:ijms22063129. [PMID: 33803916 PMCID: PMC8003330 DOI: 10.3390/ijms22063129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
The glycine conjugation pathway in humans is involved in the metabolism of natural substrates and the detoxification of xenobiotics. The interactions between the various substrates in this pathway and their competition for the pathway enzymes are currently unknown. The pathway consists of a mitochondrial xenobiotic/medium-chain fatty acid: coenzyme A (CoA) ligase (ACSM2B) and glycine N-acyltransferase (GLYAT). The catalytic mechanism and substrate specificity of both of these enzymes have not been thoroughly characterised. In this study, the level of evolutionary conservation of GLYAT missense variants and haplotypes were analysed. From these data, haplotype variants were selected (156Asn > Ser, [17Ser > Thr,156Asn > Ser] and [156Asn > Ser,199Arg > Cys]) in order to characterise the kinetic mechanism of the enzyme over a wide range of substrate concentrations. The 156Asn > Ser haplotype has the highest frequency and the highest relative enzyme activity in all populations studied, and hence was used as the reference in this study. Cooperative substrate binding was observed, and the kinetic data were fitted to a two-substrate Hill equation. The coding region of the GLYAT gene was found to be highly conserved and the rare 156Asn > Ser,199Arg > Cys variant negatively affected the relative enzyme activity. Even though the 156Asn > Ser,199Arg > Cys variant had a higher affinity for benzoyl-CoA (s0.5,benz = 61.2 µM), kcat was reduced to 9.8% of the most abundant haplotype 156Asn > Ser (s0.5,benz = 96.6 µM), while the activity of 17Ser > Thr,156Asn > Ser (s0.5,benz = 118 µM) was 73% of 156Asn > Ser. The in vitro kinetic analyses of the effect of the 156Asn > Ser,199Arg > Cys variant on human GLYAT enzyme activity indicated that individuals with this haplotype might have a decreased ability to metabolise benzoate when compared to individuals with the 156Asn > Ser variant. Furthermore, the accumulation of acyl-CoA intermediates can inhibit ACSM2B leading to a reduction in mitochondrial energy production.
Collapse
|
12
|
Watanabe H, Paxton RL, Tolerico MR, Nagalakshmi VK, Tanaka S, Okusa MD, Goto S, Narita I, Watanabe S, Sequeira-Lοpez MLS, Gomez RA. Expression of Acsm2, a kidney-specific gene, parallels the function and maturation of proximal tubular cells. Am J Physiol Renal Physiol 2020; 319:F603-F611. [PMID: 32830538 DOI: 10.1152/ajprenal.00348.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The acyl-CoA synthetase medium-chain family member 2 (Acsm2) gene was first identified and cloned by our group as a kidney-specific "KS" gene. However, its expression pattern and function remain to be clarified. In the present study, we found that the Acsm2 gene was expressed specifically and at a high level in normal adult kidneys. Expression of Acsm2 in kidneys followed a maturational pattern: it was low in newborn mice and increased with kidney development and maturation. In situ hybridization and immunohistochemistry revealed that Acsm2 was expressed specifically in proximal tubular cells of adult kidneys. Data from the Encyclopedia of DNA Elements database revealed that the Acsm2 gene locus in the mouse has specific histone modifications related to the active transcription of the gene exclusively in kidney cells. Following acute kidney injury, partial unilateral ureteral obstruction, and chronic kidney diseases, expression of Acsm2 in the proximal tubules was significantly decreased. In human samples, the expression pattern of ACSM2A, a homolog of mouse Acsm2, was similar to that in mice, and its expression decreased with several types of renal injuries. These results indicate that the expression of Acsm2 parallels the structural and functional maturation of proximal tubular cells. Downregulation of its expression in several models of kidney disease suggests that Acms2 may serve as a novel marker of proximal tubular injury and/or dysfunction.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Robert L Paxton
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Matthew R Tolerico
- Department of Biology, University of Virginia, Charlottesville, Virginia
| | - Vidya K Nagalakshmi
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Shin Goto
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Seiji Watanabe
- Department of Pediatrics, Izu Medical and Welfare Center, Shizuoka, Japan
| | - Maria Luisa S Sequeira-Lοpez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - R Ariel Gomez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
13
|
Erasmus E, Mason S, van Reenen M, Steffens FE, Vorster BC, Reinecke CJ. A laboratory approach for characterizing chronic fatigue: what does metabolomics tell us? Metabolomics 2019; 15:158. [PMID: 31776682 DOI: 10.1007/s11306-019-1620-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/22/2019] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Manifestations of fatigue range from chronic fatigue up to a severe syndrome and myalgic encephalomyelitis. Fatigue grossly affects the functional status and quality of life of affected individuals, prompting the World Health Organization to recognize it as a chronic non-communicable condition. OBJECTIVES Here, we explore the potential of urinary metabolite information to complement clinical criteria of fatigue, providing an avenue towards an objective measure of fatigue in patients presenting with the full spectrum of fatigue levels. METHODS The experimental group consisted of 578 chronic fatigue female patients. The measurement design was composed of (1) existing clinical fatigue scales, (2) a hepatic detoxification challenge test, and (3) untargeted proton nuclear magnetic resonance (1H-NMR) procedure to generate metabolomics data. Data analysed via an in-house Matlab script that combines functions from a Statistics and a PLS Toolbox. RESULTS Multivariate analysis of the original 459 profiled 1H-NMR bins for the low (control) and high (patient) fatigue groups indicated complete separation following the detoxification experimental challenge. Important bins identified from the 1H-NMR spectra provided quantitative metabolite information on the detoxification challenge for the fatigue groups. CONCLUSIONS Untargeted 1H-NMR metabolomics proved its applicability as a global profiling tool to reveal the impact of toxicological interventions in chronic fatigue patients. No clear potential biomarker emerged from this study, but the quantitative profile of the phase II biotransformation products provide a practical visible effect directing to up-regulation of crucial phase II enzyme systems in the high fatigue group in response to a high xenobiotic-load.
Collapse
Affiliation(s)
- Elardus Erasmus
- Centre for Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa.
| | - Shayne Mason
- Centre for Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Mari van Reenen
- Centre for Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Francois E Steffens
- Department of Consumer Science, University of Pretoria, Pretoria, South Africa
| | - B Chris Vorster
- Centre for Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Carolus J Reinecke
- Centre for Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| |
Collapse
|
14
|
Menni C, Hernandez MM, Vital M, Mohney RP, Spector TD, Valdes AM. Circulating levels of the anti-oxidant indoleproprionic acid are associated with higher gut microbiome diversity. Gut Microbes 2019; 10:688-695. [PMID: 31030641 PMCID: PMC6866703 DOI: 10.1080/19490976.2019.1586038] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The gut microbiome has recently emerged as an important regulator of insulin resistance and abdominal obesity. The tryptophan metabolite generated by the gut microbiome, indoleproprionic acid (IPA) has been shown to predict the onset of type 2 diabetes. IPA is a metabolite produced by gut microbes from dietary tryptophan that exhibits a high degree of inter-individual variation. The microbiome composition parameters that are associated with circulating levels of this potent anti-oxidant have however not been investigated to date in human populations. In 1018 middle-aged women from the TwinsUK cohort, we assessed the relationship between serum IPA levels and gut microbiome composition targeting the 16S rRNA gene. Microbiome alpha-diversity was positively correlated with serum indoleproprionic acid levels (Shannon Diversity: Beta[95%CI] = 0.19[0.13;0.25], P = 6.41 × 10-10) after adjustment for covariates. Sixteen taxa and 12 operational taxonomic units (OTUs) associated with IPA serum levels. Among these are positive correlations with the butyrate-producing Faecalibacterium prausnitzii, the class Mollicutes and the order RF39 of the Tenericutes, and Coprococcus Negative correlations instead were observed with Eubacterium dolichum previously shown to correlate with visceral fat mass and several genera in the Lachnospiraceae family such as Blautia and Ruminococcus previously shown to correlate with obesity. Microbiome composition parameters explained ~20% of the variation in circulating levels of IPA, whereas nutritional and host genetic parameters explained only ~4%. Our data confirm an association between IPA circulating levels and metabolic syndrome parameters and indicate that gut microbiome composition influences IPA levels.
Collapse
Affiliation(s)
- Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK,CONTACT Ana M Valdes School of Medicine, University of Nottingham, Clinical Sciences Bldg, City Hospital, Hucknall Rd, Nottingham NG5 1PB, UK
| | | | - Marius Vital
- Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Robert P. Mohney
- Discovery and Translational Sciences, Metabolon Inc, Raleigh-Durham, NC, USA
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Ana M. Valdes
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK,MSK Theme, NIHR Nottingham Biomedical Research Centre, Nottingham, UK,School of Medicine, Nottingham City Hospital, Nottingham, UK
| |
Collapse
|