1
|
Cui L, Yang B, Xiao S, Gao J, Baud A, Graham D, McBride M, Dominiczak A, Schafer S, Aumatell RL, Mont C, Teruel AF, Hübner N, Flint J, Mott R, Huang L. Dominance is common in mammals and is associated with trans-acting gene expression and alternative splicing. Genome Biol 2023; 24:215. [PMID: 37773188 PMCID: PMC10540365 DOI: 10.1186/s13059-023-03060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Dominance and other non-additive genetic effects arise from the interaction between alleles, and historically these phenomena play a major role in quantitative genetics. However, most genome-wide association studies (GWAS) assume alleles act additively. RESULTS We systematically investigate both dominance-here representing any non-additive within-locus interaction-and additivity across 574 physiological and gene expression traits in three mammalian stocks: F2 intercross pigs, rat heterogeneous stock, and mice heterogeneous stock. Dominance accounts for about one quarter of heritable variance across all physiological traits in all species. Hematological and immunological traits exhibit the highest dominance variance, possibly reflecting balancing selection in response to pathogens. Although most quantitative trait loci (QTLs) are detectable as additive QTLs, we identify 154, 64, and 62 novel dominance QTLs in pigs, rats, and mice respectively that are undetectable as additive QTLs. Similarly, even though most cis-acting expression QTLs are additive, gene expression exhibits a large fraction of dominance variance, and trans-acting eQTLs are enriched for dominance. Genes causal for dominance physiological QTLs are less likely to be physically linked to their QTLs but instead act via trans-acting dominance eQTLs. In addition, thousands of eQTLs are associated with alternatively spliced isoforms with complex additive and dominant architectures in heterogeneous stock rats, suggesting a possible mechanism for dominance. CONCLUSIONS Although heritability is predominantly additive, many mammalian genetic effects are dominant and likely arise through distinct mechanisms. It is therefore advantageous to consider both additive and dominance effects in GWAS to improve power and uncover causality.
Collapse
Affiliation(s)
- Leilei Cui
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
- UCL Genetics Institute, University College London, London, WC1E 6BT, UK
- Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Jiangxi, China
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Bin Yang
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Shijun Xiao
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Jun Gao
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Amelie Baud
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Delyth Graham
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
| | - Martin McBride
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
| | - Anna Dominiczak
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Regina Lopez Aumatell
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Carme Mont
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Albert Fernandez Teruel
- Departamento de Psiquiatría y Medicina Legal, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Norbert Hübner
- Genetics and Genomics of Cardiovascular Diseases Research Group, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site Berlin, Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jonathan Flint
- Department of Psychiatry and Behavioral Sciences, Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Richard Mott
- UCL Genetics Institute, University College London, London, WC1E 6BT, UK.
| | - Lusheng Huang
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
2
|
Meng Q, Wang L, Zhao M, Wu X, Guo L. Comparing myopic error in patients with basic and convergence insufficiency intermittent exotropia in China. BMC Ophthalmol 2023; 23:290. [PMID: 37365512 DOI: 10.1186/s12886-023-03043-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
PURPOSE To compare the degree of myopia between the dominant and non-dominant eyes in teenagers with intermittent exotropia (IXT) in China. METHODS A total of 199 IXT patients with myopia were included in this retrospective study and were divided into two groups according to the difference between near and distance exodeviation: basic IXT and convergence insufficiency (CI) IXT. Refractive errors were analyzed by spherical equivalent (SE) values. Patients were further stratified into anisometropia group and non-anisometropia group based on binocular SE values difference greater than 1.0D or not. RESULTS There were 127 patients in the CI IXT group, with a near deviation of 46.94 ± 20.53 prism diopters (PD) and a distance deviation of 28.36 ± 14.34 PD, and there were 72 (36.2%) patients in the basic IXT group, with a near deviation of 37.68 ± 22.21 PD and a distance deviation angle of 33.21 ± 23.96 PD. The near exodeviation was significantly larger in the CI group than in the basic IXT group(P < 0.001). In the CI IXT group, the mean SE was - 2.09 ± 1.45 diopters (D) in the dominant eye and - 2.53 ± 1.44D in the non-dominant eye, while in the basic IXT group, the mean SE was - 2.46 ± 1.56D in the dominant eye and - 2.89 ± 1.37D in the non-dominant eye. The anisometropia group included 43 patients, while non-anisometropia group included 156 patients. The near and distance exodeviation in the anisometropia group were 45.26 ± 24.41 PD and 33.53 ± 23.31 PD, respectively, and those in the non-anisometropia group were 43.42 ± 20.69 PD and 29.07 ± 16.84 PD, respectively. There were no significant differences in near and distance deviation (P = 0.78 and P = 0.73 respectively) between the two groups. The SE of the dominant eye was less myopic than of the non-dominant eyes in both the CI and anisometropia groups (P = 0.002 and P < 0.001, respectively). CONCLUSIONS Our study revealed that convergence insufficiency IXT is more common than the basic type in pediatric myopic population and is characterized by higher inter-eye differences of myopia. The dominant eye was found to be less myopic in IXT patients, particularly in those with convergence insufficiency and anisometropia.
Collapse
Affiliation(s)
- Qingyu Meng
- Department of Ophthalmology & Clinical Centre of Optometry, Peking University People's Hospital, Beijing, China
- Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Lejin Wang
- Department of Ophthalmology & Clinical Centre of Optometry, Peking University People's Hospital, Beijing, China
- Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology & Clinical Centre of Optometry, Peking University People's Hospital, Beijing, China
- Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Xi Wu
- Department of Ophthalmology & Clinical Centre of Optometry, Peking University People's Hospital, Beijing, China
- Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Lili Guo
- Department of Ophthalmology & Clinical Centre of Optometry, Peking University People's Hospital, Beijing, China.
- Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China.
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China.
- College of Optometry, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
3
|
Desmettre T, Gatinel D, Leveziel N. Épigénétique et myopie : mécanismes et perspectives thérapeutiques. J Fr Ophtalmol 2022; 45:1209-1216. [DOI: 10.1016/j.jfo.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022]
|
4
|
Clark R, Pozarickij A, Hysi PG, Ohno-Matsui K, Williams C, Guggenheim JA. Education interacts with genetic variants near GJD2, RBFOX1, LAMA2, KCNQ5 and LRRC4C to confer susceptibility to myopia. PLoS Genet 2022; 18:e1010478. [PMID: 36395078 PMCID: PMC9671369 DOI: 10.1371/journal.pgen.1010478] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022] Open
Abstract
Myopia most often develops during school age, with the highest incidence in countries with intensive education systems. Interactions between genetic variants and educational exposure are hypothesized to confer susceptibility to myopia, but few such interactions have been identified. Here, we aimed to identify genetic variants that interact with education level to confer susceptibility to myopia. Two groups of unrelated participants of European ancestry from UK Biobank were studied. A 'Stage-I' sample of 88,334 participants whose refractive error (avMSE) was measured by autorefraction and a 'Stage-II' sample of 252,838 participants who self-reported their age-of-onset of spectacle wear (AOSW) but who did not undergo autorefraction. Genetic variants were prioritized via a 2-step screening process in the Stage-I sample: Step 1 was a genome-wide association study for avMSE; Step 2 was a variance heterogeneity analysis for avMSE. Genotype-by-education interaction tests were performed in the Stage-II sample, with University education coded as a binary exposure. On average, participants were 58 years-old and left full-time education when they were 18 years-old; 35% reported University level education. The 2-step screening strategy in the Stage-I sample prioritized 25 genetic variants (GWAS P < 1e-04; variance heterogeneity P < 5e-05). In the Stage-II sample, 19 of the 25 (76%) genetic variants demonstrated evidence of variance heterogeneity, suggesting the majority were true positives. Five genetic variants located near GJD2, RBFOX1, LAMA2, KCNQ5 and LRRC4C had evidence of a genotype-by-education interaction in the Stage-II sample (P < 0.002) and consistent evidence of a genotype-by-education interaction in the Stage-I sample. For all 5 variants, University-level education was associated with an increased effect of the risk allele. In this cohort, additional years of education were associated with an enhanced effect of genetic variants that have roles including axon guidance and the development of neuronal synapses and neural circuits.
Collapse
Affiliation(s)
- Rosie Clark
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Alfred Pozarickij
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Pirro G. Hysi
- Section of Ophthalmology, School of Life Course Sciences, King’s College London, London, United Kingdom
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Cathy Williams
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jeremy A. Guggenheim
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
5
|
Guggenheim JA, Clark R, Cui J, Terry L, Patasova K, Haarman AEG, Musolf AM, Verhoeven VJM, Klaver CCW, Bailey-Wilson JE, Hysi PG, Williams C. Whole exome sequence analysis in 51 624 participants identifies novel genes and variants associated with refractive error and myopia. Hum Mol Genet 2022; 31:1909-1919. [PMID: 35022715 PMCID: PMC9169456 DOI: 10.1093/hmg/ddac004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022] Open
Abstract
Refractive errors are associated with a range of pathological conditions, such as myopic maculopathy and glaucoma, and are highly heritable. Studies of missense and putative loss of function (pLOF) variants identified via whole exome sequencing (WES) offer the prospect of directly implicating potentially causative disease genes. We performed a genome-wide association study for refractive error in 51 624 unrelated adults, of European ancestry, aged 40-69 years from the UK and genotyped using WES. After testing 29 179 pLOF and 495 263 missense variants, 1 pLOF and 18 missense variants in 14 distinct genomic regions were taken forward for fine-mapping analysis. This yielded 19 putative causal variants of which 18 had a posterior inclusion probability >0.5. Of the 19 putative causal variants, 12 were novel discoveries. Specific variants were associated with a more myopic refractive error, while others were associated with a more hyperopic refractive error. Association with age of onset of spectacle wear (AOSW) was examined in an independent validation sample (38 100 early AOSW cases and 74 243 controls). Of 11 novel variants that could be tested, 8 (73%) showed evidence of association with AOSW status. This work identified COL4A4 and ATM as novel candidate genes associated with refractive error. In addition, novel putative causal variants were identified in the genes RASGEF1, ARMS2, BMP4, SIX6, GSDMA, GNGT2, ZNF652 and CRX. Despite these successes, the study also highlighted the limitations of community-based WES studies compared with high myopia case-control WES studies.
Collapse
Affiliation(s)
- Jeremy A Guggenheim
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Rosie Clark
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Jiangtian Cui
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Louise Terry
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Karina Patasova
- Section of Ophthalmology, School of Life Course Sciences, King’s College London, WC2R 2LS, UK
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, WC2R 2LS, UK
| | - Annechien E G Haarman
- Department of Ophthalmology, Erasmus Medical Center GD, 3015GD Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center GD, 3015GD Rotterdam, The Netherlands
| | - Anthony M Musolf
- Statistical Genetics Section, Computational and Statistical Genomics Branch, Nation Human Genome Research Institute, National Institutes of Health, Baltimore, MD 21224, USA
| | - Virginie J M Verhoeven
- Department of Ophthalmology, Erasmus Medical Center GD, 3015GD Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center GD, 3015GD Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center GD, 3015GD Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center GD, 3015GD Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, 6525EX Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology Basel, CH-4031 Basel, Switzerland
| | - Joan E Bailey-Wilson
- Statistical Genetics Section, Computational and Statistical Genomics Branch, Nation Human Genome Research Institute, National Institutes of Health, Baltimore, MD 21224, USA
| | - Pirro G Hysi
- Section of Ophthalmology, School of Life Course Sciences, King’s College London, WC2R 2LS, UK
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, WC2R 2LS, UK
| | - Cathy Williams
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 1NU, UK
| | | | | |
Collapse
|
6
|
Chen W, Li C, Liang W, Li Y, Zou Z, Xie Y, Liao Y, Yu L, Lin Q, Huang M, Li Z, Zhu X. The Roles of Optogenetics and Technology in Neurobiology: A Review. Front Aging Neurosci 2022; 14:867863. [PMID: 35517048 PMCID: PMC9063564 DOI: 10.3389/fnagi.2022.867863] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/21/2022] [Indexed: 01/07/2023] Open
Abstract
Optogenetic is a technique that combines optics and genetics to control specific neurons. This technique usually uses adenoviruses that encode photosensitive protein. The adenovirus may concentrate in a specific neural region. By shining light on the target nerve region, the photosensitive protein encoded by the adenovirus is controlled. Photosensitive proteins controlled by light can selectively allow ions inside and outside the cell membrane to pass through, resulting in inhibition or activation effects. Due to the high precision and minimally invasive, optogenetics has achieved good results in many fields, especially in the field of neuron functions and neural circuits. Significant advances have also been made in the study of many clinical diseases. This review focuses on the research of optogenetics in the field of neurobiology. These include how to use optogenetics to control nerve cells, study neural circuits, and treat diseases by changing the state of neurons. We hoped that this review will give a comprehensive understanding of the progress of optogenetics in the field of neurobiology.
Collapse
Affiliation(s)
- Wenqing Chen
- Department of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| | - Wanmin Liang
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Yunqi Li
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Zhuoheng Zou
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Yunxuan Xie
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Yangzeng Liao
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Lin Yu
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Qianyi Lin
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Meiying Huang
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Xiao Zhu
- Department of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
7
|
Myopia Genetics and Heredity. CHILDREN 2022; 9:children9030382. [PMID: 35327754 PMCID: PMC8947159 DOI: 10.3390/children9030382] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/19/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022]
Abstract
Myopia is the most common eye condition leading to visual impairment and is greatly influenced by genetics. Over the last two decades, more than 400 associated gene loci have been mapped for myopia and refractive errors via family linkage analyses, candidate gene studies, genome-wide association studies (GWAS), and next-generation sequencing (NGS). Lifestyle factors, such as excessive near work and short outdoor time, are the primary external factors affecting myopia onset and progression. Notably, besides becoming a global health issue, myopia is more prevalent and severe among East Asians than among Caucasians, especially individuals of Chinese, Japanese, and Korean ancestry. Myopia, especially high myopia, can be serious in consequences. The etiology of high myopia is complex. Prediction for progression of myopia to high myopia can help with prevention and early interventions. Prediction models are thus warranted for risk stratification. There have been vigorous investigations on molecular genetics and lifestyle factors to establish polygenic risk estimations for myopia. However, genes causing myopia have to be identified in order to shed light on pathogenesis and pathway mechanisms. This report aims to examine current evidence regarding (1) the genetic architecture of myopia; (2) currently associated myopia loci identified from the OMIM database, genetic association studies, and NGS studies; (3) gene-environment interactions; and (4) the prediction of myopia via polygenic risk scores (PRSs). The report also discusses various perspectives on myopia genetics and heredity.
Collapse
|
8
|
Changes in chromatin accessibility landscape and histone H3 core acetylation during valproic acid-induced differentiation of embryonic stem cells. Epigenetics Chromatin 2021; 14:58. [PMID: 34955095 PMCID: PMC8711205 DOI: 10.1186/s13072-021-00432-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022] Open
Abstract
Directed differentiation of mouse embryonic stem cells (mESCs) or induced pluripotent stem cells (iPSCs) provides powerful models to dissect the molecular mechanisms leading to the formation of specific cell lineages. Treatment with histone deacetylase inhibitors can significantly enhance the efficiency of directed differentiation. However, the mechanisms are not well understood. Here, we use CUT&RUN in combination with ATAC-seq to determine changes in both histone modifications and genome-wide chromatin accessibility following valproic acid (VPA) exposure. VPA induced a significant increase in global histone H3 acetylation (H3K56ac), a core histone modification affecting nucleosome stability, as well as enrichment at loci associated with cytoskeletal organization and cellular morphogenesis. In addition, VPA altered the levels of linker histone H1 subtypes and the total histone H1/nucleosome ratio indicative of initial differentiation events. Notably, ATAC-seq analysis revealed changes in chromatin accessibility of genes involved in regulation of CDK serine/threonine kinase activity and DNA duplex unwinding. Importantly, changes in chromatin accessibility were evident at several key genomic loci, such as the pluripotency factor Lefty, cardiac muscle troponin Tnnt2, and the homeodomain factor Hopx, which play critical roles in cardiomyocyte differentiation. Massive parallel transcription factor (TF) footprinting also indicates an increased occupancy of TFs involved in differentiation toward mesoderm and endoderm lineages and a loss of footprints of POU5F1/SOX2 pluripotency factors following VPA treatment. Our results provide the first genome-wide analysis of the chromatin landscape following VPA-induced differentiation in mESCs and provide new mechanistic insight into the intricate molecular processes that govern departure from pluripotency and early lineage commitment.
Collapse
|
9
|
Zhang X, Fan Q, Zhang F, Liang G, Pan CW. Gene-environment Interaction in Spherical Equivalent and Myopia: An Evidence-based Review. Ophthalmic Epidemiol 2021; 29:435-442. [PMID: 34546856 DOI: 10.1080/09286586.2021.1958350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Association between gene-environment interaction and myopia/spherical equivalent has not been systematically reported. This paper reviewed nine studies concerning gene-environment interaction in myopia. METHODS We obtained relevant studies concerning gene-environment interaction in myopia by systematically searching the MEDLINE(PubMed), Cochrane, Web of Science, CNKI, Wanfang databases before 31 March 2020. Data were analyzed by STATA version 16.0 software, and figures were drawn by ArcGIS V.10.0 software. RESULTS Nine studies were included in this review concerning gene-environment interaction. Gene and education interaction in adult cohorts suggested a more significant genetic effect in higher education levels than lower education levels, using both candidate genes and PRS approaches. Several interacted genetic variants, including ZMAT4(rs2137277), GJD2(rs524952), TJP2 (rs11145488) from adult study and ZMAT4(rs7829127) from child study are pinpointed out, but the replication attempts were limited. Besides, the genetic effect was associated with a significant shift at a higher educational level (Pooled β = -0.15,95%CI = -0.19-0.11) towards myopia than that at a lower education level (Pooled β = -0.10,95%CI = -0.11-0.09). CONCLUSION This study summarizes the relationship between gene-environment interaction and myopia, and interaction effect of the gene or genetic risk score with the environment could be found in these studies. The effect of gene-environment (higher education) interaction substantially impacts myopia in adult studies. Evidence that environmental factors (Increased near-work time/decreased outdoor activities) increase the genetic risk is still limited, and specific SNPs contributing to gene-environment effect are not determined yet.
Collapse
Affiliation(s)
- Xiyan Zhang
- Department of Child and Adolescent Health Promotion, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Qiao Fan
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore
| | - Fengyun Zhang
- Department of Child and Adolescent Health Promotion, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Gang Liang
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Chen-Wei Pan
- School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Tideman JWL, Pärssinen O, Haarman AEG, Khawaja AP, Wedenoja J, Williams KM, Biino G, Ding X, Kähönen M, Lehtimäki T, Raitakari OT, Cheng CY, Jonas JB, Young TL, Bailey-Wilson JE, Rahi J, Williams C, He M, Mackey DA, Guggenheim JA. Evaluation of Shared Genetic Susceptibility to High and Low Myopia and Hyperopia. JAMA Ophthalmol 2021; 139:601-609. [PMID: 33830181 DOI: 10.1001/jamaophthalmol.2021.0497] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Importance Uncertainty currently exists about whether the same genetic variants are associated with susceptibility to low myopia (LM) and high myopia (HM) and to myopia and hyperopia. Addressing this question is fundamental to understanding the genetics of refractive error and has clinical relevance for genotype-based prediction of children at risk for HM and for identification of new therapeutic targets. Objective To assess whether a common set of genetic variants are associated with susceptibility to HM, LM, and hyperopia. Design, Setting, and Participants This genetic association study assessed unrelated UK Biobank participants 40 to 69 years of age of European and Asian ancestry. Participants 40 to 69 years of age living in the United Kingdom were recruited from January 1, 2006, to October 31, 2010. Of the total sample of 502 682 participants, 117 279 (23.3%) underwent an ophthalmic assessment. Data analysis was performed from December 12, 2019, to June 23, 2020. Exposures Four refractive error groups were defined: HM, -6.00 diopters (D) or less; LM, -3.00 to -1.00 D; hyperopia, +2.00 D or greater; and emmetropia, 0.00 to +1.00 D. Four genome-wide association study (GWAS) analyses were performed in participants of European ancestry: (1) HM vs emmetropia, (2) LM vs emmetropia, (3) hyperopia vs emmetropia, and (4) LM vs hyperopia. Polygenic risk scores were generated from GWAS summary statistics, yielding 4 sets of polygenic risk scores. Performance was assessed in independent replication samples of European and Asian ancestry. Main Outcomes and Measures Odds ratios (ORs) of polygenic risk scores in replication samples. Results A total of 51 841 unrelated individuals of European ancestry and 2165 unrelated individuals of Asian ancestry were assigned to a specific refractive error group and included in our analyses. Polygenic risk scores derived from all 4 GWAS analyses were predictive of all categories of refractive error in both European and Asian replication samples. For example, the polygenic risk score derived from the HM vs emmetropia GWAS was predictive in the European sample of HM vs emmetropia (OR, 1.58; 95% CI, 1.41-1.77; P = 1.54 × 10-15) as well as LM vs emmetropia (OR, 1.15; 95% CI, 1.07-1.23; P = 8.14 × 10-5), hyperopia vs emmetropia (OR, 0.83; 95% CI, 0.77-0.89; P = 4.18 × 10-7), and LM vs hyperopia (OR, 1.45; 95% CI, 1.33-1.59; P = 1.43 × 10-16). Conclusions and Relevance Genetic risk variants were shared across HM, LM, and hyperopia and across European and Asian samples. Individuals with HM inherited a higher number of variants from among the same set of myopia-predisposing alleles and not different risk alleles compared with individuals with LM. These findings suggest that treatment interventions targeting common genetic risk variants associated with refractive error could be effective against both LM and HM.
Collapse
Affiliation(s)
- J Willem L Tideman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Olavi Pärssinen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Department of Ophthalmology, Central Hospital of Central Finland, Jyväskylä, Finland
| | - Annechien E G Haarman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital National Health Service (NHS) Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Juho Wedenoja
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Katie M Williams
- Section of Academic Ophthalmology, Faculty of Life Sciences and Medicine, King's College London School of Life Course Sciences, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Ginevra Biino
- Institute of Molecular Genetics, National Research Council of Italy, Pavia, Italy
| | - Xiaohu Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Mika Kähönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
| | - Terho Lehtimäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland.,Department of Clinical Chemistry, Finnish Cardiovascular Research Center, Tampere, Finland
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Finland.,Research Centre of Applied and Preventive Medicine, University of Turku, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Ching-Yu Cheng
- Duke-NUS Medical School, Singapore, Singapore.,Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Terri L Young
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison
| | - Joan E Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland
| | - Jugnoo Rahi
- UCL Great Ormond Street Institute of Child Health and Institute of Ophthalmology, University College London, London, United Kingdom
| | - Cathy Williams
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Centre for Eye Research Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | - Jeremy A Guggenheim
- Cardiff University School of Optometry and Vision Sciences, Cardiff, United Kingdom
| | | |
Collapse
|