1
|
Hohenfeld CS, de Oliveira SAS, Ferreira CF, Mello VH, Margarido GRA, Passos AR, de Oliveira EJ. Comparative analysis of infected cassava root transcriptomics reveals candidate genes for root rot disease resistance. Sci Rep 2024; 14:10587. [PMID: 38719851 PMCID: PMC11078935 DOI: 10.1038/s41598-024-60847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Cassava root-rot incited by soil-borne pathogens is one of the major diseases that reduces root yield. Although the use of resistant cultivars is the most effective method of management, the genetic basis for root-rot resistance remains poorly understood. Therefore, our work analyzed the transcriptome of two contrasting genotypes (BRS Kiriris/resistant and BGM-1345/susceptible) using RNA-Seq to understand the molecular response and identify candidate genes for resistance. Cassava seedlings (resistant and susceptible to root-rot) were both planted in infested and sterilized soil and samples from Initial-time and Final-time periods, pooled. Two controls were used: (i) seedlings collected before planting in infested soil (absolute control) and, (ii) plants grown in sterilized soil (mock treatments). For the differentially expressed genes (DEGs) analysis 23.912 were expressed in the resistant genotype, where 10.307 were differentially expressed in the control treatment, 15 DEGs in the Initial Time-period and 366 DEGs in the Final Time-period. Eighteen candidate genes from the resistant genotype were related to plant defense, such as the MLP-like protein 31 and the peroxidase A2-like gene. This is the first model of resistance at the transcriptional level proposed for the cassava × root-rot pathosystem. Gene validation will contribute to screening for resistance of germplasm, segregating populations and/or use in gene editing in the pursuit to develop most promising cassava clones with resistance to root-rot.
Collapse
Affiliation(s)
- Camila Santiago Hohenfeld
- Universidade Estadual de Feira de Santana, Av. Transnordestina, S/N - 44036-900, Novo Horizonte, Feira de Santana, BA, Brazil
| | | | - Claudia Fortes Ferreira
- Embrapa Mandioca e Fruticultura, Rua da Embrapa, Caixa Postal 007, Cruz das Almas, BA, 44380-000, Brazil
| | - Victor Hugo Mello
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Avenida Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Gabriel Rodrigues Alves Margarido
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Avenida Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Adriana Rodrigues Passos
- Universidade Estadual de Feira de Santana, Av. Transnordestina, S/N - 44036-900, Novo Horizonte, Feira de Santana, BA, Brazil
| | - Eder Jorge de Oliveira
- Embrapa Mandioca e Fruticultura, Rua da Embrapa, Caixa Postal 007, Cruz das Almas, BA, 44380-000, Brazil.
| |
Collapse
|
2
|
Sun X, Li Y, Sun Y, Wu Q, Wang L. Genome-Wide Characterization and Expression Analyses of Major Latex Protein Gene Family in Populus simonii × P. nigra. Int J Mol Sci 2024; 25:2748. [PMID: 38473994 DOI: 10.3390/ijms25052748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Major latex proteins, or MLPs, are crucial to plants' capacity to grow, develop, and endure biotic and abiotic stresses. The MLP gene family has been found in numerous plants, but little is known about its role in Populus simonii × P. nigra. This study discovered and assessed 43 PtMLP genes that were unevenly dispersed throughout 12 chromosomes in terms of their physicochemical characteristics, gene structure, conserved motifs, and protein localization. Based on their phylogeny and protein structural characteristics, three separate subclasses of PtMLP family were identified. Segmental and tandem duplication were found to be essential variables in the expansion of the PtMLP genes. The involvement of the PtMLP genes in growth and development, as well as in the responses to different hormones and stresses, was demonstrated by cis-regulatory element prediction. The PtMLP genes showed varying expression patterns in various tissues and under different conditions (cold, salt, and drought stress), as demonstrated in RNA-Seq databases, suggesting that PsnMLP may have different functions. Following the further investigation of the genes demonstrating notable variations in expression before and after the application of three stresses, PsnMLP5 was identified as a candidate gene. Subsequent studies revealed that PsnMLP5 could be induced by ABA treatment. This study paves the way for further investigations into the MLP genes' functional mechanisms in response to abiotic stressors, as well as the ways in which they can be utilized in poplar breeding for improved stress tolerance.
Collapse
Affiliation(s)
- Xin Sun
- Department of Biotechnology, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150001, China
| | - Yao Li
- Department of Biotechnology, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150001, China
| | - Yao Sun
- Department of Biotechnology, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150001, China
| | - Qiong Wu
- Department of Biotechnology, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150001, China
| | - Lei Wang
- Department of Biotechnology, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150001, China
| |
Collapse
|
3
|
Longsaward R, Viboonjun U. Genome-wide identification of rubber tree pathogenesis-related 10 (PR-10) proteins with biological relevance to plant defense. Sci Rep 2024; 14:1072. [PMID: 38212354 PMCID: PMC10784482 DOI: 10.1038/s41598-024-51312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024] Open
Abstract
Pathogenesis-related 10 (PR-10) is a group of small intracellular proteins that is one of 17 subclasses of pathogenesis-related proteins in plants. The PR-10 proteins have been studied extensively and are well-recognized for their contribution to host defense against phytopathogens in several plant species. Interestingly, the accumulation of PR-10 proteins in the rubber tree, one of the most economically important crops worldwide, after being infected by pathogenic organisms has only recently been reported. In this study, the homologous proteins of the PR-10 family were systemically identified from the recently available rubber tree genomes in the NCBI database. The sequence compositions, structural characteristics, protein physical properties, and phylogenetic relationships of identified PR-10 proteins in rubber trees support their classification into subgroups, which mainly consist of Pru ar 1-like major allergens and major latex-like (MLP) proteins. The rubber tree PR10-encoding genes were majorly clustered on chromosome 15. The potential roles of rubber tree PR-10 proteins are discussed based on previous reports. The homologous proteins in the PR-10 family were identified in the recent genomes of rubber trees and were shown to be crucial in host responses to biotic challenges. The genome-wide identification conducted here will accelerate the future study of rubber tree PR-10 proteins. A better understanding of these defense-related proteins may contribute to alternative ways of developing rubber tree clones with desirable traits in the future.
Collapse
Affiliation(s)
- Rawit Longsaward
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Unchera Viboonjun
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
4
|
Advances in molecular interactions on the Rhizoctonia solani-sugar beet pathosystem. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Kang Y, Tong J, Liu W, Jiang Z, Pan G, Ning X, Yang X, Zhong M. Comprehensive Analysis of Major Latex-Like Protein Family Genes in Cucumber ( Cucumis sativus L.) and Their Potential Roles in Phytophthora Blight Resistance. Int J Mol Sci 2023; 24:ijms24010784. [PMID: 36614226 PMCID: PMC9821209 DOI: 10.3390/ijms24010784] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Major latex-like proteins (MLPs) play crucial roles in abiotic and biotic stresses. However, little was known about this gene family in cucumbers. In this study, a total of 37 putative cucumber MLP genes were identified on a genome-wide level and classified into three groups by sequence homologous comparison with Arabidopsis thaliana. Chromosome mapping suggested that only tandem duplication occurred in evolution. The multiple regulatory cis-elements related to stress, hormone, light and growth response were found in the promoter region of these CsMLP genes, indicating that CsMLPs might be widely involved in the process of plant growth, development and various stress conditions. Transcriptome analysis indicated a strong reprogramming of MLPs expression in response to Phytophthora melonis infection in cucumber. Knockdown of CsMLP1 reduced the P. melonis tolerance, while transient overexpression of CsMLP1 improved disease tolerance in cucumber. Conversely, the silence of CsMLP5 decreased the lesion area caused by P. melonis in the cotyledons, and overexpression of CsMLP5 promoted lesion expansion. Taken together, our results provide a comprehensive basis for further mining the function of CsMLP members and will also be significant for elucidating the evolutionary relationship in cucumber.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xian Yang
- Correspondence: (X.Y.); (M.Z.); Tel.: +86-20-85286903 (X.Y.)
| | - Min Zhong
- Correspondence: (X.Y.); (M.Z.); Tel.: +86-20-85286903 (X.Y.)
| |
Collapse
|
6
|
Ho BL, Chen JC, Huang TP, Fang SC. Protocorm-like-body extract of Phalaenopsis aphrodite combats watermelon fruit blotch disease. FRONTIERS IN PLANT SCIENCE 2022; 13:1054586. [PMID: 36523623 PMCID: PMC9745142 DOI: 10.3389/fpls.2022.1054586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Bacterial fruit blotch, caused by the seedborne gram-negative bacterium Acidovorax citrulli, is one of the most destructive bacterial diseases of cucurbits (gourds) worldwide. Despite its prevalence, effective and reliable means to control bacterial fruit blotch remain limited. Transcriptomic analyses of tissue culture-based regeneration processes have revealed that organogenesis-associated cellular reprogramming is often associated with upregulation of stress- and defense-responsive genes. Yet, there is limited evidence supporting the notion that the reprogrammed cellular metabolism of the regenerated tissued confers bona fide antimicrobial activity. Here, we explored the anti-bacterial activity of protocorm-like-bodies (PLBs) of Phalaenopsis aphrodite. Encouragingly, we found that the PLB extract was potent in slowing growth of A. citrulli, reducing the number of bacteria attached to watermelon seeds, and alleviating disease symptoms of watermelon seedlings caused by A. citrulli. Because the anti-bacterial activity can be fractionated chemically, we predict that reprogrammed cellular activity during the PLB regeneration process produces metabolites with antibacterial activity. In conclusion, our data demonstrated the antibacterial activity in developing PLBs and revealed the potential of using orchid PLBs to discover chemicals to control bacterial fruit blotch disease.
Collapse
Affiliation(s)
- Bo-Lin Ho
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Jhun-Chen Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Tzu-Pi Huang
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
- Master’s and PhD Degree Program of Plant Health Care, Academy of Circular Economy, National Chung Hsing University, Nantou, Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
7
|
Majumdar R, Strausbaugh CA, Galewski PJ, Minocha R, Rogers CW. Cell-Wall-Degrading Enzymes-Related Genes Originating from Rhizoctonia solani Increase Sugar Beet Root Damage in the Presence of Leuconostoc mesenteroides. Int J Mol Sci 2022; 23:1366. [PMID: 35163289 PMCID: PMC8835807 DOI: 10.3390/ijms23031366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/04/2022] Open
Abstract
Sugar beet crown and root rot caused by Rhizoctonia solani is a major yield constraint. Root rot is highly increased when R. solani and Leuconostoc mesenteroides co-infect roots. We hypothesized that the absence of plant cell-wall-degrading enzymes in L. mesenteroides and their supply by R. solani during close contact, causes increased damage. In planta root inoculation with or without cell-wall-degrading enzymes showed greater rot when L. mesenteroides was combined with cellulase (22 mm rot), polygalacturonase (47 mm), and pectin lyase (57 mm) versus these enzymes (0-26 mm), R. solani (20 mm), and L. mesenteroides (13 mm) individually. Carbohydrate analysis revealed increased simpler carbohydrates (namely glucose + galactose, and fructose) in the infected roots versus mock control, possibly due to the degradation of complex cell wall carbohydrates. Expression of R. solani cellulase, polygalacturonase, and pectin lyase genes during root infection corroborated well with the enzyme data. Global mRNAseq analysis identified candidate genes and highly co-expressed gene modules in all three organisms that might be critical in host plant defense and pathogenesis. Targeting R. solani cell-wall-degrading enzymes in the future could be an effective strategy to mitigate root damage during its interaction with L. mesenteroides.
Collapse
Affiliation(s)
- Rajtilak Majumdar
- Northwest Irrigation and Soils Research, United States Department of Agriculture, Kimberly, ID 83341, USA; (P.J.G.); (C.W.R.)
| | - Carl A. Strausbaugh
- Northwest Irrigation and Soils Research, United States Department of Agriculture, Kimberly, ID 83341, USA; (P.J.G.); (C.W.R.)
| | - Paul J. Galewski
- Northwest Irrigation and Soils Research, United States Department of Agriculture, Kimberly, ID 83341, USA; (P.J.G.); (C.W.R.)
| | - Rakesh Minocha
- Northern Research Station, USDA Forest Service, Durham, NH 03824, USA;
| | - Christopher W. Rogers
- Northwest Irrigation and Soils Research, United States Department of Agriculture, Kimberly, ID 83341, USA; (P.J.G.); (C.W.R.)
| |
Collapse
|
8
|
Dölfors F, Holmquist L, Tzelepis G, Dixelius C. Rhizoctonia solani Infection Assay of Young Sugar Beet and Arabidopsis plantlets. Bio Protoc 2022; 12:e4300. [DOI: 10.21769/bioprotoc.4300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 11/02/2022] Open
|
9
|
Ravi S, Hassani M, Heidari B, Deb S, Orsini E, Li J, Richards CM, Panella LW, Srinivasan S, Campagna G, Concheri G, Squartini A, Stevanato P. Development of an SNP Assay for Marker-Assisted Selection of Soil-Borne Rhizoctonia solani AG-2-2-IIIB Resistance in Sugar Beet. BIOLOGY 2021; 11:biology11010049. [PMID: 35053047 PMCID: PMC8772932 DOI: 10.3390/biology11010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/21/2022]
Abstract
Simple Summary Sustainable breeding of sugar beet against Rhizoctonia solani relies on the continuous identification of resistance genes to allow their integration into new and modern cultivars. Better control of the disease may thus be achieved by a combination of tolerant or resistant cultivars selected based on molecular markers such as SNPs. The utility of one such marker, RsBv1 (Chromosome 6, 9,000,093 bp, C/T), located in an ADP-ribosylation factor and associated with Rhizoctonia resistance resulting from validation of three geographically diverse plant materials is reported. Abstract Rhizoctonia solani, causing Rhizoctonia crown and root rot, is a major risk to sugar beet (Beta vulgaris L.) cultivation. The development of resistant varieties accelerated by marker-assisted selection is a priority of breeding programs. We report the identification of a single-nucleotide polymorphism (SNP) marker linked to Rhizoctonia resistance using restriction site-associated DNA (RAD) sequencing of two geographically discrete sets of plant materials with different degrees of resistance/susceptibility to enable a wider selection of superior genotypes. The variant calling pipeline utilized SAMtools for variant calling and the resulting raw SNPs from RAD sequencing (15,988 and 22,439 SNPs) were able to explain 13.40% and 25.45% of the phenotypic variation in the two sets of material from different sources of origin, respectively. An association analysis was carried out independently on both the datasets and mutually occurring significant SNPs were filtered depending on their contribution to the phenotype using principal component analysis (PCA) biplots. To provide a ready-to-use marker for the breeding community, a systematic molecular validation of significant SNPs distributed across the genome was undertaken to combine high-resolution melting, Sanger sequencing, and rhAmp SNP genotyping. We report that RsBv1 located on Chromosome 6 (9,000,093 bp) is significantly associated with Rhizoctonia resistance (p < 0.01) and able to explain 10% of the phenotypic disease variance. The related SNP assay is thus ready for marker-assisted selection in sugar beet breeding for Rhizoctonia resistance.
Collapse
Affiliation(s)
- Samathmika Ravi
- Department of Agronomy, Animals, Natural Resources and Environment-DAFNAE, University of Padova, 35020 Legnaro, PD, Italy; (S.R.); (S.D.); (G.C.); (A.S.)
| | - Mahdi Hassani
- Sugar Beet Seed Research Department, Hamedan Agriculture and Natural Resources Research and Education Centre, AREEO, Hamedan 65519, Iran;
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran;
| | - Saptarathi Deb
- Department of Agronomy, Animals, Natural Resources and Environment-DAFNAE, University of Padova, 35020 Legnaro, PD, Italy; (S.R.); (S.D.); (G.C.); (A.S.)
| | - Elena Orsini
- Strube Research GmbH & Co. KG, 42651 Söllingen, Germany; (E.O.); (J.L.)
| | - Jinquan Li
- Strube Research GmbH & Co. KG, 42651 Söllingen, Germany; (E.O.); (J.L.)
| | - Christopher M. Richards
- USDA-ARS, National Laboratory for Genetic Resources Preservation, Fort Collins, CO 80521, USA; (C.M.R.); (L.W.P.)
| | - Lee W. Panella
- USDA-ARS, National Laboratory for Genetic Resources Preservation, Fort Collins, CO 80521, USA; (C.M.R.); (L.W.P.)
| | | | | | - Giuseppe Concheri
- Department of Agronomy, Animals, Natural Resources and Environment-DAFNAE, University of Padova, 35020 Legnaro, PD, Italy; (S.R.); (S.D.); (G.C.); (A.S.)
| | - Andrea Squartini
- Department of Agronomy, Animals, Natural Resources and Environment-DAFNAE, University of Padova, 35020 Legnaro, PD, Italy; (S.R.); (S.D.); (G.C.); (A.S.)
| | - Piergiorgio Stevanato
- Department of Agronomy, Animals, Natural Resources and Environment-DAFNAE, University of Padova, 35020 Legnaro, PD, Italy; (S.R.); (S.D.); (G.C.); (A.S.)
- Correspondence:
| |
Collapse
|
10
|
Fujita K, Asuke S, Isono E, Yoshihara R, Uno Y, Inui H. MLP-PG1, a major latex-like protein identified in Cucurbita pepo, confers resistance through the induction of pathogenesis-related genes. PLANTA 2021; 255:10. [PMID: 34850294 DOI: 10.1007/s00425-021-03795-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
MAIN CONCLUSION MLP-PG1, identified in Cucurbita pepo, plays a crucial role in resistance against fungal pathogens through the induction of pathogenesis-related genes. ASTRACT MLP-PG1, a major latex-like protein (MLP) from zucchini (Cucurbita pepo), was identified as a transporting factor for hydrophobic organic pollutants. MLPs are members of the Bet v 1 family, similar to pathogenesis-related class 10 proteins (PR-10s). However, the biological functions of MLPs remain unclear. Herein, we show that MLP-PG1 induces the expression of pathogenesis-related (PR) genes and indirectly promotes resistance against pathogens. The activity of the MLP-PG1 promoter in leaves of transgenic tobacco plants was significantly enhanced by inoculation with Pseudomonas syringae pv. tabaci. However, MLP-PG1 did not induce direct resistance through RNase activity. Therefore, we examined the possibility that MLP-PG1 is indirectly involved in resistance; indeed, we found that MLP-PG1 induced the expression of defense-related genes. Overexpression of MLP-PG1 highly upregulated PR-2 and PR-5 and decreased the area of lesions caused by Botrytis cinerea in the leaves of transgenic tobacco plants. Our results demonstrate that MLP-PG1 is involved in indirect resistance against plant diseases, especially caused by fungal pathogens, through the induction of PR genes. This study is the first report to show the induction of PR genes by the expression of MLP from the RNA sequencing analysis and the involvement of MLP-PG1 in the resistance.
Collapse
Affiliation(s)
- Kentaro Fujita
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Soichiro Asuke
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Erika Isono
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Ryouhei Yoshihara
- Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
- Graduate School of Science & Engineering, Saitama University, 255 Shimo-Ohkubo, Sakura-ku, Saitama, Saitama, 338-8570, Japan
| | - Yuichi Uno
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Hideyuki Inui
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
- Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
11
|
Fujita K, Inui H. Review: Biological functions of major latex-like proteins in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110856. [PMID: 33775363 DOI: 10.1016/j.plantsci.2021.110856] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/20/2021] [Accepted: 02/14/2021] [Indexed: 05/23/2023]
Abstract
Major latex-like proteins (MLPs) have been identified in dicots and monocots. They are members of the birch pollen allergen Bet v 1 family as well as pathogenesis-related proteins class 10. MLPs have two main features. One is binding affinity toward various hydrophobic compounds, such as long-chain fatty acids, steroids, and systemic acquired resistance signals, via its internal hydrophobic cavity or hydrophobic residues on its surface. MLPs transport such compounds to other organs via phloem and xylem vessels and contribute to the expression of physiologically important ligands' activity in the particular organs. The second feature is responses to abiotic and biotic stresses. MLPs are involved in drought and salt tolerance through the mediation of plant hormone signaling pathways. MLPs generate resistance against pathogens by the induction of pathogenesis-related protein genes. Therefore, MLPs play crucial roles in drought and salt tolerance and resistance against pathogens. However, knowledge of MLPs is fragmented, and an overview of them is needed. Herein, we summarize the current knowledge of the biological functions of MLPs, which to our knowledge, is the first review about MLPs that has been reported.
Collapse
Affiliation(s)
- Kentaro Fujita
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | - Hideyuki Inui
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan; Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
12
|
Huang W, Sun D, Wang R, An Y. Integration of Transcriptomics and Metabolomics Reveals the Responses of Sugar Beet to Continuous Cropping Obstacle. FRONTIERS IN PLANT SCIENCE 2021; 12:711333. [PMID: 34777408 PMCID: PMC8578061 DOI: 10.3389/fpls.2021.711333] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/01/2021] [Indexed: 05/21/2023]
Abstract
Sugar beet is vulnerable to years of continuous cropping, and allelopathy is one of the important factors leading to continuous cropping disorder. To explore the physiological and molecular mechanisms behind continuous cropping obstacles on sugar beet, this study combined transcriptomics and metabolomics to analyze the effects of different years of continuous cropping on metabolite changes, differential gene expression, and root exudate regulation in sugar beet. We collected sugar beet's root samples from 1-, 3-, and 5-year continuous cropping systems for metabolome and transcriptome analyses. Our data revealed that T3 and T5 had 50 and 33 metabolites significantly different from T1, respectively. The autotoxic substance salicylaldehyde was found to continuously accumulate in root exudates with increasing years of continuous cropping. Sucrose was highly reduced in T3 (4.05-fold decrease) and T5 (2.01-fold decrease) compared to T1. Respectively, 2,660 and 3,515 differentially expressed genes (DEGs) were significantly regulated in T3 and T5 compared to T1. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that metabolic pathways and biosynthesis of secondary metabolites were perturbed in T3 and T5 vs. T1. Integrated metabolomics analyses identified 73 DEGs involved in enriched metabolic pathways, all of which were the oxidation-reduction process pathways. In conclusion, this study provides evidence that continuous cropping obstacles can change the metabolome and transcriptome of sugar beet, affecting its growth and quality.
Collapse
Affiliation(s)
- Weijuan Huang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Donglei Sun
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Ronghua Wang
- Shihezi Academy of Agricultural Sciences, Shihezi, China
| | - Yuxing An
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
- *Correspondence: Yuxing An,
| |
Collapse
|
13
|
Charova SN, Dölfors F, Holmquist L, Moschou PN, Dixelius C, Tzelepis G. The RsRlpA Effector Is a Protease Inhibitor Promoting Rhizoctonia solani Virulence through Suppression of the Hypersensitive Response. Int J Mol Sci 2020; 21:ijms21218070. [PMID: 33138028 PMCID: PMC7662947 DOI: 10.3390/ijms21218070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 01/11/2023] Open
Abstract
Rhizoctonia solani (Rs) is a soil-borne pathogen with a broad host range. This pathogen incites a wide range of disease symptoms. Knowledge regarding its infection process is fragmented, a typical feature for basidiomycetes. In this study, we aimed at identifying potential fungal effectors and their function. From a group of 11 predicted single gene effectors, a rare lipoprotein A (RsRlpA), from a strain attacking sugar beet was analyzed. The RsRlpA gene was highly induced upon early-stage infection of sugar beet seedlings, and heterologous expression in Cercospora beticola demonstrated involvement in virulence. It was also able to suppress the hypersensitive response (HR) induced by the Avr4/Cf4 complex in transgenic Nicotiana benthamiana plants and functioned as an active protease inhibitor able to suppress Reactive Oxygen Species (ROS) burst. This effector contains a double-psi beta-barrel (DPBB) fold domain, and a conserved serine at position 120 in the DPBB fold domain was found to be crucial for HR suppression. Overall, R. solani seems to be capable of inducing an initial biotrophic stage upon infection, suppressing basal immune responses, followed by a switch to necrotrophic growth. However, regulatory mechanisms between the different lifestyles are still unknown.
Collapse
Affiliation(s)
- Spyridoula N. Charova
- Institute of Molecular Biology and Biotechnology Foundation of Research and Technology-HELLAS, GR-70013 Heraklion, Crete, Greece; (S.N.C.); (P.N.M.)
- Department of Biology, University of Crete, Voutes University Campus, P.O. Box 2208, GR-70013 Heraklion, Crete, Greece
| | - Fredrik Dölfors
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden; (F.D.); (C.D.)
| | - Louise Holmquist
- MariboHilleshög Research AB, Säbyholmsvägen 24, S-26191 Landskrona, Sweden;
| | - Panagiotis N. Moschou
- Institute of Molecular Biology and Biotechnology Foundation of Research and Technology-HELLAS, GR-70013 Heraklion, Crete, Greece; (S.N.C.); (P.N.M.)
- Department of Biology, University of Crete, Voutes University Campus, P.O. Box 2208, GR-70013 Heraklion, Crete, Greece
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden; (F.D.); (C.D.)
| | - Christina Dixelius
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden; (F.D.); (C.D.)
| | - Georgios Tzelepis
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Box 7026, SE-750 07 Uppsala, Sweden
- Correspondence: ; Tel.: +46-18-67181503
| |
Collapse
|