1
|
Smullen M, Olson MN, Murray LF, Suresh M, Yan G, Dawes P, Barton NJ, Mason JN, Zhang Y, Fernandez-Fontaine AA, Church GM, Mastroeni D, Wang Q, Lim ET, Chan Y, Readhead B. Modeling of mitochondrial genetic polymorphisms reveals induction of heteroplasmy by pleiotropic disease locus 10398A>G. Sci Rep 2023; 13:10405. [PMID: 37369829 DOI: 10.1038/s41598-023-37541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondrial (MT) dysfunction has been associated with several neurodegenerative diseases including Alzheimer's disease (AD). While MT-copy number differences have been implicated in AD, the effect of MT heteroplasmy on AD has not been well characterized. Here, we analyzed over 1800 whole genome sequencing data from four AD cohorts in seven different tissue types to determine the extent of MT heteroplasmy present. While MT heteroplasmy was present throughout the entire MT genome for blood samples, we detected MT heteroplasmy only within the MT control region for brain samples. We observed that an MT variant 10398A>G (rs2853826) was significantly associated with overall MT heteroplasmy in brain tissue while also being linked with the largest number of distinct disease phenotypes of all annotated MT variants in MitoMap. Using gene-expression data from our brain samples, our modeling discovered several gene networks involved in mitochondrial respiratory chain and Complex I function associated with 10398A>G. The variant was also found to be an expression quantitative trait loci (eQTL) for the gene MT-ND3. We further characterized the effect of 10398A>G by phenotyping a population of lymphoblastoid cell-lines (LCLs) with and without the variant allele. Examination of RNA sequence data from these LCLs reveal that 10398A>G was an eQTL for MT-ND4. We also observed in LCLs that 10398A>G was significantly associated with overall MT heteroplasmy within the MT control region, confirming the initial findings observed in post-mortem brain tissue. These results provide novel evidence linking MT SNPs with MT heteroplasmy and open novel avenues for the investigation of pathomechanisms that are driven by this pleiotropic disease associated loci.
Collapse
Affiliation(s)
- Molly Smullen
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Meagan N Olson
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Liam F Murray
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Madhusoodhanan Suresh
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Guang Yan
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Pepper Dawes
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Nathaniel J Barton
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jivanna N Mason
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Yucheng Zhang
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Aria A Fernandez-Fontaine
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - George M Church
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Diego Mastroeni
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Qi Wang
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Elaine T Lim
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Yingleong Chan
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| | - Benjamin Readhead
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
2
|
Ethnicity Differences in the Association of UCP1-3826A/G, UCP2-866G/A and Ala55Val, and UCP3-55C/T Polymorphisms with Type 2 Diabetes Mellitus Susceptibility: An Updated Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3482879. [PMID: 34712730 PMCID: PMC8548105 DOI: 10.1155/2021/3482879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/04/2021] [Indexed: 01/19/2023]
Abstract
Background The relationship between uncoupling protein (UCP) 1-3 polymorphisms and susceptibility to type 2 diabetes mellitus (T2DM) has been extensively studied, while conclusions remain contradictory. Thus, we performed this meta-analysis to elucidate whether the UCP1-3826A/G, UCP2-866G/A, Ala55Val, and UCP3-55C/T polymorphisms are associated with T2DM. Methods Eligible studies were searched from PubMed, Cochrane Library, and Web of Science database before 12 July 2020. Pooled odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were calculated to evaluate the strength of the association. Heterogeneity analysis, subgroup analysis, sensitivity analysis, and publication bias were also performed. Results A total of 38 case-control studies were included in this meta-analysis. The overall results revealed significant association between T2DM and the UCP2 Ala55Val polymorphism (recessive model: OR = 1.25, 95% CI 1.12-1.40, P < 0.01; homozygous model: OR = 1.33, 95% CI 1.03-1.72, P = 0.029, respectively). In subgroup analysis stratified by ethnicity, T2DM risk was increased with the UCP2 Ala55Val polymorphism (allele model: OR = 1.17, 95% CI 1.02-1.34, P = 0.023; recessive model: OR = 1.28, 95% CI 1.13-1.45, P < 0.01; homozygous model: OR = 1.39, 95% CI 1.05-1.86, P = 0.023, respectively), while decreased with the UCP2-866G/A polymorphism in Asians (dominant model: OR = 0.86, 95% CI 0.74-1.00, P = 0.045). Conclusions Our results demonstrate that the UCP2-866G/A polymorphism is protective against T2DM, while the UCP2 Ala55Val polymorphism is susceptible to T2DM in Asians.
Collapse
|
3
|
Wang Z, Guo W, Yi F, Zhou T, Li X, Feng Y, Guo Q, Xu H, Song X, Cao L. The Regulatory Effect of SIRT1 on Extracellular Microenvironment Remodeling. Int J Biol Sci 2021; 17:89-96. [PMID: 33390835 PMCID: PMC7757024 DOI: 10.7150/ijbs.52619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The sirtuins family is well known by its unique nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase function. The most-investigated member of the family, Sirtuin 1 (SIRT1), accounts for deacetylating a broad range of transcription factors and coregulators, such as p53, the Forkhead box O (FOXO), and so on. It serves as a pivotal regulator in various intracellular biological processes, including energy metabolism, DNA damage response, genome stability maintenance and tumorigenesis. Although the most attention has been focused on its intracellular functions, the regulatory effect on extracellular microenvironment remodeling of SIRT1 has been recognized by researchers recently. SIRT1 can regulate cell secretion process and participate in glucose metabolism, neuroendocrine function, inflammation and tumorigenesis. Here, we review the advances in the understanding of SIRT1 on remodeling the extracellular microenvironment, which may provide new ideas for pathogenesis investigation and guidance for clinical treatment.
Collapse
Affiliation(s)
- Zhuo Wang
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Wendong Guo
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Fei Yi
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Tingting Zhou
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Xiaoman Li
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Yanling Feng
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Qiqiang Guo
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Hongde Xu
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Xiaoyu Song
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Liu Cao
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| |
Collapse
|
4
|
Brown JA, Sammy MJ, Ballinger SW. An evolutionary, or "Mitocentric" perspective on cellular function and disease. Redox Biol 2020; 36:101568. [PMID: 32512469 PMCID: PMC7281786 DOI: 10.1016/j.redox.2020.101568] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
The incidence of common, metabolic diseases (e.g. obesity, cardiovascular disease, diabetes) with complex genetic etiology has been steadily increasing nationally and globally. While identification of a genetic model that explains susceptibility and risk for these diseases has been pursued over several decades, no clear paradigm has yet been found to disentangle the genetic basis of polygenic/complex disease development. Since the evolution of the eukaryotic cell involved a symbiotic interaction between the antecedents of the mitochondrion and nucleus (which itself is a genetic hybrid), we suggest that this history provides a rational basis for investigating whether genetic interaction and co-evolution of these genomes still exists. We propose that both mitochondrial and Mendelian, or "mito-Mendelian" genetics play a significant role in cell function, and thus disease risk. This paradigm contemplates the natural variation and co-evolution of both mitochondrial and nuclear DNA backgrounds on multiple mitochondrial functions that are discussed herein, including energy production, cell signaling and immune response, which collectively can influence disease development. At the nexus of these processes is the economy of mitochondrial metabolism, programmed by both mitochondrial and nuclear genomes.
Collapse
Affiliation(s)
- Jamelle A Brown
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Melissa J Sammy
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Scott W Ballinger
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
5
|
Hou G, Jin Y, Liu M, Wang C, Song G. UCP2–866G/A Polymorphism is Associated with Prediabetes and Type 2 Diabetes. Arch Med Res 2020; 51:556-563. [PMID: 32553458 DOI: 10.1016/j.arcmed.2020.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/24/2020] [Accepted: 06/03/2020] [Indexed: 01/19/2023]
|
6
|
Wu L, Wang CC. Genetic variants in promoter regions associated with type 2 diabetes mellitus: A large-scale meta-analysis and subgroup analysis. J Cell Biochem 2019; 120:13012-13025. [PMID: 30860284 DOI: 10.1002/jcb.28572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/20/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Promoter plays important roles in regulating transcription of genes. Association studies of genetic variants in promoter region with type 2 diabetes (T2D) risk have been reported, but most were limited to small number of individual genetic variants and insufficient sample sizes. In addition, the effect of study populations and demographic characteristics were often neglected. METHODS In this study, we conducted a large-scale meta-analysis and subgroup analysis of T2D associated genetic variants in the promoter regions to evaluate their contribution to the susceptibility in T2D. Alleles and genotypes from cohort or case-controlled studies were extracted for future study. Total 41 742 cases and 50 493 controls for three loci were involved in 70 articles. RESULTS Seventy case-controlled studies of three genes with 41 742 cases and 50 493 controls were included. Meta-analysis showed only rs266729 and rs17300539 of ADIPOQ, and rs1884613, rs2144908, and rs4810424 of HNF4A were significantly associated with T2D risk. Subgroup analysis showed that both rs266729 and rs17300539 of ADIPOQ were associated with the risk of T2D in Caucasian population, but only rs266729 of ADIPOQ in Asian population and rs2144908 in other population including multinational North American. For diagnostic criteria, rs266729 of ADIPOQ and rs2144908 of HNF4A were associated with T2D risk when WHO/ADA diagnostic criteria were used. For genotyping methods, both rs266729 of ADIPOQ and rs2144908 of HNF4A were associated with T2D risk when other than Taqman and Sequencing methods were used. CONCLUSIONS T2D was significantly associated with promoter rs266729, rs17300539, rs1884613, rs2144908, and rs4810424, and the association of T2D risk were affected by study population, diagnostic criteria, and genotype methods.
Collapse
Affiliation(s)
- Ling Wu
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong
| | - Chi Chiu Wang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
7
|
Saha SK, Akther J, Huda N, Yasmin T, Alam MS, Hosen MI, Hasan AM, Nabi AN. Genetic association study of C5178A and G10398A mitochondrial DNA variants with type 2 diabetes in Bangladeshi population. Meta Gene 2019. [DOI: 10.1016/j.mgene.2018.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
8
|
Vandenbeek R, Khan NP, Estall JL. Linking Metabolic Disease With the PGC-1α Gly482Ser Polymorphism. Endocrinology 2018; 159:853-865. [PMID: 29186342 DOI: 10.1210/en.2017-00872] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
Peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) is a highly conserved transcriptional coactivator enriched in metabolically active tissues including liver, adipose, pancreas, and muscle. It plays a role in regulating whole body energy metabolism and its deregulation has been implicated in type 2 diabetes (T2D). A single nucleotide variant of the PPARGC1A gene (rs8192678) is associated with T2D susceptibility, relative risk of obesity and insulin resistance, and lower indices of β cell function. This common polymorphism is within a highly conserved region of the bioactive protein and leads to a single amino acid substitution (glycine 482 to serine). Its prevalence and effects on metabolic parameters appear to vary depending on factors including ethnicity and sex, suggesting important interactions between genetics and cultural/environmental factors and associated disease risk. Interestingly, carriers of the serine allele respond better to some T2D interventions, illustrating the importance of understanding functional impacts of genetic variance on PGC-1α when targeting this pathway for personalized medicine. This review summarizes a growing body of literature surrounding possible links between the PGC-1α Gly482Ser single nucleotide polymorphism and diabetes, with focus on key clinical findings, affected metabolic systems, potential molecular mechanisms, and the influence of geographical or ethnic background on associated risk.
Collapse
Affiliation(s)
- Roxanne Vandenbeek
- Institut de recherches cliniques de Montreal, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Naveen P Khan
- Institut de recherches cliniques de Montreal, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Jennifer L Estall
- Institut de recherches cliniques de Montreal, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Faculty of Medicine, University of Montreal, Montréal, Québec, Canada
| |
Collapse
|
9
|
Sharma R, Matharoo K, Kapoor R, Bhanwer AJS. Association of PGC-1α gene with type 2 diabetes in three unrelated endogamous groups of North-West India (Punjab): a case-control and meta-analysis study. Mol Genet Genomics 2017; 293:317-329. [PMID: 29063962 DOI: 10.1007/s00438-017-1385-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022]
Abstract
PGC-1α (Peroxisome proliferator-activated receptor gamma, coactivator 1 alpha) plays a key role in glucose homeostasis inside liver and muscle. The impact of six polymorphisms of PGC-1α with Type 2 Diabetes (T2D) susceptibility was evaluated on 1125 samples comprising of 554 T2D cases and 571 controls among three endogamous groups (Bania, Brahmin and Jat Sikh) of North-West India (Punjab). Single-locus analysis showed a significant differential pattern of genetic association of PGC-1α among studied groups emphasizing the role of ethnicity towards disease susceptibility. Haplotypes G-A-G-G-C-C in Bania group; G-G-G-G-C-A in Brahmin; G-A-A-G-T-C, G-G-G-G-T-C in Jat Sikh groups conferred ~ two to fivefold increased T2D risk. Intriguingly, the haplotype combination G-A-G-G-C-C provided T2D risk in Banias whereas it played a protective role in Brahmins reflecting the role of ethnic heterogeneity. In the secondary structure prediction of mRNA, slight free energy change along with structural changes was observed between the wild and variant allele of rs3736265, rs8192678 and rs2970847 loci. Meta-analyses conducted on rs8192678 and rs2970847 variants illustrated the overall effect of minor alleles providing a higher risk for the T2D development. Divergence in genetic variants and haplotype combinations associated with T2D risk among studied groups is inferred from the present dataset, which strongly highlights the combinatorial effect of diverse ethnic background of the population under study with genetics towards susceptibility to complex diseases like T2D.
Collapse
Affiliation(s)
- Rubina Sharma
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kawaljit Matharoo
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Rohit Kapoor
- Heart Station and Diabetes Clinic, Amritsar, India
| | - A J S Bhanwer
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
10
|
Genetics of HIV-associated sensory neuropathy and related pain in Africans. J Neurovirol 2017; 23:511-519. [PMID: 28560631 DOI: 10.1007/s13365-017-0532-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/31/2017] [Accepted: 05/01/2017] [Indexed: 12/20/2022]
Abstract
Despite the use of safer antiretroviral medications, the rate of HIV-associated sensory neuropathy (HIV-SN), the most common neurological complication of HIV, remains high. This condition is often painful and has a negative effect on quality of life. Up to 90% of those with HIV-SN experience pain for which there is no effective analgesic treatment. Genetic factors are implicated, but there is a lack of a comprehensive body of research for African populations. This knowledge gap is even more pertinent as Africans are most affected by HIV. However, recent studies performed in Southern African populations have identified genes displaying potential as genetic markers for HIV-SN and HIV-SN-associated pain in Africans. Here, we review the published studies to describe current knowledge of genetic risk factors for this disease in Africa.
Collapse
|
11
|
Gite SS, Yadav SA, Nilegaonkar SS, Agte VV. Functional food supplements to ameliorate the secondary complications in high fructose fed diabetic rats. Food Funct 2017; 8:1840-1850. [DOI: 10.1039/c7fo00283a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Poly-herbal functional food supplements inhibited high fructose induced glycation in diabetic rats and showed promise for effective management of secondary complications of diabetes such as improved lipid profile, kidney function and reduction of oxidative stress.
Collapse
Affiliation(s)
- S. S. Gite
- Agharkar Research Institute
- G.G. Agarkar Road
- Pune 411004
- India
| | - S. A. Yadav
- Agharkar Research Institute
- G.G. Agarkar Road
- Pune 411004
- India
| | | | - V. V. Agte
- Agharkar Research Institute
- G.G. Agarkar Road
- Pune 411004
- India
| |
Collapse
|
12
|
Sloan DB, Fields PD, Havird JC. Mitonuclear linkage disequilibrium in human populations. Proc Biol Sci 2016; 282:rspb.2015.1704. [PMID: 26378221 DOI: 10.1098/rspb.2015.1704] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is extensive evidence from model systems that disrupting associations between co-adapted mitochondrial and nuclear genotypes can lead to deleterious and even lethal consequences. While it is tempting to extrapolate from these observations and make inferences about the human-health effects of altering mitonuclear associations, the importance of such associations may vary greatly among species, depending on population genetics, demographic history and other factors. Remarkably, despite the extensive study of human population genetics, the statistical associations between nuclear and mitochondrial alleles remain largely uninvestigated. We analysed published population genomic data to test for signatures of historical selection to maintain mitonuclear associations, particularly those involving nuclear genes that encode mitochondrial-localized proteins (N-mt genes). We found that significant mitonuclear linkage disequilibrium (LD) exists throughout the human genome, but these associations were generally weak, which is consistent with the paucity of population genetic structure in humans. Although mitonuclear LD varied among genomic regions (with especially high levels on the X chromosome), N-mt genes were statistically indistinguishable from background levels, suggesting that selection on mitonuclear epistasis has not preferentially maintained associations involving this set of loci at a species-wide level. We discuss these findings in the context of the ongoing debate over mitochondrial replacement therapy.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Peter D Fields
- Zoological Institute, University of Basel, Vesalgasse 1, Basel, 4051, Switzerland
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
13
|
Ali S, Nafis S, Kalaiarasan P, Rai E, Sharma S, Bamezai RN. Understanding Genetic Heterogeneity in Type 2 Diabetes by Delineating Physiological Phenotypes: SIRT1 and its Gene Network in Impaired Insulin Secretion. Rev Diabet Stud 2016; 13:17-34. [PMID: 27563694 DOI: 10.1900/rds.2016.13.17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disease which shows an exponential increase in all parts of the world. However, the disease is controllable by early detection and modified lifestyle. A series of factors have been associated with the pathogenesis of diabetes, and genes are considered to play a critical role. The individual risk of developing T2D is determined by an altered genetic background of the en-zymes involved in several metabolism-related biological mechanisms, including glucose homeostasis, insulin metab-olism, the glucose and ion transporters involved in glucose uptake, transcription factors, signaling intermediates of insulin signaling pathways, insulin production and secretion, pancreatic tissue development, and apoptosis. However, many candidate genes have shown heterogeneity of associations with the disease in different populations. A possible approach to resolving this complexity and under-standing genetic heterogeneity is to delineate the physiological phenotypes one by one as studying them in combination may cause discrepancies in association studies. A systems biology approach involving regulatory proteins, transcription factors, and microRNAs is one way to understand and identify key factors in complex diseases such as T2D. Our earlier studies have screened more than 100 single nucleotide polymorphisms (SNPs) belonging to more than 60 globally known T2D candidate genes in the Indian population. We observed that genes invariably involved in the activity of pancreatic β-cells provide susceptibility to type 2 diabetes (T2D). Encouraged by these results, we attempted to delineate in this review one of the commonest physiological phenotypes in T2D, namely impaired insulin secretion, as the cause of hyperglycemia. This review is also intended to explain the genetic basis of the pathophysiology of insulin secretion in the context of variations in the SIRT1 gene, a major switch that modulates insulin secretion, and a set of other genes such as HHEX, PGC-α, TCF7L2, UCP2, and ND3 which were found to be in association with T2D. The review aims to look at the genotypic and transcriptional regulatory relationships with the disease phenotype.
Collapse
Affiliation(s)
- Shafat Ali
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Shazia Nafis
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Ponnusamy Kalaiarasan
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Ekta Rai
- Human Genetics Research Group, Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, India
| | - Swarkar Sharma
- Human Genetics Research Group, Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, India
| | - Rameshwar N Bamezai
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| |
Collapse
|
14
|
Bar-Yaacov D, Hadjivasiliou Z, Levin L, Barshad G, Zarivach R, Bouskila A, Mishmar D. Mitochondrial Involvement in Vertebrate Speciation? The Case of Mito-nuclear Genetic Divergence in Chameleons. Genome Biol Evol 2015; 7:3322-36. [PMID: 26590214 PMCID: PMC4700957 DOI: 10.1093/gbe/evv226] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Compatibility between the nuclear (nDNA) and mitochondrial (mtDNA) genomes is important for organismal health. However, its significance for major evolutionary processes such as speciation is unclear, especially in vertebrates. We previously identified a sharp mtDNA-specific sequence divergence between morphologically indistinguishable chameleon populations (Chamaeleo chamaeleon recticrista) across an ancient Israeli marine barrier (Jezreel Valley). Because mtDNA introgression and gender-based dispersal were ruled out, we hypothesized that mtDNA spatial division was maintained by mito-nuclear functional compensation. Here, we studied RNA-seq generated from each of ten chameleons representing the north and south populations and identified candidate nonsynonymous substitutions (NSSs) matching the mtDNA spatial distribution. The most prominent NSS occurred in 14 nDNA-encoded mitochondrial proteins. Increased chameleon sample size (N = 70) confirmed the geographic differentiation in POLRMT, NDUFA5, ACO1, LYRM4, MARS2, and ACAD9. Structural and functionality evaluation of these NSSs revealed high functionality. Mathematical modeling suggested that this mito-nuclear spatial divergence is consistent with hybrid breakdown. We conclude that our presented evidence and mathematical model underline mito-nuclear interactions as a likely role player in incipient speciation in vertebrates.
Collapse
Affiliation(s)
- Dan Bar-Yaacov
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Zena Hadjivasiliou
- Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology, UCL, London, United Kingdom Department of Genetics, Evolution and Environment, UCL, London, United Kingdom
| | - Liron Levin
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Gilad Barshad
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Amos Bouskila
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
15
|
Levin L, Mishmar D. A Genetic View of the Mitochondrial Role in Ageing: Killing Us Softly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 847:89-106. [DOI: 10.1007/978-1-4939-2404-2_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Levin L, Blumberg A, Barshad G, Mishmar D. Mito-nuclear co-evolution: the positive and negative sides of functional ancient mutations. Front Genet 2014; 5:448. [PMID: 25566330 PMCID: PMC4274989 DOI: 10.3389/fgene.2014.00448] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/08/2014] [Indexed: 12/31/2022] Open
Abstract
Most cell functions are carried out by interacting factors, thus underlying the functional importance of genetic interactions between genes, termed epistasis. Epistasis could be under strong selective pressures especially in conditions where the mutation rate of one of the interacting partners notably differs from the other. Accordingly, the order of magnitude higher mitochondrial DNA (mtDNA) mutation rate as compared to the nuclear DNA (nDNA) of all tested animals, should influence systems involving mitochondrial-nuclear (mito-nuclear) interactions. Such is the case of the energy producing oxidative phosphorylation (OXPHOS) and mitochondrial translational machineries which are comprised of factors encoded by both the mtDNA and the nDNA. Additionally, the mitochondrial RNA transcription and mtDNA replication systems are operated by nDNA-encoded proteins that bind mtDNA regulatory elements. As these systems are central to cell life there is strong selection toward mito-nuclear co-evolution to maintain their function. However, it is unclear whether (A) mito-nuclear co-evolution befalls only to retain mitochondrial functions during evolution or, also, (B) serves as an adaptive tool to adjust for the evolving energetic demands as species' complexity increases. As the first step to answer these questions we discuss evidence of both negative and adaptive (positive) selection acting on the mtDNA and nDNA-encoded genes and the effect of both types of selection on mito-nuclear interacting factors. Emphasis is given to the crucial role of recurrent ancient (nodal) mutations in such selective events. We apply this point-of-view to the three available types of mito-nuclear co-evolution: protein-protein (within the OXPHOS system), protein-RNA (mainly within the mitochondrial ribosome), and protein-DNA (at the mitochondrial replication and transcription machineries).
Collapse
Affiliation(s)
- Liron Levin
- Department of Life Sciences, Ben-Gurion University of the Negev Beersheba, Israel
| | - Amit Blumberg
- Department of Life Sciences, Ben-Gurion University of the Negev Beersheba, Israel
| | - Gilad Barshad
- Department of Life Sciences, Ben-Gurion University of the Negev Beersheba, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev Beersheba, Israel
| |
Collapse
|
17
|
Gershoni M, Levin L, Ovadia O, Toiw Y, Shani N, Dadon S, Barzilai N, Bergman A, Atzmon G, Wainstein J, Tsur A, Nijtmans L, Glaser B, Mishmar D. Disrupting mitochondrial-nuclear coevolution affects OXPHOS complex I integrity and impacts human health. Genome Biol Evol 2014; 6:2665-80. [PMID: 25245408 PMCID: PMC4224335 DOI: 10.1093/gbe/evu208] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mutation rate of the mitochondrial DNA (mtDNA), which is higher by an order of magnitude as compared with the nuclear genome, enforces tight mitonuclear coevolution to maintain mitochondrial activities. Interruption of such coevolution plays a role in interpopulation hybrid breakdown, speciation events, and disease susceptibility. Previously, we found an elevated amino acid replacement rate and positive selection in the nuclear DNA-encoded oxidative phosphorylation (OXPHOS) complex I subunit NDUFC2, a phenomenon important for the direct interaction of NDUFC2 with the mtDNA-encoded complex I subunit ND4. This finding underlines the importance of mitonuclear coevolution to physical interactions between mtDNA and nuclear DNA-encoded factors. Nevertheless, it remains unclear whether this interaction is important for the stability and activity of complex I. Here, we show that siRNA silencing of NDUFC2 reduced growth of human D-407 retinal pigment epithelial cells, significantly diminished mitochondrial membrane potential, and interfered with complex I integrity. Moreover, site-directed mutagenesis of a positively selected amino acid in NDUFC2 significantly interfered with the interaction of NDUFC2 with its mtDNA-encoded partner ND4. Finally, we show that a genotype combination involving this amino acid (NDUFC2 residue 46) and the mtDNA haplogroup HV likely altered susceptibility to type 2 diabetes mellitus in Ashkenazi Jews. Therefore, mitonuclear coevolution is important for maintaining mitonuclear factor interactions, OXPHOS, and for human health.
Collapse
Affiliation(s)
- Moran Gershoni
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Liron Levin
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ofer Ovadia
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Yasmin Toiw
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Naama Shani
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Sara Dadon
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Nir Barzilai
- Institute of Aging, Division of Endocrinology, Departments of Medicine and Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Aviv Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Gil Atzmon
- Institute of Aging, Division of Endocrinology, Departments of Medicine and Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | | | - Anat Tsur
- Endocrine Clinic, Clalit Health Services, Jerusalem, Israel
| | - Leo Nijtmans
- Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
18
|
Kabekkodu SP, Bhat S, Mascarenhas R, Mallya S, Bhat M, Pandey D, Kushtagi P, Thangaraj K, Gopinath P, Satyamoorthy K. Mitochondrial DNA variation analysis in cervical cancer. Mitochondrion 2014; 16:73-82. [PMID: 23851045 DOI: 10.1016/j.mito.2013.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/15/2013] [Accepted: 07/01/2013] [Indexed: 01/01/2023]
|
19
|
Sharma V, Sharma I, Singh VP, Verma S, Pandita A, Singh V, Rai E, Sharma S. mtDNA G10398A variation provides risk to type 2 diabetes in population group from the Jammu region of India. Meta Gene 2014; 2:269-73. [PMID: 25606409 PMCID: PMC4287871 DOI: 10.1016/j.mgene.2014.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/12/2014] [Accepted: 02/18/2014] [Indexed: 11/24/2022] Open
Abstract
Mitochondrion plays an integral role in glucose metabolism and insulin secretion. Mitochondrial electron-transport chain (ETC) is involved in adenosine triphosphate (ATP) generation and ATP mediated insulin secretion in pancreatic β-cells. β-cell dysfunction is a critical component in the pathogenesis of type 2 diabetes (T2D). The mtDNA G10398A variation (amino acid change: Alanine → Threonine) within the NADH dehydrogenase (ND3) subunit of complex I of mtDNA ETC, has emerged as a variation of clinical significance in various disorders including T2D. This variation is supposed to result in altered complex I function, leading to an increased rate of electron leakage and reactive oxygen species (ROS) production, which might cause β-cell damage and impaired insulin secretion. The aim of the study was to explore the association of mtDNA G10398A variation with T2D in a total of 439 samples (196 T2D cases and 243 healthy controls) belonging to the Jammu region of Jammu and Kashmir (J&K). The candidate gene association analyses showed significant association of mtDNA G10398A variant with T2D and the estimated odds ratio (OR) was 2.83 (1.64–4.90 at 95% CI) in the studied population group. The extent of genetic heterogeneity in T2D and diversity of the Indian population groups, make such replication studies pertinent to understand the etiology of T2D in these population groups.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Swarkar Sharma
- Corresponding author. Tel.: + 91 1991 285535//285524//285634//285699x2533; fax: + 91 1991 285694.
| |
Collapse
|
20
|
Francis A, Pooja S, Rajender S, Govindaraj P, Tipirisetti NR, Surekha D, Rao DR, Rao L, Ramachandra L, Vishnupriya S, Ramalingam K, Satyamoorthy K, Thangaraj K. A mitochondrial DNA variant 10398G>A in breast cancer among South Indians: an original study with meta-analysis. Mitochondrion 2013; 13:559-65. [PMID: 23993954 DOI: 10.1016/j.mito.2013.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/05/2013] [Accepted: 08/15/2013] [Indexed: 10/26/2022]
Abstract
The m.10398G>A polymorphism in the MT-ND3 gene has been linked to the manifestation of several neurodegenerative disorders and cancers. Several research groups have analyzed the association between m.10398G>A polymorphism and breast cancer; however, the results do not follow a consensus. We have studied this polymorphism in three Dravidian populations from South India. Analysis on 716 cases and 724 controls found no association between m.10398G>A polymorphism and breast cancer [OR = 0.916 (0.743-1.128); P = 0.409]. Menopausal stratification also revealed no significant association in either pre-menopausal or post-menopausal breast cancer groups. In addition, we undertook a meta-analysis on 16 study groups, comprising a total of 7202 cases and 7490 controls. The pooled odds ratio suggested no significant association of m.10398G>A substitution with breast cancer [OR = 1.016 (0.85-1.22); P = 0.86]. In conclusion, there is no evidence of association between m.10398G>A polymorphism and breast cancer risk among South Indian women. Meta-analysis suggested no overall correlation between this polymorphism and breast cancer risk.
Collapse
|
21
|
Uncoupling protein 2 -866G/A and uncoupling protein 3 -55C/T polymorphisms in young South African Indian coronary artery disease patients. Gene 2013; 524:79-83. [PMID: 23639961 DOI: 10.1016/j.gene.2013.04.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Uncoupling proteins (UCPs) 2 and 3 play an important role in the regulation of oxidative stress which contributes to chronic inflammation. Promoter polymorphisms of these genes have been linked to chronic diseases including heart disease and type II diabetes mellitus in several populations. This is the first investigation of the UCP2 -866G/A rs659366 and UCP3 -55C/T rs1800849 polymorphisms in young South African (SA) Indians with coronary artery disease (CAD). METHODS A total of 300 subjects were recruited into this study of which 100 were SA Indian males with CAD, 100 age- (range 24-45 years), gender- and race-matched controls and 100 age-matched black SA males. The frequency of the UCP2 -866G/A and UPC3 -55C/T genotypes was assessed by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). RESULTS The heterozygous UCP2 -866G/A and homozygous UCP3 -55C/C genotypes occurred at highest frequency in CAD patients (60% and 64%, respectively) compared to SA Indian controls (52% and 63%) and SA Black controls (50% and 58%). The UCP2 -886G/A (OR=1.110; 95% CI=0.7438-1.655; p=0.6835) and UCP3 -55C/T (OR=0.788; 95% CI=0.482-1.289; p=0.382) polymorphisms did not influence the risk of CAD. The rare homozygous UCP3 -55T/T genotype was associated with highest fasting glucose (11.87 ± 3.7 mmol/L vs. C/C:6.11 ± 0.27 mmol/L and C/T:6.48 ± 0.57 mmol/L, p=0.0025), HbA1c (10.05 ± 2.57% vs. C/C:6.44 ± 0.21% and C/T:6.76 ± 0.35%, p=0.0006) and triglycerides (6.47 ± 1.7 mmol/L vs. C/C:2.33 ± 0.17 mmol/L and C/T:2.06 ± 0.25 mmol/L, p<0.0001) in CAD patients. CONCLUSION The frequency of the UCP2 -866G/A and UCP3 -55C/T polymorphisms was similar in our SA Indian and SA Black groups. The presence of the UCP2 -866G/A and UCP3 -55C/T polymorphisms does not influence the risk of CAD in young South African Indian CAD patients.
Collapse
|
22
|
Ali S, Chopra R, Manvati S, Singh YP, Kaul N, Behura A, Mahajan A, Sehajpal P, Gupta S, Dhar MK, Chainy GBN, Bhanwer AS, Sharma S, Bamezai RNK. Replication of type 2 diabetes candidate genes variations in three geographically unrelated Indian population groups. PLoS One 2013; 8:e58881. [PMID: 23527042 PMCID: PMC3602599 DOI: 10.1371/journal.pone.0058881] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/07/2013] [Indexed: 11/18/2022] Open
Abstract
Type 2 diabetes (T2D) is a syndrome of multiple metabolic disorders and is genetically heterogeneous. India comprises one of the largest global populations with highest number of reported type 2 diabetes cases. However, limited information about T2D associated loci is available for Indian populations. It is, therefore, pertinent to evaluate the previously associated candidates as well as identify novel genetic variations in Indian populations to understand the extent of genetic heterogeneity. We chose to do a cost effective high-throughput mass-array genotyping and studied the candidate gene variations associated with T2D in literature. In this case-control candidate genes association study, 91 SNPs from 55 candidate genes have been analyzed in three geographically independent population groups from India. We report the genetic variants in five candidate genes: TCF7L2, HHEX, ENPP1, IDE and FTO, are significantly associated (after Bonferroni correction, p<5.5E−04) with T2D susceptibility in combined population. Interestingly, SNP rs7903146 of the TCF7L2 gene passed the genome wide significance threshold (combined P value = 2.05E−08) in the studied populations. We also observed the association of rs7903146 with blood glucose (fasting and postprandial) levels, supporting the role of TCF7L2 gene in blood glucose homeostasis. Further, we noted that the moderate risk provided by the independently associated loci in combined population with Odds Ratio (OR)<1.38 increased to OR = 2.44, (95%CI = 1.67–3.59) when the risk providing genotypes of TCF7L2, HHEX, ENPP1 and FTO genes were combined, suggesting the importance of gene-gene interactions evaluation in complex disorders like T2D.
Collapse
Affiliation(s)
- Shafat Ali
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rupali Chopra
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Shri Mata Vaishno Devi University, Katra, J&K, India
| | - Siddharth Manvati
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Shri Mata Vaishno Devi University, Katra, J&K, India
| | - Yoginder Pal Singh
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nabodita Kaul
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anita Behura
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Biotechnology, Utkal University, Bhubaneshwar, Odisha, India
| | - Ankit Mahajan
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Jammu University, Jammu, J&K, India
| | | | | | | | - Gagan B. N. Chainy
- Department of Biotechnology, Utkal University, Bhubaneshwar, Odisha, India
| | | | - Swarkar Sharma
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Texas Scottish Rite Hospital, Dallas, Texas, United States of America
- School of Biology and Chemistry, Shri Mata Vaishno Devi University, Katra, J&K, India
- * E-mail: (SS); (RNKB)
| | - Rameshwar N. K. Bamezai
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Shri Mata Vaishno Devi University, Katra, J&K, India
- * E-mail: (SS); (RNKB)
| |
Collapse
|
23
|
Rai E, Sharma S, Kaul S, Jain K, Matharoo K, Bhanwer AS, Bamezai RNK. The interactive effect of SIRT1 promoter region polymorphism on type 2 diabetes susceptibility in the North Indian population. PLoS One 2012; 7:e48621. [PMID: 23133645 PMCID: PMC3486794 DOI: 10.1371/journal.pone.0048621] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 10/01/2012] [Indexed: 11/18/2022] Open
Abstract
Our previous studies have implicated genes mainly involved in the activity of pancreatic β cells in type 2 diabetes (T2D) susceptibility in the North Indian population. Recent literature on the role of SIRT1 as a potential master switch modulating insulin secretion and regulating gene expression in pancreatic β cells has warranted an evaluation of SIRT1 promoter region polymorphisms in the North Indian population, which is the main focus of the present study. 1542 samples (692 T2D patients and 850 controls) were sequenced for the 1.46 kb region upstream the translation start site of the SIRT1 gene. We performed a functional characterization of the SIRT1 promoter region polymorphisms using luciferase assay and observed a single-nucleotide polymorphism (SNP), rs12778366, in association with SIRT1 expression. We propose that TT, the high-expressing genotype of SNP rs12778366 in the SIRT1 promoter region and present in >80% of the North Indian population, was favored under conditions of feast-famine cycles in evolution, which has turned out to be a cause of concern in the present sedentary lifestyle under ad libitum conditions. Case-control association analysis did not implicate rs12778366 in T2DM per se in the studied population. However, our earlier reported risk genotype combinations of mt-ND3, PGC1α, and UCP2-866, when compared with the protective genotype combinations, in the background of the high-expressing TT genotype of SIRT1 SNP rs12778366, showed a very high additive risk [corrected odd ratio (OR) = 8.91; p = 6.5×10(-11)]. The risk level was considerably low in the genotype backgrounds of TX (OR = 6.68; p = 2.71×10(-12)) and CX (OR = 3.74; p = 4.0×10(-3)). In addition, we screened other reported T2D-associated polymorphisms: PIK3R1 rs3730089, IRS1 rs1801278, and PPP1R3 rs1799999, which did not show any significant association in North Indian population. The present paper emphasizes the importance of gene interactions in the biological pathways of T2D, a complex lifestyle disease.
Collapse
Affiliation(s)
- Ekta Rai
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Immunology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Swarkar Sharma
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Research, Texas Scottish Rite Hospital, Dallas, Texas, United States of America
- * E-mail: (SS); (RNKB)
| | - Surabhi Kaul
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kamal Jain
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kawaljit Matharoo
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Amarjit S. Bhanwer
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rameshwar N. K. Bamezai
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail: (SS); (RNKB)
| |
Collapse
|
24
|
Holzinger ER, Hulgan T, Ellis RJ, Samuels DC, Ritchie MD, Haas DW, Kallianpur AR, Bloss CS, Clifford DB, Collier AC, Gelman BB, Marra CM, McArthur JC, McCutchan JA, Morgello S, Simpson DM, Franklin DR, Rosario D, Selph D, Letendre S, Grant I. Mitochondrial DNA variation and HIV-associated sensory neuropathy in CHARTER. J Neurovirol 2012; 18:511-20. [PMID: 23073667 DOI: 10.1007/s13365-012-0133-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 09/29/2012] [Accepted: 10/04/2012] [Indexed: 01/01/2023]
Abstract
HIV-associated sensory neuropathy remains an important complication of combination antiretroviral therapy and HIV infection. Mitochondrial DNA haplogroups and single nucleotide polymorphisms (SNPs) have previously been associated with symptomatic neuropathy in clinical trial participants. We examined associations between mitochondrial DNA variation and HIV-associated sensory neuropathy in CNS HIV Antiretroviral Therapy Effects Research (CHARTER). CHARTER is a USA-based longitudinal observational study of HIV-infected adults who underwent a structured interview and standardized examination. HIV-associated sensory neuropathy was determined by trained examiners as ≥1 sign (diminished vibratory and sharp-dull discrimination or ankle reflexes) bilaterally. Mitochondrial DNA sequencing was performed and haplogroups were assigned by published algorithms. Multivariable logistic regression of associations between mitochondrial DNA SNPs, haplogroups, and HIV-associated sensory neuropathy were performed. In analyses of associations of each mitochondrial DNA SNP with HIV-associated sensory neuropathy, the two most significant SNPs were at positions A12810G [odds ratio (95 % confidence interval) = 0.27 (0.11-0.65); p = 0.004] and T489C [odds ratio (95 % confidence interval) = 0.41 (0.21-0.80); p = 0.009]. These synonymous changes are known to define African haplogroup L1c and European haplogroup J, respectively. Both haplogroups were associated with decreased prevalence of HIV-associated sensory neuropathy compared with all other haplogroups [odds ratio (95 % confidence interval) = 0.29 (0.12-0.71); p = 0.007 and odds ratio (95 % confidence interval) = 0.42 (0.18-1.0); p = 0.05, respectively]. In conclusion, in this cohort of mostly combination antiretroviral therapy-treated subjects, two common mitochondrial DNA SNPs and their corresponding haplogroups were associated with a markedly decreased prevalence of HIV-associated sensory neuropathy.
Collapse
|
25
|
Luo Y, Gao W, Chen Y, Liu F, Gao Y. Rare Mitochondrial DNA Polymorphisms are Associated with High Altitude Pulmonary Edema (HAPE) Susceptibility in Han Chinese. Wilderness Environ Med 2012; 23:128-32. [DOI: 10.1016/j.wem.2012.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 10/24/2022]
|
26
|
The frequent UCP2 -866G>A polymorphism protects against insulin resistance and is associated with obesity: a study of obesity and related metabolic traits among 17 636 Danes. Int J Obes (Lond) 2012; 37:175-81. [PMID: 22349573 DOI: 10.1038/ijo.2012.22] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CONTEXT Uncoupling protein 2 (UCP2) is involved in regulating ATP synthesis, generation of reactive oxygen species and glucose-stimulated insulin secretion in β-cells. Polymorphisms in UCP2 may be associated with obesity and type 2 diabetes mellitus. OBJECTIVE To determine the influence of a functional UCP2 promoter polymorphism (-866G>A, rs659366) on obesity, type 2 diabetes and intermediary metabolic traits. Furthermore, to include these and previously published data in a meta-analysis of this variant with respect to its impact on obesity and type 2 diabetes. DESIGN We genotyped UCP2 rs659366 in a total of 17 636 Danish individuals and established case-control studies of obese and non-obese subjects and of type 2 diabetic and glucose-tolerant subjects. Meta-analyses were made in own data set and in publicly available data sets. Quantitative traits relevant for obesity and type 2 diabetes were analysed within separate study populations. RESULTS We found no consistent associations between the UCP2 -866G-allele and obesity or type 2 diabetes. Yet, a meta-analysis of data from 12 984 subjects showed an association with obesity (GA vs GG odds ratio (OR) (95% confidence interval (CI)): 0.894(0.826-0.968) P=0.00562, and AA vs GG OR(95% CI): 0.892(0.800-0.996), P=0.0415. Moreover, a meta-analysis for type 2 diabetes of 15 107 individuals showed no association. The -866G-allele was associated with elevated fasting serum insulin levels (P=0.002) and HOMA insulin resistance index (P=0.0007). Insulin sensitivity measured during intravenous glucose tolerance test in young Caucasian subjects (n=377) was decreased in carriers of the GG genotype (P=0.05). CONCLUSIONS The UCP2 -866G-allele is associated with decreased insulin sensitivity in Danish subjects and is associated with obesity in a combined meta-analysis.
Collapse
|
27
|
Association of PGC-1alpha polymorphisms with age of onset and risk of Parkinson's disease. BMC MEDICAL GENETICS 2011; 12:69. [PMID: 21595954 PMCID: PMC3112073 DOI: 10.1186/1471-2350-12-69] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 05/19/2011] [Indexed: 01/15/2023]
Abstract
Background Peroxisome proliferator-activated receptor-γ co-activator (PGC)-1α is a transcriptional co-activator of antioxidant genes and a master regulator of mitochondrial biogenesis. Parkinson's disease (PD) is associated with oxidative stress and mitochondrial dysfunction and recent work suggests a role for PGC-1α. We hypothesized that the rs8192678 PGC-1α single nucleotide polymorphism (SNP) may influence risk or age of onset of PD. The A10398G mitochondrial SNP has been inversely associated with risk of PD in some studies. In the current study we analyzed whether rs8192678 or other PGC-1α SNPs affect PD risk or age of onset, singularly or in association with the A10398G SNP. Methods Genomic DNA samples from 378 PD patients and 173 age-matched controls were analyzed by multiplexed probe sequencing, followed by statistical analyses of the association of each SNP, alone or in combination, with risk or age of onset of PD. Adjustments were made for age of onset being less than the age of sampling, and for the observed dependence between these two ages. The PD samples were obtained as two separate cohorts, therefore statistical methods accounted for different sampling methods between the two cohorts, and data were analyzed using Cox regression adjusted for sampling in the risk set definition and in the model. Results The rs8192678 PGC-1α SNP was not associated with the risk of PD. However, an association of the PGC-1α rs8192678 GG variant with longevity was seen in control subjects (p = 0.019). Exploratory studies indicated that the CC variant of rs6821591 was associated with risk of early onset PD (p = 0.029), with PD age of onset (p = 0.047), and with longevity (p = 0.022). The rs2970848 GG allele was associated with risk of late onset PD (p = 0.027). Conclusions These data reveal possible associations of the PGC-1α SNPs rs6821591 and rs2970848 with risk or age of onset of PD, and of the PGC-1α rs8192678 GG and the rs6821591 CC variants with longevity. If replicated in other datasets, these findings may have important implications regarding the role of PGC-1α in PD and longevity.
Collapse
|
28
|
Yang Y, Mo X, Chen S, Lu X, Gu D. Association of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) gene polymorphisms and type 2 diabetes mellitus: a meta-analysis. Diabetes Metab Res Rev 2011; 27:177-84. [PMID: 21294239 DOI: 10.1002/dmrr.1158] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The association between peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) polymorphisms and type 2 diabetes mellitus (T2DM) has been investigated in several studies, but these studies yielded contradictory results. We conducted a meta-analysis to assess the association between three polymorphisms (Gly482Ser, Thr394Thr and Thr612Met) in PPARGC1A and T2DM. METHODS A literature-based search was conducted to collect data. The additive model was chosen to investigate the association between the three polymorphisms and T2DM. The random effects model was used if there was heterogeneity between studies. In addition, subgroup meta-analyses were made according to the ethnic groups. RESULTS Twenty-three studies were enrolled in this meta-analysis (7539 cases and 9562 controls for Gly482Ser, 1818 cases and 2376 controls for Thr394Thr, 2042 cases and 1289 controls for Thr612Met). In the combined analysis of all eligible studies, a significant association was found between Gly482Ser, Thr394Thr and T2DM with pooled odds ratios 1.19 [95% confidence interval (CI) 1.05-1.34] and 1.33 (95% CI 1.04-1.70), respectively, but great heterogeneity was found between studies. In the subgroup meta-analyses, we found that Gly482Ser and Thr394Thr polymorphisms were associated with the risk of T2DM, and the pooled odds ratios were 1.66 (95% CI 1.28-2.15) and 1.72 (95% CI 1.45-2.03), respectively, in the Indian population; no significant evidence was found in the Caucasian and East Asian populations. CONCLUSIONS This meta-analysis indicated that Gly482Ser and Thr394Thr polymorphisms of PPARGC1A gene were significantly associated with the risk of T2DM, especially in the Indian population. No relationship was found between the Thr612Met and risk of T2DM.
Collapse
Affiliation(s)
- Ying Yang
- Department of Evidence Based Medicine and Division of Population Genetics, Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | |
Collapse
|
29
|
Dalgaard LT. Genetic Variance in Uncoupling Protein 2 in Relation to Obesity, Type 2 Diabetes, and Related Metabolic Traits: Focus on the Functional -866G>A Promoter Variant (rs659366). J Obes 2011; 2011:340241. [PMID: 21603268 PMCID: PMC3092578 DOI: 10.1155/2011/340241] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/21/2011] [Indexed: 01/09/2023] Open
Abstract
Uncoupling proteins (UCPs) are mitochondrial proteins able to dissipate the proton gradient of the inner mitochondrial membrane when activated. This decreases ATP-generation through oxidation of fuels and may theoretically decrease energy expenditure leading to obesity. Evidence from Ucp((-/-)) mice revealed a role of UCP2 in the pancreatic β-cell, because β-cells without UCP2 had increased glucose-stimulated insulin secretion. Thus, from being a candidate gene for obesity UCP2 became a valid candidate gene for type 2 diabetes mellitus. This prompted a series of studies of the human UCP2 and UCP3 genes with respect to obesity and diabetes. Of special interest was a promoter variant of UCP2 situated 866bp upstream of transcription initiation (-866G>A, rs659366). This variant changes promoter activity and has been associated with obesity and/or type 2 diabetes in several, although not all, studies. The aim of the current paper is to summarize current evidence of association of UCP2 genetic variation with obesity and type 2 diabetes, with focus on the -866G>A polymorphism.
Collapse
Affiliation(s)
- Louise T. Dalgaard
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
- *Louise T. Dalgaard:
| |
Collapse
|
30
|
Juang JMJ, de las Fuentes L, Waggoner AD, Gu CC, Dávila-Román VG. Association and interaction of PPAR-complex gene variants with latent traits of left ventricular diastolic function. BMC MEDICAL GENETICS 2010; 11:65. [PMID: 20426853 PMCID: PMC2874543 DOI: 10.1186/1471-2350-11-65] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Accepted: 04/28/2010] [Indexed: 01/04/2023]
Abstract
BACKGROUND Abnormalities in myocardial metabolism and/or regulatory genes have been implicated in left ventricular systolic dysfunction. However, the extent to which these modulate left ventricular diastolic function (LVDF) is uncertain. METHODS Independent component analysis was applied to extract latent LVDF traits from 14 measured echocardiography-derived endophenotypes of LVDF in 403 Caucasians. Genetic association was assessed between measured and latent LVDF traits and 64 single nucleotide polymorphisms (SNPs) in three peroxisome proliferator-activated receptor (PPAR)-complex genes involved in the transcriptional regulation of fatty acid metabolism. RESULTS By linear regression analysis, 7 SNPs (4 in PPARA, 2 in PPARGC1A, 1 in PPARG) were significantly associated with the latent LVDF trait, whereas a range of 0-4 SNPs were associated with each of the 14 measured echocardiography-derived endophenotypes. Frequency distribution of P values showed a greater proportion of significant associations with the latent LVDF trait than for the measured endophenotypes, suggesting that analyses of the latent trait improved detection of the genetic underpinnings of LVDF. Ridge regression was applied to investigate within-gene and gene-gene interactions. In the within-gene analysis, there were five significant pair-wise interactions in PPARGC1A and none in PPARA or PPARG. In the gene-gene analysis, significant interactions were found between rs4253655 in PPARA and rs1873532 (p = 0.02) and rs7672915 (p = 0.02), both in PPARGC1A, and between rs1151996 in PPARG and rs4697046 in PPARGC1A (p = 0.01). CONCLUSIONS Myocardial metabolism PPAR-complex genes, including within and between genes interactions, may play an important role modulating left ventricular diastolic function.
Collapse
Affiliation(s)
- Jyh-Ming Jimmy Juang
- Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lisa de las Fuentes
- Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alan D Waggoner
- Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - C Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Víctor G Dávila-Román
- Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
31
|
Abstract
Type 2 diabetes mellitus is a complex metabolic disease that is caused by insulin resistance and beta-cell dysfunction. Furthermore, type 2 diabetes has an evident genetic component and represents a polygenic disease. During the last decade, considerable progress was made in the identification of type 2 diabetes risk genes. This was crucially influenced by the development of affordable high-density single nucleotide polymorphism (SNP) arrays that prompted several successful genome-wide association scans in large case-control cohorts. Subsequent to the identification of type 2 diabetes risk SNPs, cohorts thoroughly phenotyped for prediabetic traits with elaborate in vivo methods allowed an initial characterization of the pathomechanisms of these SNPs. Although the underlying molecular mechanisms are still incompletely understood, a surprising result of these pathomechanistic investigations was that most of the risk SNPs affect beta-cell function. This favors a beta-cell-centric view on the genetics of type 2 diabetes. The aim of this review is to summarize the current knowledge about the type 2 diabetes risk genes and their variants' pathomechanisms.
Collapse
Affiliation(s)
- Harald Staiger
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
32
|
Balloux F, Handley LJL, Jombart T, Liu H, Manica A. Climate shaped the worldwide distribution of human mitochondrial DNA sequence variation. Proc Biol Sci 2009; 276:3447-55. [PMID: 19586946 PMCID: PMC2817182 DOI: 10.1098/rspb.2009.0752] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There is an ongoing discussion in the literature on whether human mitochondrial DNA (mtDNA) evolves neutrally. There have been previous claims for natural selection on human mtDNA based on an excess of non-synonymous mutations and higher evolutionary persistence of specific mitochondrial mutations in Arctic populations. However, these findings were not supported by the reanalysis of larger datasets. Using a geographical framework, we perform the first direct test of the relative extent to which climate and past demography have shaped the current spatial distribution of mtDNA sequences worldwide. We show that populations living in colder environments have lower mitochondrial diversity and that the genetic differentiation between pairs of populations correlates with difference in temperature. These associations were unique to mtDNA; we could not find a similar pattern in any other genetic marker. We were able to identify two correlated non-synonymous point mutations in the ND3 and ATP6 genes characterized by a clear association with temperature, which appear to be plausible targets of natural selection producing the association with climate. The same mutations have been previously shown to be associated with variation in mitochondrial pH and calcium dynamics. Our results indicate that natural selection mediated by climate has contributed to shape the current distribution of mtDNA sequences in humans.
Collapse
Affiliation(s)
- François Balloux
- Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, MRC Centre for Outbreak Analysis and Modelling, St Mary's Campus, Norfolk Place, London W2 1PG, UK.
| | | | | | | | | |
Collapse
|
33
|
Parental diabetes status reveals association of mitochondrial DNA haplogroup J1 with type 2 diabetes. BMC MEDICAL GENETICS 2009; 10:60. [PMID: 19534826 PMCID: PMC2706816 DOI: 10.1186/1471-2350-10-60] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 06/18/2009] [Indexed: 11/10/2022]
Abstract
Background Although mitochondrial dysfunction is consistently manifested in patients with Type 2 Diabetes mellitus (T2DM), the association of mitochondrial DNA (mtDNA) sequence variants with T2DM varies among populations. These differences might stem from differing environmental influences among populations. However, other potentially important considerations emanate from the very nature of mitochondrial genetics, namely the notable high degree of partitioning in the distribution of human mtDNA variants among populations, as well as the interaction of mtDNA and nuclear DNA-encoded factors working in concert to govern mitochondrial function. We hypothesized that association of mtDNA genetic variants with T2DM could be revealed while controlling for the effect of additional inherited factors, reflected in family history information. Methods To test this hypothesis we set out to investigate whether mtDNA genetic variants will be differentially associated with T2DM depending on the diabetes status of the parents. To this end, association of mtDNA genetic backgrounds (haplogroups) with T2DM was assessed in 1055 Jewish patients with and without T2DM parents ('DP' and 'HP', respectively). Results Haplogroup J1 was found to be 2.4 fold under-represented in the 'HP' patients (p = 0.0035). These results are consistent with a previous observation made in Finnish T2DM patients. Moreover, assessing the haplogroup distribution in 'DP' versus 'HP' patients having diabetic siblings revealed that haplogroup J1 was virtually absent in the 'HP' group. Conclusion These results imply the involvement of inherited factors, which modulate the susceptibility of haplogroup J1 to T2DM.
Collapse
|
34
|
Ulybina YM, Imyanitov EN, Vasilyev DA, Berstein LM. Polymorphic markers associated with genes responsible for lipid and carbohydrate metabolism disorders and insulin resistance in cancer patients. Mol Biol 2008. [DOI: 10.1134/s0026893308060034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Goyenechea E, Crujeiras AB, Abete I, Parra D, Martínez JA. Enhanced short-term improvement of insulin response to a low-caloric diet in obese carriers the Gly482Ser variant of the PGC-1alpha gene. Diabetes Res Clin Pract 2008; 82:190-6. [PMID: 18823672 DOI: 10.1016/j.diabres.2008.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 07/08/2008] [Accepted: 08/14/2008] [Indexed: 12/20/2022]
Abstract
AIM The Gly482Ser missense mutation of the transcriptional coactivator, peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) has been involved in insulin function impairments, with conflicting results. The current study investigated the relationships of carrying this polymorphism with insulin resistance (IR) during a short-term weight-loss and the subsequent weight follow-up. METHODS The Gly482Ser was genotyped in 180 Spanish volunteers [body mass index: 31.4+/-3.2kg/m(2); age: 35+/-5 years]. Specific phenotypical measurements were determined at baseline, following an 8-week low-calorie diet (LCD) as well as after 6-month and 1-year of follow-up. RESULTS At baseline the Ser482Ser genotype was associated with higher HOMA-IR and insulin concentrations than the other genotypes (p<0.05), which was accompanied by an increased higher risk of IR (OR: 2.97; 95% CI: 1.24-7.15). After following the LCD, such increased risk of insulin insensitivity in Ser482Ser carriers was toned down (p>0.05). This outcome was sustained after 6-month and 1-year of follow-up (p>0.05). CONCLUSIONS These data show an increased risk of IR in obese carrying the rs8192673 Ser482Ser genotype. This risk was markedly reduced by an energy-restricted diet, which was sustained 6 months and 1 year after the diet therapy. This observation allows identifying obese subjects who might personally profit most from an energy-restrictive treatment concerning insulin response and lead to more individualized prognostic and therapeutic decisions.
Collapse
Affiliation(s)
- Estibaliz Goyenechea
- Department of Nutrition and Food Science, Physiology and Toxicology, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | | | | | | | | |
Collapse
|
36
|
Feder J, Blech I, Ovadia O, Amar S, Wainstein J, Raz I, Dadon S, Arking DE, Glaser B, Mishmar D. Differences in mtDNA haplogroup distribution among 3 Jewish populations alter susceptibility to T2DM complications. BMC Genomics 2008; 9:198. [PMID: 18445251 PMCID: PMC2386827 DOI: 10.1186/1471-2164-9-198] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 04/29/2008] [Indexed: 11/24/2022] Open
Abstract
Background Recent genome-wide association studies searching for candidate susceptibility loci for common complex diseases such as type 2 diabetes mellitus (T2DM) and its common complications have uncovered novel disease-associated genes. Nevertheless these large-scale population screens often overlook the tremendous variation in the mitochondrial genome (mtDNA) and its involvement in complex disorders. Results We have analyzed the mitochondrial DNA (mtDNA) genetic variability in Ashkenazi (Ash), Sephardic (Seph) and North African (NAF) Jewish populations (total n = 1179). Our analysis showed significant differences (p < 0.001) in the distribution of mtDNA genetic backgrounds (haplogroups) among the studied populations. To test whether these differences alter the pattern of disease susceptibility, we have screened our three Jewish populations for an association of mtDNA genetic haplogroups with T2DM complications. Our results identified population-specific susceptibility factors of which the best example is the Ashkenazi Jewish specific haplogroup N1b1, having an apparent protective effect against T2DM complications in Ash (p = 0.006), being absent in the NAF population and under-represented in the Seph population. We have generated and analyzed whole mtDNA sequences from the disease associated haplogroups revealing mutations in highly conserved positions that are good candidates to explain the phenotypic effect of these genetic backgrounds. Conclusion Our findings support the possibility that recent bottleneck events leading to over-representation of minor mtDNA alleles in specific genetic isolates, could result in population-specific susceptibility loci to complex disorders.
Collapse
Affiliation(s)
- Jeanette Feder
- Department of Life Sciences and National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
SU Y. Association study between PPARGC1A Thr394Thr/ Gly482Ser polymorphisms and type 2 diabetes. YI CHUAN = HEREDITAS 2008; 30:304-8. [DOI: 10.3724/sp.j.1005.2008.00304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|