1
|
Prakash N. Developmental pathways linked to the vulnerability of adult midbrain dopaminergic neurons to neurodegeneration. Front Mol Neurosci 2022; 15:1071731. [PMID: 36618829 PMCID: PMC9815185 DOI: 10.3389/fnmol.2022.1071731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The degeneration of dopaminergic and other neurons in the aging brain is considered a process starting well beyond the infantile and juvenile period. In contrast to other dopamine-associated neuropsychiatric disorders, such as schizophrenia and drug addiction, typically diagnosed during adolescence or young adulthood and, thus, thought to be rooted in the developing brain, Parkinson's Disease (PD) is rarely viewed as such. However, evidences have accumulated suggesting that several factors might contribute to an increased vulnerability to death of the dopaminergic neurons at an already very early (developmental) phase in life. Despite the remarkable ability of the brain to compensate such dopamine deficits, the early loss or dysfunction of these neurons might predispose an individual to suffer from PD because the critical threshold of dopamine function will be reached much earlier in life, even if the time-course and strength of naturally occurring and age-dependent dopaminergic cell death is not markedly altered in this individual. Several signaling and transcriptional pathways required for the proper embryonic development of the midbrain dopaminergic neurons, which are the most affected in PD, either continue to be active in the adult mammalian midbrain or are reactivated at the transition to adulthood and under neurotoxic conditions. The persistent activity of these pathways often has neuroprotective functions in adult midbrain dopaminergic neurons, whereas the reactivation of silenced pathways under pathological conditions can promote the survival and even regeneration of these neurons in the lesioned or aging brain. This article summarizes our current knowledge about signaling and transcription factors involved in midbrain dopaminergic neuron development, whose reduced gene dosage or signaling activity are implicated in a lower survival rate of these neurons in the postnatal or aging brain. It also discusses the evidences supporting the neuroprotection of the midbrain dopaminergic system after the external supply or ectopic expression of some of these secreted and nuclear factors in the adult and aging brain. Altogether, the timely monitoring and/or correction of these signaling and transcriptional pathways might be a promising approach to a much earlier diagnosis and/or prevention of PD.
Collapse
|
2
|
Ling L, Wang F, Yu D. Beyond neurodegenerative diseases: α-synuclein in erythropoiesis. Hematology 2022; 27:629-635. [PMID: 35621991 DOI: 10.1080/16078454.2022.2078041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
α-synuclein (α-syn) is a highly conserved and thermostable protein that is widely distributed in human brain. An intracellular aggregation of α-syn in dopaminergic neurons is the hallmark of a group of neurodegenerative diseases including Parkinson's disease. Interestingly, α-syn is also highly expressed in red blood cells and is considered as one of the most abundant proteins in red blood cells. Moreover, α-syn is thought to play a regulatory role during normal erythropoiesis. However, whether α-syn participates in the pathogenesis of erythroid diseases has not been reported. In this review, we discuss the protein structure of α-syn and the importance of α-syn in erythropoiesis.
Collapse
Affiliation(s)
- Ling Ling
- Institute of Translational Medicine, Yangzhou University, Medical College, Yangzhou, People's Republic of China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, People's Republic of China
| | - Fangfang Wang
- Institute of Translational Medicine, Yangzhou University, Medical College, Yangzhou, People's Republic of China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, People's Republic of China.,Department of Hematology, Yangzhou University, Clinical Medical College, Yangzhou, People's Republic of China
| | - Duonan Yu
- Institute of Translational Medicine, Yangzhou University, Medical College, Yangzhou, People's Republic of China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
3
|
Identifying the hub gene and immune infiltration of Parkinson’s disease using bioinformatical methods. Brain Res 2022; 1785:147879. [DOI: 10.1016/j.brainres.2022.147879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 11/22/2022]
|
4
|
Hendrickx DM, Garcia P, Ashrafi A, Sciortino A, Schmit KJ, Kollmus H, Nicot N, Kaoma T, Vallar L, Buttini M, Glaab E. A New Synuclein-Transgenic Mouse Model for Early Parkinson's Reveals Molecular Features of Preclinical Disease. Mol Neurobiol 2021; 58:576-602. [PMID: 32997293 PMCID: PMC8219584 DOI: 10.1007/s12035-020-02085-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
Understanding Parkinson's disease (PD), in particular in its earliest phases, is important for diagnosis and treatment. However, human brain samples are collected post-mortem, reflecting mainly end-stage disease. Because brain samples of mouse models can be collected at any stage of the disease process, they are useful in investigating PD progression. Here, we compare ventral midbrain transcriptomics profiles from α-synuclein transgenic mice with a progressive, early PD-like striatal neurodegeneration across different ages using pathway, gene set, and network analysis methods. Our study uncovers statistically significant altered genes across ages and between genotypes with known, suspected, or unknown function in PD pathogenesis and key pathways associated with disease progression. Among those are genotype-dependent alterations associated with synaptic plasticity and neurotransmission, as well as mitochondria-related genes and dysregulation of lipid metabolism. Age-dependent changes were among others observed in neuronal and synaptic activity, calcium homeostasis, and membrane receptor signaling pathways, many of which linked to G-protein coupled receptors. Most importantly, most changes occurred before neurodegeneration was detected in this model, which points to a sequence of gene expression events that may be relevant for disease initiation and progression. It is tempting to speculate that molecular changes similar to those changes observed in our model happen in midbrain dopaminergic neurons before they start to degenerate. In other words, we believe we have uncovered molecular changes that accompany the progression from preclinical to early PD.
Collapse
Affiliation(s)
- Diana M. Hendrickx
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Pierre Garcia
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
- Laboratoire National de Santé (LNS), Neuropathology Unit, Dudelange, Luxembourg
| | - Amer Ashrafi
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
- Present Address: Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Alessia Sciortino
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Kristopher J. Schmit
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Heike Kollmus
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Nathalie Nicot
- Quantitative Biology Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Tony Kaoma
- Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Laurent Vallar
- Genomics Research Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Manuel Buttini
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
5
|
Aloizou AM, Siokas V, Sapouni EM, Sita N, Liampas I, Brotis AG, Rakitskii VN, Burykina TI, Aschner M, Bogdanos DP, Tsatsakis A, Hadjigeorgiou GM, Dardiotis E. Parkinson's disease and pesticides: Are microRNAs the missing link? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140591. [PMID: 32721662 DOI: 10.1016/j.scitotenv.2020.140591] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder that leads to significant morbidity and decline in the quality of life. It develops due to loss of dopaminergic neurons in the substantia nigra pars compacta, and among its pathogenic factors oxidative stress plays a critical role in disease progression. Pesticides are a broad class of chemicals widely used in agriculture and households for the protection of crops from insects and fungi. Several of them have been incriminated as risk factors for PD, but the underlying mechanisms have yet to be fully understood. MicroRNAs (miRNAs) are small, non-coding RNA molecules that play an important role in regulating mRNA translation and protein synthesis. miRNA levels have been shown to be affected in several diseases as well. Since the studies on the association between pesticides and PD have yet to reach definitive conclusions, here we review recent evidence on deregulated microRNAs upon pesticide exposure, and attempt to find an overlap between miRNAs deregulated in PD and pesticides, as a missing link between the two, and enhance future research in this direction.
Collapse
Affiliation(s)
- Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.
| | - Efstathia-Maria Sapouni
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Nikoleta Sita
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Ioannis Liampas
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Alexandros G Brotis
- Department of Neurosurgery, School of Medicine, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Valerii N Rakitskii
- The Federal Budgetary Establishment of Science "Federal Scientific Center of Hygiene named after F. F. Erisman" of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Oblast' 141014, Russian Federation
| | - Tatyana I Burykina
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119048 Moscow, Russian Federation
| | - Michael Aschner
- Albert Einstein College of Medicine, Bronx, NY, USA; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Dimitrios P Bogdanos
- Department of Rheumatology and clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis 40500, Larissa, Greece
| | - Aristidis Tsatsakis
- The Federal Budgetary Establishment of Science "Federal Scientific Center of Hygiene named after F. F. Erisman" of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Oblast' 141014, Russian Federation; Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119048 Moscow, Russian Federation; Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Georgios M Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
6
|
Monzón-Sandoval J, Poggiolini I, Ilmer T, Wade-Martins R, Webber C, Parkkinen L. Human-Specific Transcriptome of Ventral and Dorsal Midbrain Dopamine Neurons. Ann Neurol 2020; 87:853-868. [PMID: 32167609 PMCID: PMC8651008 DOI: 10.1002/ana.25719] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 02/01/2023]
Abstract
Objective Neuronal loss in the substantia nigra pars compacta (SNpc) in Parkinson disease (PD) is not uniform, as dopamine neurons from the ventral tier are lost more rapidly than those of the dorsal tier. Identifying the intrinsic differences that account for this differential vulnerability may provide a key for developing new treatments for PD. Methods Here, we compared the RNA‐sequenced transcriptomes of ~100 laser captured microdissected SNpc neurons from each tier from 7 healthy controls. Results Expression levels of dopaminergic markers were similar across the tiers, whereas markers specific to the neighboring ventral tegmental area were virtually undetected. After accounting for unwanted sources of variation, we identified 106 differentially expressed genes (DEGs) between the SNpc tiers. The genes higher in the dorsal/resistant SNpc tier neurons displayed coordinated patterns of expression across the human brain, their protein products had more interactions than expected by chance, and they demonstrated evidence of functional convergence. No significant shared functionality was found for genes higher in the ventral/vulnerable SNpc tier. Surprisingly but importantly, none of the identified DEGs was among the familial PD genes or genome‐wide associated loci. Finally, we found some DEGs in opposite tier orientation between human and analogous mouse populations. Interpretation Our results highlight functional enrichments of vesicular trafficking, ion transport/homeostasis and oxidative stress genes showing higher expression in the resistant neurons of the SNpc dorsal tier. Furthermore, the comparison of gene expression variation in human and mouse SNpc populations strongly argues for the need of human‐focused omics studies. ANN NEUROL 2020;87:853–868
Collapse
Affiliation(s)
- Jimena Monzón-Sandoval
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford.,UK Dementia Research Institute, Cardiff University, Cardiff
| | - Ilaria Poggiolini
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford
| | - Tobias Ilmer
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford.,Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Caleb Webber
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford.,UK Dementia Research Institute, Cardiff University, Cardiff.,Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Laura Parkkinen
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford
| |
Collapse
|
7
|
Olsen AL, Feany MB. Glial α-synuclein promotes neurodegeneration characterized by a distinct transcriptional program in vivo. Glia 2019; 67:1933-1957. [PMID: 31267577 DOI: 10.1002/glia.23671] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/29/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Abstract
α-Synucleinopathies are neurodegenerative diseases that are characterized pathologically by α-synuclein inclusions in neurons and glia. The pathologic contribution of glial α-synuclein in these diseases is not well understood. Glial α-synuclein may be of particular importance in multiple system atrophy (MSA), which is defined pathologically by glial cytoplasmic α-synuclein inclusions. We have previously described Drosophila models of neuronal α-synucleinopathy, which recapitulate key features of the human disorders. We have now expanded our model to express human α-synuclein in glia. We demonstrate that expression of α-synuclein in glia alone results in α-synuclein aggregation, death of dopaminergic neurons, impaired locomotor function, and autonomic dysfunction. Furthermore, co-expression of α-synuclein in both neurons and glia worsens these phenotypes as compared to expression of α-synuclein in neurons alone. We identify unique transcriptomic signatures induced by glial as opposed to neuronal α-synuclein. These results suggest that glial α-synuclein may contribute to the burden of pathology in the α-synucleinopathies through a cell type-specific transcriptional program. This new Drosophila model system enables further mechanistic studies dissecting the contribution of glial and neuronal α-synuclein in vivo, potentially shedding light on mechanisms of disease that are especially relevant in MSA but also the α-synucleinopathies more broadly.
Collapse
Affiliation(s)
- Abby L Olsen
- Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Zhang Y, Shu L, Sun Q, Pan H, Guo J, Tang B. A Comprehensive Analysis of the Association Between SNCA Polymorphisms and the Risk of Parkinson's Disease. Front Mol Neurosci 2018; 11:391. [PMID: 30410434 PMCID: PMC6209653 DOI: 10.3389/fnmol.2018.00391] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Various studies have reported associations between synuclein alpha (SNCA) polymorphisms and Parkinson's disease (PD) risk. However, the results are inconsistent. We conducted a comprehensive meta-analysis of the associations between SNCA single-nucleotide polymorphisms (SNPs) and PD risk in overall populations and subpopulations by ethnicity. Methods: Standard meta-analysis was conducted according to our protocol with a cutoff point of p < 0.05. To find the most relevant SNCA SNPs, we used a cutoff point of p < 1 × 10−5 in an analysis based on the allele model. In the subgroup analysis by ethnicity, we divided the overall populations into five ethnic groups. We conducted further analysis on the most relevant SNPs using dominant and recessive models to identify the contributions of heterozygotes and homozygotes regarding each SNP. Results: In our comprehensive meta-analysis, 24,075 cases and 22,877 controls from 36 articles were included. We included 16 variants in the meta-analysis and found 12 statistically significant variants with p < 0.05. After narrowing down the variants using the p < 1 × 10−5 cutoff, in overall populations, seven SNPs increased the risk of PD (rs2736990, rs356220, rs356165, rs181489, rs356219, rs11931074, and rs2737029, with odds ratios [ORs] of 1.22–1.38) and one SNP decreased the risk (rs356186, with an OR of 0.77). In the East Asian group, rs2736990 and rs11931074 increased the risk (with ORs of 1.22–1.34). In the European group, five SNPs increased the risk (rs356219, rs181489, rs2737029, rs356165, and rs11931074, with ORs of 1.26–1.37) while one SNP decreased the risk (rs356186, with an OR of 0.77). The heterozygotes and homozygotes contributed differently depending on the variant. Conclusions: In summary, we found eight SNCA SNPs associated with PD risk, which had obvious differences between ethnicities. Seven SNPs increased the risk of PD and one SNP decreased the risk in the overall populations. In the East Asian group, rs2736990 and rs11931074 increased the risk. In the European group, rs356219, rs181489, rs2737029, rs356165, and rs11931074 increased the risk while rs356186 decreased the risk. Variants with the highest ORs and allele frequencies in our analysis should be given priority when carrying out genetic screening.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Li Shu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,Collaborative Innovation Center for Brain Science, Shanghai, China.,Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,Collaborative Innovation Center for Brain Science, Shanghai, China.,Collaborative Innovation Center for Genetics and Development, Shanghai, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
9
|
Tarale P, Daiwile AP, Sivanesan S, Stöger R, Bafana A, Naoghare PK, Parmar D, Chakrabarti T, Krishnamurthi K. Manganese exposure: Linking down-regulation of miRNA-7 and miRNA-433 with α-synuclein overexpression and risk of idiopathic Parkinson's disease. Toxicol In Vitro 2017; 46:94-101. [PMID: 28986288 DOI: 10.1016/j.tiv.2017.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/18/2017] [Accepted: 10/02/2017] [Indexed: 12/16/2022]
Abstract
Manganese is an essential trace element however elevated environmental and occupational exposure to this element has been correlated with neurotoxicity symptoms clinically identical to idiopathic Parkinson's disease. In the present study we chronically exposed human neuroblastoma SH-SY5Y cells to manganese (100μM) and carried out expression profiling of miRNAs known to modulate neuronal differentiation and neurodegeneration. The miRNA PCR array results reveal alterations in expression levels of miRNAs, which have previously been associated with the regulation of synaptic transmission and apoptosis. The expressions of miR-7 and miR-433 significantly reduced upon manganese exposure. By in silico homology analysis we identified SNCA and FGF-20as targets of miR-7 and miR-433. We demonstrate an inverse correlation in expression levels where reduction in these two miRNAs causes increases in SNCA and FGF-20. Transient transfection of SH-SY5Y cells with miR-7 and miR-433 mimics resulted in down regulation of SNCA and FGF-20 mRNA levels. Our study is the first to uncover the potential link between manganese exposure, altered miRNA expression and parkinsonism: manganese exposure causes overexpression of SNCA and FGF-20 by diminishing miR-7 and miR-433 levels. These miRNAs may be considered critical for protection from manganese induced neurotoxic mechanism and hence as potential therapeutic targets.
Collapse
Affiliation(s)
- Prashant Tarale
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Schools of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Atul P Daiwile
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India
| | - Saravanadevi Sivanesan
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India.
| | - Reinhard Stöger
- Schools of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Amit Bafana
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India
| | - Pravin K Naoghare
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India
| | - Devendra Parmar
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow-226001, India
| | - Tapan Chakrabarti
- Visvesvaraya National Institute of Technology [VNIT], Nagpur 440010, India
| | - Kannan Krishnamurthi
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India
| |
Collapse
|
10
|
Abstract
Across all kingdoms in the tree of life, calcium (Ca2+) is an essential element used by cells to respond and adapt to constantly changing environments. In multicellular organisms, it plays fundamental roles during fertilization, development and adulthood. The inability of cells to regulate Ca2+ can lead to pathological conditions that ultimately culminate in cell death. One such pathological condition is manifested in Parkinson's disease, the second most common neurological disorder in humans, which is characterized by the aggregation of the protein, α-synuclein. This Review discusses current evidence that implicates Ca2+ in the pathogenesis of Parkinson's disease. Understanding the mechanisms by which Ca2+ signaling contributes to the progression of this disease will be crucial for the development of effective therapies to combat this devastating neurological condition.
Collapse
Affiliation(s)
- Sofia V Zaichick
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kaitlyn M McGrath
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gabriela Caraveo
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
11
|
Roman AY, Limorenko G, Ustyugov AA, Tarasova TV, Lysikova EA, Buchman VL, Ninkina N. Generation of mouse lines with conditionally or constitutively inactivated Snca gene and Rosa26-stop-lacZ reporter located in cis on the mouse chromosome 6. Transgenic Res 2016; 26:301-307. [PMID: 27838898 PMCID: PMC5350238 DOI: 10.1007/s11248-016-9995-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/31/2016] [Indexed: 01/08/2023]
Abstract
α-Synuclein is involved in many important molecular processes in neuronal cells and their synapses, and its malfunction has been linked to the development of Parkinson’s and certain other neurodegenerative diseases. Animal models allowing tightly monitored conditional inactivation of the encoding gene, Snca, are indispensible for studies aimed at understanding normal function of α-synuclein in various neuronal populations and its role in pathogenesis of neurodegenerative diseases. We have recently reported the production of several novel mouse lines for manipulating expression of the endogenous Snca gene, including a line for Cre-recombinase-driven conditional inactivation of the gene (mice with floxed Snca) and a new line with a constitutive knockout of α-synuclein. Rosa26-stop-lacZ reporter cassette is commonly used for monitoring efficiency of Cre-recombination but in mouse genome Snca and Rosa26 loci are located on the same chromosome. Here we describe production of lines with a modified Snca locus, either floxed or constitutively inactivated and the Rosa26-stop-lacZ reporter cassette located in cis on the mouse chromosome 6. These new mouse lines are invaluable for fast identification of cells with inactivation of Snca by Cre-recombination and represent useful tools for in vivo studies of α-synuclein function and dysfunction.
Collapse
Affiliation(s)
- Andrei Yu Roman
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 1 Severniy proezd, Chernogolovka, Moscow Region, Russian Federation, 142432
- Inserm, CRO2 UMR_S 911, Faculté de Pharmacie, Aix-Marseille Université, 13385, Marseille, France
| | - Galina Limorenko
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Alexey A Ustyugov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 1 Severniy proezd, Chernogolovka, Moscow Region, Russian Federation, 142432
| | - Tatiana V Tarasova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 1 Severniy proezd, Chernogolovka, Moscow Region, Russian Federation, 142432
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Ekaterina A Lysikova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 1 Severniy proezd, Chernogolovka, Moscow Region, Russian Federation, 142432
| | - Vladimir L Buchman
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 1 Severniy proezd, Chernogolovka, Moscow Region, Russian Federation, 142432
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Natalia Ninkina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 1 Severniy proezd, Chernogolovka, Moscow Region, Russian Federation, 142432.
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK.
| |
Collapse
|
12
|
Huang H, Peng C, Liu Y, Liu X, Chen Q, Huang Z. Genetic association of NOS1 exon18, NOS1 exon29, ABCB1 1236C/T, and ABCB1 3435C/T polymorphisms with the risk of Parkinson's disease: A meta-analysis. Medicine (Baltimore) 2016; 95:e4982. [PMID: 27749554 PMCID: PMC5059056 DOI: 10.1097/md.0000000000004982] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most frequent neurodegenerative disorder. Previous publications have investigated the association of NOS1 and ABCB1 polymorphisms with PD risk. However, those studies have provided some contradictory results. METHODS Literature searches were performed using PubMed, Embase, PDgene, China National Knowledge Infrastructure database, and Google Scholar. Odds ratios (ORs) with 95% confidence intervals (CIs) were applied to evaluate the strength of association. RESULTS The analysis results indicated that NOS1 exon18 polymorphism was associated with developing PD in 4 genetic models (allelic: OR = 1.25, 95%CI 1.09-1.44, P = 0.001; homozygous: OR = 1.79, 95%CI 1.32-2.45, P < 0.001; recessive: OR = 1.70, 95%CI 1.26-2.28, P < 0.001; dominant: OR = 1.22, 95%CI 1.02-1.46, P = 0.03), whereas exon29 polymorphism was not correlated to PD susceptibility. In addition, ABCB1 1236C/T polymorphism was related to PD in the recessive (OR = 0.80, 95%CI 0.66-0.97, P = 0.025) and overdominant (OR = 1.21, 95%CI 1.03-1.43, P = 0.02) models, which might indicate the opposite effects of 2 minor variants of this locus on Parkinson's disease. However, this associated result was not robust enough to withstand statistically significant correction. On the other hand, no association was found between ABCB1 3435C/T polymorphism and the predisposition to PD in 5 genetic models, and such an absence of relationship was further confirmed by subgroup analysis in Caucasians and Asians. Whether the polymorphisms of these 4 loci were linked to PD or not, our study provided some interesting findings that differ from the previous results with regard to their genetic susceptibility. CONCLUSION The NOS1 exon18 and ABCB1 1236C/T variants might play a role in the risk of Parkinson's disease, whereas NOS1 exon29 and ABCB1 3435C/T polymorphisms might not contribute to PD susceptibility.
Collapse
Affiliation(s)
- Hongbin Huang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Dongguan, Guangdong
- The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong
| | - Cong Peng
- Hunan key Laboratory of Skin Cancer and Psoriasis, The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan
| | - Yong Liu
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Dongguan, Guangdong
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, Zhanjiang, Guangdong
| | - Xu Liu
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Dongguan, Guangdong
- The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong
| | - Qicong Chen
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Zunnan Huang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Dongguan, Guangdong
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, Zhanjiang, Guangdong
- Correspondence: Zunnan Huang, Guangdong Medical University, Dongguan, Guangdong, PR China (e-mail: )
| |
Collapse
|
13
|
Yang X, Zhao Q, An R, Zhou H, Lin Z, Xu Y. SNP rs1805874 of the Calbindin1 Gene Is Associated with Parkinson's Disease in Han Chinese. Genet Test Mol Biomarkers 2016; 20:753-757. [PMID: 27611799 DOI: 10.1089/gtmb.2016.0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIMS The single-nucleotide polymorphism, rs1805874, in the Calbindin1 gene has been associated with Parkinson's disease among the Japanese people, but not among Europeans or Americans. To help clarify these contrasting results, we conducted a case-control study to explore whether such an association exists among the Han Chinese. METHODS We used the ligase detection reaction to genotype the rs1805874 SNP in 514 Han Chinese with Parkinson's disease as well as in 475 healthy Han Chinese controls. RESULTS We identified a significant association between the A allele of rs1805874 and the risk of Parkinson's disease (OR 1.257, 95% CI 1.036-1.524, p = 0.020). Subgroup analysis revealed a significant association of the A allele with male gender (OR 1.306, 95% CI 1.009-1.691, p = 0.042) and late onset of disease (OR 1.247, 95% CI 1.010-1.540, p = 0.040). CONCLUSION Our findings suggest that the A allele of rs1805874 is associated with risk of Parkinson's disease among the Han Chinese. Our results, combined with previous studies, suggest that rs1805874 is associated with Parkinson's disease in East Asians, but not Caucasians.
Collapse
Affiliation(s)
- Xinglong Yang
- Department of Neurology, West China Hospital, Sichuan University , Chengdu, People's Republic of China
| | - Quanzhen Zhao
- Department of Neurology, West China Hospital, Sichuan University , Chengdu, People's Republic of China
| | - Ran An
- Department of Neurology, West China Hospital, Sichuan University , Chengdu, People's Republic of China
| | - Huayong Zhou
- Department of Neurology, West China Hospital, Sichuan University , Chengdu, People's Republic of China
| | - Zhenfang Lin
- Department of Neurology, West China Hospital, Sichuan University , Chengdu, People's Republic of China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University , Chengdu, People's Republic of China
| |
Collapse
|
14
|
Connor-Robson N, Peters OM, Millership S, Ninkina N, Buchman VL. Combinational losses of synucleins reveal their differential requirements for compensating age-dependent alterations in motor behavior and dopamine metabolism. Neurobiol Aging 2016; 46:107-12. [PMID: 27614017 PMCID: PMC5021248 DOI: 10.1016/j.neurobiolaging.2016.06.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/09/2016] [Accepted: 06/25/2016] [Indexed: 01/24/2023]
Abstract
Synucleins are involved in multiple steps of the neurotransmitter turnover, but the largely normal synaptic function in young adult animals completely lacking synucleins suggests their roles are dispensable for execution of these processes. Instead, they may be utilized for boosting the efficiency of certain molecular mechanisms in presynaptic terminals, with a deficiency of synuclein proteins sensitizing to or exacerbating synaptic malfunction caused by accumulation of mild alterations, which are commonly associated with aging. Although functional redundancy within the family has been reported, it is unclear whether the remaining synucleins can fully compensate for the deficiency of a lost family member or whether some functions are specific for a particular member. We assessed several structural and functional characteristics of the nigrostriatal system of mice lacking members of the synuclein family in every possible combination and demonstrated that stabilization of the striatal dopamine level depends on the presence of α-synuclein and cannot be compensated by other family members, whereas β-synuclein is required for efficient maintenance of animal's balance and coordination in old age.
Collapse
Affiliation(s)
| | - Owen M Peters
- School of Biosciences, Cardiff University, Cardiff, UK
| | | | - Natalia Ninkina
- School of Biosciences, Cardiff University, Cardiff, UK; Institute of Physiologically Active Compounds RAS, Moscow Region, Russian Federation
| | - Vladimir L Buchman
- School of Biosciences, Cardiff University, Cardiff, UK; Institute of Physiologically Active Compounds RAS, Moscow Region, Russian Federation.
| |
Collapse
|
15
|
Turner CA, Eren-Koçak E, Inui EG, Watson SJ, Akil H. Dysregulated fibroblast growth factor (FGF) signaling in neurological and psychiatric disorders. Semin Cell Dev Biol 2016; 53:136-43. [PMID: 26454097 PMCID: PMC4833700 DOI: 10.1016/j.semcdb.2015.10.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/05/2015] [Indexed: 12/27/2022]
Abstract
The role of the fibroblast growth factor (FGF) system in brain-related disorders has received considerable attention in recent years. To understand the role of this system in neurological and psychiatric disorders, it is important to identify the specific members of the FGF family that are implicated, their location and the various mechanisms they can be modulated. Each disorder appears to impact specific molecular players in unique anatomical locations, and all of these could conceivably become targets for treatment. In the last several years, the issue of how to target this system directly has become an area of increasing interest. To date, the most promising therapeutics are small molecule inhibitors and antibodies that modulate FGF receptor (FGFR) function. Beyond attempting to modify the primary players affected by a given brain disorder, it may prove useful to target molecules, such as membrane-bound or extracellular proteins that interact with FGF ligands or FGFRs to modulate signaling.
Collapse
Affiliation(s)
- Cortney A Turner
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Emine Eren-Koçak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | | | - Stanley J Watson
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Huda Akil
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Ninkina N, Connor-Robson N, Ustyugov AA, Tarasova TV, Shelkovnikova TA, Buchman VL. A novel resource for studying function and dysfunction of α-synuclein: mouse lines for modulation of endogenous Snca gene expression. Sci Rep 2015; 5:16615. [PMID: 26564109 PMCID: PMC4643252 DOI: 10.1038/srep16615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/16/2015] [Indexed: 01/03/2023] Open
Abstract
Pathological modification of α-synuclein is believed to be an important event in pathogenesis of Parkinson’s disease and several other neurodegenerative diseases. In normal cells this protein has been linked to many intracellular processes and pathways. However, neither normal function of α-synuclein in neuronal and certain other types of cells nor its exact role in the disease pathogenesis is well understood, which is largely due to limitations of animal models used for studying this protein. We produced and validated several novel mouse lines for manipulating expression of the endogenous Snca gene coding for α-synuclein. These include a line for conditional Cre-recombinase-driven inactivation of the gene; a line for conditional Flp-driven restoration of a neo-cassete-blocked α-synuclein expression; a new line with a “clean” constituent knockout of the gene as well as a line carrying this knockout locus and Rosa26-stop-lacZ reporter locus linked at the same mouse chromosome 6. Altogether these lines represent a set of new useful tools for studies of α-synuclein normal function and the role of this protein in disease pathogenesis.
Collapse
Affiliation(s)
- Natalia Ninkina
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, United Kingdom.,Institute of Physiologically Active Compounds Russian Academy of Sciences, 1 Severniy proezd, Chernogolovka 142432, Moscow Region, Russian Federation
| | - Natalie Connor-Robson
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| | - Alexey A Ustyugov
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, United Kingdom.,Institute of Physiologically Active Compounds Russian Academy of Sciences, 1 Severniy proezd, Chernogolovka 142432, Moscow Region, Russian Federation
| | - Tatiana V Tarasova
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, United Kingdom.,Institute of Physiologically Active Compounds Russian Academy of Sciences, 1 Severniy proezd, Chernogolovka 142432, Moscow Region, Russian Federation
| | - Tatyana A Shelkovnikova
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, United Kingdom.,Institute of Physiologically Active Compounds Russian Academy of Sciences, 1 Severniy proezd, Chernogolovka 142432, Moscow Region, Russian Federation
| | - Vladimir L Buchman
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, United Kingdom.,Institute of Physiologically Active Compounds Russian Academy of Sciences, 1 Severniy proezd, Chernogolovka 142432, Moscow Region, Russian Federation
| |
Collapse
|
17
|
Narayan S, Sinsheimer JS, Paul KC, Liew Z, Cockburn M, Bronstein JM, Ritz B. Genetic variability in ABCB1, occupational pesticide exposure, and Parkinson's disease. ENVIRONMENTAL RESEARCH 2015; 143:98-106. [PMID: 26457621 PMCID: PMC4911423 DOI: 10.1016/j.envres.2015.08.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/15/2015] [Accepted: 08/21/2015] [Indexed: 06/02/2023]
Abstract
BACKGROUND Studies suggested that variants in the ABCB1 gene encoding P-glycoprotein, a xenobiotic transporter, may increase susceptibility to pesticide exposures linked to Parkinson's Disease (PD) risk. OBJECTIVES To investigate the joint impact of two ABCB1 polymorphisms and pesticide exposures on PD risk. METHODS In a population-based case control study, we genotyped ABCB1 gene variants at rs1045642 (c.3435C/T) and rs2032582 (c.2677G/T/A) and assessed occupational exposures to organochlorine (OC) and organophosphorus (OP) pesticides based on self-reported occupational use and record-based ambient workplace exposures for 282 PD cases and 514 controls of European ancestry. We identified active ingredients in self-reported occupational use pesticides from a California database and estimated ambient workplace exposures between 1974 and 1999 employing a geographic information system together with records for state pesticide and land use. With unconditional logistic regression, we estimated marginal and joint contributions for occupational pesticide exposures and ABCB1 variants in PD. RESULTS For occupationally exposed carriers of homozygous ABCB1 variant genotypes, we estimated odds ratios of 1.89 [95% confidence interval (CI): (0.87, 4.07)] to 3.71 [95% CI: (1.96, 7.02)], with the highest odds ratios estimated for occupationally exposed carriers of homozygous ABCB1 variant genotypes at both SNPs; but we found no multiplicative scale interactions. CONCLUSIONS This study lends support to a previous report that commonly used pesticides, specifically OCs and OPs, and variant ABCB1 genotypes at two polymorphic sites jointly increase risk of PD.
Collapse
Affiliation(s)
- Shilpa Narayan
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Janet S Sinsheimer
- Departments of Human Genetics and Biomathematics, David Geffen School of Medicine, and Department of Biostatistics, Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Kimberly C Paul
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Zeyan Liew
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Myles Cockburn
- Department of Preventative Medicine, University of Southern California (USC) Keck School of Medicine and Department of Geography, USC, Los Angeles, CA, USA
| | - Jeff M Bronstein
- Department of Neurology, School of Medicine, UCLA, Los Angeles, CA, USA
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA, USA; Department of Neurology, School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
18
|
NDUFV2 regulates neuronal migration in the developing cerebral cortex through modulation of the multipolar-bipolar transition. Brain Res 2015; 1625:102-10. [PMID: 26327164 DOI: 10.1016/j.brainres.2015.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 08/20/2015] [Accepted: 08/23/2015] [Indexed: 11/23/2022]
Abstract
Abnormalities during brain development are tightly linked several psychiatric disorders. Mutations in NADH dehydrogenase ubiquinone flavoprotein 2 (NDUFV2) are responsible for schizophrenia, bipolar disorder and Parkinson׳s disease. However, the function of NDUFV2 during brain development remains unclear. Here we reported that ndufv2 is expressed in the developing cerebral cortex. In utero suppression of ndufv2 arrested neuronal migration, leading to accumulation of ectopic neurons in the intermediate zone. ndufv2 inhibition did not affect radial glia scaffold, progenitor cells or neurons survival. However, the loss of ndufv2 impairs neuronal multipolar-bipolar transition in vivo and polarization in vitro. Moreover, ndufv2 affected actin cytoskeleton and tubulin stabilization in cortical neurons. Overall, our findings establish a new NDUFV2 dependent mechanism underlying neuronal migration and psychiatric disorders.
Collapse
|
19
|
Li C, Qi H, Wei S, Wang L, Fan X, Duan S, Bi S. Vitamin D receptor gene polymorphisms and the risk of Parkinson’s disease. Neurol Sci 2014; 36:247-55. [DOI: 10.1007/s10072-014-1928-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 08/18/2014] [Indexed: 11/30/2022]
|
20
|
Evolutionarily conserved mechanisms in calcium handling may underlie intrinsic sensitivity to dopaminergic neuron death. J Neurosci 2014; 34:10795-7. [PMID: 25122882 DOI: 10.1523/jneurosci.2240-14.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Ma ZG, Xu J, Liu TW. Quantitative assessment of the association between fibroblast growth factor 20 rs1721100 C/G polymorphism and the risk of sporadic Parkinson's diseases: a meta-analysis. Neurol Sci 2014; 36:47-51. [PMID: 25030126 DOI: 10.1007/s10072-014-1884-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 07/12/2014] [Indexed: 12/15/2022]
Abstract
Fibroblast growth factor 20 (FGF20) is a neurotrophic factor which enhances the survival of rat midbrain dopamine neurons. Genetic variation in FGF20 may influence the risk of occurrence and development in Parkinson's diseases (PD). Many studies have evaluated the association between FGF20 rs1721100 C/G polymorphism and the risk of sporadic PD; however, published data are still controversial. The aim of the present meta-analysis was to evaluate the association of FGF20 rs1721100 C/G polymorphism with susceptibility of PD. The summary odds ratio (OR) with its 95 % confidence interval (CI) was calculated to estimate the association. Five case-control studies with a total of 3,463 sporadic PD cases and 4,606 controls were finally included into this meta-analysis. Neither the basic allele frequencies nor the genotypic distributions of rs1721100 C/G within FGF20 were different between two groups when all studies were pooled into the meta-analysis. Subgroup analysis by ethnicity showed FGF20 rs1721100 C/G polymorphism was significantly associated with increased risk in the heterozygote comparison model (CG versus GG: OR = 0.83, 95 % CI, 0.72-0.95, P = 0.009) in Asians but not in Caucasians. Overall, this meta-analysis suggests that FGF20 rs1721100 C/G polymorphism is associated with sporadic PD in Asians.
Collapse
Affiliation(s)
- Ze-Gang Ma
- Department of Physiology, Medical College of Qingdao University, Qingdao, 266071, China,
| | | | | |
Collapse
|
22
|
Kucinski A, Wersinger S, Stachowiak EK, Corso TD, Parry MJ, Zhang J, Jordan K, Letchworth S, Bencherif M, Stachowiak MK. Neuronal nicotinic receptor agonists ameliorate spontaneous motor asymmetries and motor discoordination in a unilateral mouse model of Parkinson's disease. Pharmacol Biochem Behav 2013; 111:1-10. [DOI: 10.1016/j.pbb.2013.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/21/2013] [Accepted: 07/03/2013] [Indexed: 12/24/2022]
|
23
|
Association of vitamin D receptor gene polymorphisms and Parkinson's disease in Hungarians. Neurosci Lett 2013; 551:70-4. [DOI: 10.1016/j.neulet.2013.07.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/24/2013] [Accepted: 07/05/2013] [Indexed: 02/07/2023]
|
24
|
Hurley MJ, Brandon B, Gentleman SM, Dexter DT. Parkinson’s disease is associated with altered expression of CaV1 channels and calcium-binding proteins. Brain 2013; 136:2077-97. [DOI: 10.1093/brain/awt134] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
25
|
Itoh N, Ohta H. Roles of FGF20 in dopaminergic neurons and Parkinson's disease. Front Mol Neurosci 2013; 6:15. [PMID: 23754977 PMCID: PMC3668169 DOI: 10.3389/fnmol.2013.00015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/16/2013] [Indexed: 12/29/2022] Open
Abstract
The fibroblast growth factor (FGF) family comprises 22 members with diverse functions in development and metabolism. Fgf20 was originally identified as a new Fgf preferentially expressed in the substantia nigra pars compacta (SNpc). Fgf20, which acts on proximal cells, significantly enhanced the survival of cultured dopaminergic neurons by activating the mitogen-activated protein kinase (MAPK) pathway through Fgf receptor 1c. In the rat model of Parkinson's disease, Fgf20 afforded significant protection against the loss of dopaminergic neurons. The significant correlation of Parkinson's disease with single-nucleotide polymorphisms in FGF20 indicates that the genetic variability of FGF20 can be a Parkinson's disease risk. Neural and embryonic stem (ES) cells have been considered as cell resources for restorative transplantation strategies in Parkinson's disease. Fgf20 promoted the differentiation of these stem cells into dopaminergic neurons, which attenuated neurological symptoms in animal models of Parkinson's disease. These findings indicate the importance of FGF20 for the differentiation and survival of dopaminergic neurons and the etiology and therapy of Parkinson's disease.
Collapse
Affiliation(s)
- Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences Kyoto, Japan
| | | |
Collapse
|
26
|
Luk KC, Rymar VV, van den Munckhof P, Nicolau S, Steriade C, Bifsha P, Drouin J, Sadikot AF. The transcription factor Pitx3 is expressed selectively in midbrain dopaminergic neurons susceptible to neurodegenerative stress. J Neurochem 2013; 125:932-43. [DOI: 10.1111/jnc.12160] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 12/17/2012] [Accepted: 01/09/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Kelvin C. Luk
- Department of Neurology and Neurosurgery; Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| | - Vladimir V. Rymar
- Department of Neurology and Neurosurgery; Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| | - Pepijn van den Munckhof
- Unité genetique moleculaire; Institut de recherches cliniques de Montreal; Montreal Quebec Canada
| | - Stefan Nicolau
- Department of Neurology and Neurosurgery; Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| | - Claude Steriade
- Department of Neurology and Neurosurgery; Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| | - Panojot Bifsha
- Unité genetique moleculaire; Institut de recherches cliniques de Montreal; Montreal Quebec Canada
| | - Jacques Drouin
- Unité genetique moleculaire; Institut de recherches cliniques de Montreal; Montreal Quebec Canada
| | - Abbas F. Sadikot
- Department of Neurology and Neurosurgery; Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| |
Collapse
|
27
|
Wang M, Wang L, Jiang N, Jia T, Luo Z. A robust and efficient statistical method for genetic association studies using case and control samples from multiple cohorts. BMC Genomics 2013; 14:88. [PMID: 23394771 PMCID: PMC3626840 DOI: 10.1186/1471-2164-14-88] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 01/31/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The theoretical basis of genome-wide association studies (GWAS) is statistical inference of linkage disequilibrium (LD) between any polymorphic marker and a putative disease locus. Most methods widely implemented for such analyses are vulnerable to several key demographic factors and deliver a poor statistical power for detecting genuine associations and also a high false positive rate. Here, we present a likelihood-based statistical approach that accounts properly for non-random nature of case-control samples in regard of genotypic distribution at the loci in populations under study and confers flexibility to test for genetic association in presence of different confounding factors such as population structure, non-randomness of samples etc. RESULTS We implemented this novel method together with several popular methods in the literature of GWAS, to re-analyze recently published Parkinson's disease (PD) case-control samples. The real data analysis and computer simulation show that the new method confers not only significantly improved statistical power for detecting the associations but also robustness to the difficulties stemmed from non-randomly sampling and genetic structures when compared to its rivals. In particular, the new method detected 44 significant SNPs within 25 chromosomal regions of size < 1 Mb but only 6 SNPs in two of these regions were previously detected by the trend test based methods. It discovered two SNPs located 1.18 Mb and 0.18 Mb from the PD candidates, FGF20 and PARK8, without invoking false positive risk. CONCLUSIONS We developed a novel likelihood-based method which provides adequate estimation of LD and other population model parameters by using case and control samples, the ease in integration of these samples from multiple genetically divergent populations and thus confers statistically robust and powerful analyses of GWAS. On basis of simulation studies and analysis of real datasets, we demonstrated significant improvement of the new method over the non-parametric trend test, which is the most popularly implemented in the literature of GWAS.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Biostatistics and Computational Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 200433, Shanghai, China
| | | | | | | | | |
Collapse
|
28
|
Ustinova VV, Shadrina MI, Fedotova EY, Illarioshkin SN, Limborska SA, Slominsky PA. Analysis of the rs12720208 single-nucleotide polymorphism of the FGF20 gene in Russian patients with sporadic Parkinson’s disease. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412090086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Sleeman IJ, Boshoff EL, Duty S. Fibroblast growth factor-20 protects against dopamine neuron loss in vitro and provides functional protection in the 6-hydroxydopamine-lesioned rat model of Parkinson's disease. Neuropharmacology 2012; 63:1268-77. [PMID: 22971544 DOI: 10.1016/j.neuropharm.2012.07.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 06/25/2012] [Accepted: 07/15/2012] [Indexed: 11/25/2022]
Abstract
Fibroblast growth factor-20 (FGF-20) has been shown to protect dopaminergic neurons against a range of toxic insults in vitro, through activation of fibroblast growth factor receptor 1 (FGFR1). This study set out to examine whether FGF-20 also displayed protective efficacy in the unilateral, 6-hydroxydopamine (6-OHDA) lesion rat model of Parkinson's disease. Initial studies demonstrated that, in embryonic ventral mesencephalic (VM) cultures, FGFR1 was expressed on tyrosine hydroxylase (TH)-positive neurons and that, in line with previous data, FGF-20 (100 and 500 ng/ml) almost completely protected these TH-positive neurons against 6-OHDA-induced toxicity. Co-localisation of FGFR1 and TH staining was also demonstrated in the substantia nigra pars compacta (SNpc) of naïve adult rat brain. In animals subject to 6-OHDA lesion of the nigrostriatal tract, supra-nigral infusion of FGF-20 (2.5 μg/day) for 6 days post-lesion gave significant protection (∼40%) against the loss of TH-positive cells in the SNpc and the loss of striatal TH immunoreactivity. This protection of the nigrostriatal tract was accompanied by a significant preservation of gross locomotion and fine motor movements and reversal of apomorphine-induced contraversive rotations, although forelimb akinesia, assessed using cylinder test reaching, was not improved. These results support a role for FGF-20 in preserving dopamine neuron integrity and some aspects of motor function in a rodent model of Parkinson's disease (PD) and imply a potential neuroprotective role for FGF-20 in this disease.
Collapse
Affiliation(s)
- Isobel J Sleeman
- King's College London, Wolfson Centre for Age-Related Diseases, Guy's Campus, London SE1 1UL, UK
| | | | | |
Collapse
|
30
|
Miyake Y, Tanaka K, Fukushima W, Kiyohara C, Sasaki S, Tsuboi Y, Yamada T, Oeda T, Shimada H, Kawamura N, Sakae N, Fukuyama H, Hirota Y, Nagai M. SNCA polymorphisms, smoking, and sporadic Parkinson’s disease in Japanese. Parkinsonism Relat Disord 2012; 18:557-61. [DOI: 10.1016/j.parkreldis.2012.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 02/05/2023]
|
31
|
Soontornniyomkij V, Risbrough VB, Young JW, Soontornniyomkij B, Jeste DV, Achim CL. Hippocampal calbindin-1 immunoreactivity correlate of recognition memory performance in aged mice. Neurosci Lett 2012; 516:161-5. [PMID: 22503902 DOI: 10.1016/j.neulet.2012.03.092] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/10/2012] [Accepted: 03/30/2012] [Indexed: 12/29/2022]
Abstract
Aging-related dysregulation of neuronal calcium metabolism, which not only involves the control of calcium fluxes but also the cytosolic calcium buffering system such as calbindin-1 (Calb1), may disturb synaptic plasticity and thereby memory functioning. Calb1 expression has been shown to affect hippocampal long-term potentiation and learning and to play a neuroprotective role in animal models of ischemic brain injury and neurodegenerative disorders. We hypothesize that memory performance in aged mice correlates with neuronal Calb1 protein expression in the hippocampal formation. We studied a set of 18 aged and 22 young male C57BL/6N mice, in which the aged group performed poorer than the young in single-trial novel object recognition testing (two-tailed p=0.005, U test). Apparent decreases in the Calb1 immunoreactivity (measured by quantitative immunohistochemistry) in aged mice compared to that in young mice were not statistically significant either in the hippocampal CA1 subfield or dentate gyrus. In the aged mouse group, levels of Calb1 immunoreactivity both in the CA1 subfield and dentate gyrus correlated directly with the measure of recognition memory performance (Spearman rank correlation r(s)=0.47 and 0.48, two-tailed p=0.047 and 0.044, respectively). Our results suggest that hippocampal Calb1 expression affects memory performance in aged mice probably via its role in maintaining neuronal calcium homeostasis. Alternatively, our finding of lower Calb1 immunoreactivity with poorer memory performance in aged mice might be attributed to saturation of Calb1 protein by higher levels of intracellular calcium, due to aging-related dysregulation of neuronal calcium fluxes.
Collapse
Affiliation(s)
- Virawudh Soontornniyomkij
- Sam and Rose Stein Institute for Research on Aging, Department of Psychiatry, School of Medicine, University of California, San Diego, CA 92093-0603, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Kucinski A, Wersinger S, Stachowiak EK, Radell M, Hesse R, Corso T, Parry M, Bencherif M, Jordan K, Letchworth S, Stachowiak MK. Unilateral 6-OHDA <i>th-fgfr1</i>(<i>tk-</i>) mouse model supports the role of FGFs in Parkinson’s disease and the effects of nicotine and L-DOPA on spontaneous motor impairments. Health (London) 2012. [DOI: 10.4236/health.2012.431176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Functional alterations to the nigrostriatal system in mice lacking all three members of the synuclein family. J Neurosci 2011; 31:7264-74. [PMID: 21593311 DOI: 10.1523/jneurosci.6194-10.2011] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The synucleins (α, β, and γ) are highly homologous proteins thought to play a role in regulating neurotransmission and are found abundantly in presynaptic terminals. To overcome functional overlap between synuclein proteins and to understand their role in presynaptic signaling from mesostriatal dopaminergic neurons, we produced mice lacking all three members of the synuclein family. The effect on the mesostriatal system was assessed in adult (4- to 14-month-old) animals using a combination of behavioral, biochemical, histological, and electrochemical techniques. Adult triple-synuclein-null (TKO) mice displayed no overt phenotype and no change in the number of midbrain dopaminergic neurons. TKO mice were hyperactive in novel environments and exhibited elevated evoked release of dopamine in the striatum detected with fast-scan cyclic voltammetry. Elevated dopamine release was specific to the dorsal not ventral striatum and was accompanied by a decrease of dopamine tissue content. We confirmed a normal synaptic ultrastructure and a normal abundance of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein complexes in the dorsal striatum. Treatment of TKO animals with drugs affecting dopamine metabolism revealed normal rate of synthesis, enhanced turnover, and reduced presynaptic striatal dopamine stores. Our data uniquely reveal the importance of the synuclein proteins in regulating neurotransmitter release from specific populations of midbrain dopamine neurons through mechanisms that differ from those reported in other neurons. The finding that the complete loss of synucleins leads to changes in dopamine handling by presynaptic terminals specifically in those regions preferentially vulnerable in Parkinson's disease may ultimately inform on the selectivity of the disease process.
Collapse
|
34
|
Butler MW, Burt A, Edwards TL, Zuchner S, Scott WK, Martin ER, Vance JM, Wang L. Vitamin D receptor gene as a candidate gene for Parkinson disease. Ann Hum Genet 2011; 75:201-10. [PMID: 21309754 DOI: 10.1111/j.1469-1809.2010.00631.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vitamin D and vitamin D receptor (VDR) have been postulated as environmental and genetic factors in neurodegeneration disorders including multiple sclerosis (MS), Alzheimer disease (AD), and recently Parkinson disease (PD). Given the sparse data on PD, we conducted a two-stage study to evaluate the genetic effects of VDR in PD. In the discovery stage, 30 tagSNPs in VDR were tested for association with risk as a discrete trait and age-at-onset (AAO) as a quantitative trait in 770 Caucasian PD families. In the validation stage, 18 VDR SNPs were tested in an independent Caucasian cohort (267 cases and 267 controls) constructed from a genome-wide association study (GWAS). In the discovery dataset, SNPs in the 5' end of VDR were associated with both risk and AAO with more significant evidence of association with AAO (P= 0.0008-0.02). These 5' SNPs were also associated with AD in another study. In the validation dataset, SNPs in the 3' end of VDR were associated with AAO (P= 0.003) but not risk. The 3' end SNP has been associated with both MS and AD in previous studies. Our findings suggest VDR as a potential susceptibility gene and support an essential role of vitamin D in PD.
Collapse
Affiliation(s)
- Megan W Butler
- Department of Pediatrics, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Nishioka K, Vilariño-Güell C, Cobb SA, Kachergus JM, Ross OA, Hentati E, Hentati F, Farrer MJ. Genetic variation of the mitochondrial complex I subunit NDUFV2 and Parkinson's disease. Parkinsonism Relat Disord 2010; 16:686-7. [PMID: 20971673 DOI: 10.1016/j.parkreldis.2010.09.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 01/10/2023]
Abstract
NADH dehydrogenase ubiquinone flavoprotein 2 (NDUFV2), encoding a subunit of mitochondrial complex I, is a candidate gene for several neuronal diseases; schizophrenia, bipolar disorder and Parkinson disease (PD). We screened the entire coding region of NDUFV2 in 33 familial PD patients of North African Arab-Berber ethnicity in which all known genetic forms of PD had been excluded. We detected one novel substitution p.K209R (c.626A>G) in one PD proband. Segregation analysis within the family is inconclusive due to small sample size, but consistent with an autosomal dominant mode of inheritance. Subsequent screening of this mutation in ethnically matched sporadic PD patients (n = 238) and controls (n = 371) identified p.K209R in one additional patient. The clinical features of the mutation carriers revealed a mild form of parkinsonism with a prognosis similar to idiopathic PD. Our findings suggest further studies addressing the role of NDUFV2 variation in PD may be warranted.
Collapse
Affiliation(s)
- Kenya Nishioka
- Division of Neurogenetics, Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Guschina I, Millership S, O'Donnell V, Ninkina N, Harwood J, Buchman V. Lipid classes and fatty acid patterns are altered in the brain of γ-synuclein null mutant mice. Lipids 2010; 46:121-30. [PMID: 20963507 PMCID: PMC3038238 DOI: 10.1007/s11745-010-3486-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 10/02/2010] [Indexed: 12/29/2022]
Abstract
The well-documented link between α-synuclein and the pathology of common human neurodegenerative diseases has increased attention to the synuclein protein family. The involvement of α-synuclein in lipid metabolism in both normal and diseased nervous system has been shown by many research groups. However, the possible involvement of γ-synuclein, a closely-related member of the synuclein family, in these processes has hardly been addressed. In this study, the effect of γ-synuclein deficiency on the lipid composition and fatty acid patterns of individual lipids from two brain regions has been studied using a mouse model. The level of phosphatidylserine (PtdSer) was increased in the midbrain whereas no changes in the relative proportions of membrane polar lipids were observed in the cortex of γ-synuclein-deficient compared to wild-type (WT) mice. In addition, higher levels of docosahexaenoic acid were found in PtdSer and phosphatidylethanolamine (PtdEtn) from the cerebral cortex of γ-synuclein null mutant mice. These findings show that γ-synuclein deficiency leads to alterations in the lipid profile in brain tissues and suggest that this protein, like α-synuclein, might affect neuronal function via modulation of lipid metabolism.
Collapse
Affiliation(s)
- Irina Guschina
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF103AX, UK.
| | | | | | | | | | | |
Collapse
|
37
|
Fon Tacer K, Bookout AL, Ding X, Kurosu H, John GB, Wang L, Goetz R, Mohammadi M, Kuro-o M, Mangelsdorf DJ, Kliewer SA. Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol 2010; 24:2050-64. [PMID: 20667984 PMCID: PMC2954642 DOI: 10.1210/me.2010-0142] [Citation(s) in RCA: 535] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 07/01/2010] [Indexed: 01/16/2023] Open
Abstract
Although members of the fibroblast growth factor (FGF) family and their receptors have well-established roles in embryogenesis, their contributions to adult physiology remain relatively unexplored. Here, we use real-time quantitative PCR to determine the mRNA expression patterns of all 22 FGFs, the seven principal FGF receptors (FGFRs), and the three members of the Klotho family of coreceptors in 39 different mouse tissues. Unsupervised hierarchical cluster analysis of the mRNA expression data reveals that most FGFs and FGFRs fall into two groups the expression of which is enriched in either the central nervous system or reproductive and gastrointestinal tissues. Interestingly, the FGFs that can act as endocrine hormones, including FGF15/19, FGF21, and FGF23, cluster in a third group that does not include any FGFRs, underscoring their roles in signaling between tissues. We further show that the most recently identified Klotho family member, Lactase-like, is highly and selectively expressed in brown adipose tissue and eye and can function as an additional coreceptor for FGF19. This FGF atlas provides an important resource for guiding future studies to elucidate the physiological functions of FGFs in adult animals.
Collapse
Affiliation(s)
- Klementina Fon Tacer
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Elucidating the genetic background of Parkinson disease and essential tremor is crucial to understand the pathogenesis and improve diagnostic and therapeutic strategies. RECENT FINDINGS A number of approaches have been applied including familial and association studies, and studies of gene expression profiles to identify genes involved in susceptibility to Parkinson disease. These studies have nominated a number of candidate Parkinson disease genes and novel loci including Omi/HtrA2, GIGYF2, FGF20, PDXK, EIF4G1 and PARK16. A recent notable finding has been the confirmation for the role of heterozygous mutations in glucocerebrosidase (GBA) as risk factors for Parkinson disease. Finally, association studies have nominated genetic variation in the leucine-rich repeat and Ig containing 1 gene (LINGO1) as a risk for both Parkinson disease and essential tremor, providing the first genetic evidence of a link between the two conditions. SUMMARY Although undoubtedly genes remain to be identified, considerable progress has been achieved in the understanding of the genetic basis of Parkinson disease. This same effort is now required for essential tremor. The use of next-generation high-throughput sequencing and genotyping technologies will help pave the way for future insight leading to advances in diagnosis, prevention and cure.
Collapse
Affiliation(s)
- Christian Wider
- Division of Neurology, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| | | | | |
Collapse
|
39
|
SNP rs7684318 of the alpha-synuclein gene is associated with Parkinson's disease in the Han Chinese population. Brain Res 2010; 1346:262-5. [PMID: 20513365 DOI: 10.1016/j.brainres.2010.05.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 05/20/2010] [Accepted: 05/24/2010] [Indexed: 02/05/2023]
Abstract
Mutations in the alpha-synuclein (SNCA) gene have been shown to be responsible for a rare familial form of Parkinson's disease (PD). Furthermore, polymorphic variants in multiple regions of the gene have been associated with susceptibility to idiopathic PD in different populations. Previous studies in Japanese have found a strong association between idiopathic PD and the single-nucleotide polymorphism (SNP) rs7684318, which is located within an intron of the SNCA gene. Our aim was to verify these findings and to further explore the nature of the association in a subset of Han Chinese PD patients. A case-control study of the SNP rs7684318, comprising 332 PD patients and 300 healthy controls, was carried out in Han Chinese populations from two centers in mainland China. The rs7684318 polymorphism was determined by PCR-restriction fragment length polymorphism (PCR-RFLP) analysis. The SNP rs7684318 of the SNCA gene showed a strong association with PD (P<0.01). Among our PD patients, mean age at disease onset and gender did not differ significantly between rs7684318 carriers and non-carriers. Our findings suggested that the SNP rs7684318 (T>C) transition of the SNCA gene contributes to PD susceptibility in Chinese Han population, which is consistent with the earlier study form Japan.
Collapse
|
40
|
Soto-Ortolaza AI, Behrouz B, Wider C, Vilariño-Güell C, Heckman MG, Aasly JO, Mark Gibson J, Lynch T, Jasinska-Myga B, Krygowska-Wajs A, Opala G, Barcikowska M, Czyzewski K, Uitti RJ, Wszolek ZK, Farrer MJ, Ross OA. Calbindin-1 association and Parkinson's disease. Eur J Neurol 2009; 17:208-11. [PMID: 19674066 DOI: 10.1111/j.1468-1331.2009.02769.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Calcium levels have been proposed to play an important role in the selective vulnerability of nigrostriatal dopaminergic neurons in Parkinson's disease (PD). Recently, an association was reported between the calcium buffer, calbindin (rs1805874) and risk of PD in a Japanese patient-control series. METHODS We genotyped rs1805874 in four independent Caucasian patient-control series (1543 PD patients, 1771 controls). RESULTS There was no evidence of an association between rs1805874 and disease risk in individual populations or in the combined series (odds ratio: 1.04, 95% CI: 0.82-1.31, P = 0.74). DISCUSSION Our study shows there is no association between rs1805874 and risk for PD in four Caucasian populations. This suggests the effect of calbindin on PD risk displays population specificity.
Collapse
Affiliation(s)
- A I Soto-Ortolaza
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ahmed SS, Santosh W, Kumar S, Christlet HTT. Metabolic profiling of Parkinson's disease: evidence of biomarker from gene expression analysis and rapid neural network detection. J Biomed Sci 2009; 16:63. [PMID: 19594911 PMCID: PMC2720938 DOI: 10.1186/1423-0127-16-63] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 07/13/2009] [Indexed: 01/09/2023] Open
Abstract
Background Parkinson's disease (PD) is a neurodegenerative disorder. The diagnosis of Parkinsonism is challenging because currently none of the clinical tests have been proven to help in diagnosis. PD may produce characteristic perturbations in the metabolome and such variations can be used as the marker for detection of disease. To test this hypothesis, we used proton NMR and multivariate analysis followed by neural network pattern detection. Methods & Results 1H nuclear magnetic resonance spectroscopy analysis was carried out on plasma samples of 37 healthy controls and 43 drug-naive patients with PD. Focus on 22 targeted metabolites, 17 were decreased and 5 were elevated in PD patients (p < 0.05). Partial least squares discriminant analysis (PLS-DA) showed that pyruvate is the key metabolite, which contributes to the separation of PD from control samples. Furthermore, gene expression analysis shows significant (p < 0.05) change in expression of PDHB and NPFF genes leading to increased pyruvate concentration in blood plasma. Moreover, the implementation of 1H- NMR spectral pattern in neural network algorithm shows 97.14% accuracy in the detection of disease progression. Conclusion The results increase the prospect of a robust molecular definition in detection of PD through the early symptomatic phase of the disease. This is an ultimate opening for therapeutic intervention. If validated in a genuinely prospective fashion in larger samples, the biomarker trajectories described here will go a long way to facilitate the development of useful therapies. Moreover, implementation of neural network will be a breakthrough in clinical screening and rapid detection of PD.
Collapse
Affiliation(s)
- Shiek Ssj Ahmed
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, 603 203, India.
| | | | | | | |
Collapse
|