1
|
Tanaka E, Koyanagi-Aoi M, Nakagawa S, Shimode S, Yamada H, Terai Y, Aoi T. Effect of a FOXO1 inhibitor on trophoblast differentiation from human pluripotent stem cells and ERV-associated gene expression. Regen Ther 2024; 26:729-740. [PMID: 39290630 PMCID: PMC11405643 DOI: 10.1016/j.reth.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction In human placental development, the trophectoderm (TE) appears in blastocysts on day 5 post-fertilization and develops after implantation into three types of trophoblast lineages: cytotrophoblast (CT), syncytiotrophoblast (ST), and extravillous trophoblast (EVT). CDX2/Cdx2 is expressed in the TE, and Cdx2 expression is upregulated by knockdown of Foxo1 in mouse ESCs. However, the significance of FOXO1 in trophoblast lineage differentiation during the early developmental period remains unclear. In this study, we examined the effect of FOXO1 inhibition on the differentiation of naive human induced pluripotent stem cells (iPSCs) into TE and trophoblast lineages. Methods We induced TE differentiation from naive iPSCs in the presence or absence of a FOXO1 inhibitor, and the resulting cells were subjected to trophoblast differentiation procedures without the FOXO1 inhibitor. The cells obtained in these processes were assessed for morphology, gene expression, and hCG secretion using phase-contrast microscopy, reverse transcription polymerase chain reaction (RT-PCR), quantitative RT-PCR (RT-qPCR), RNA-seq, immunochromatography, and a chemiluminescent enzyme immunoassay. Results In the induction of trophoblast differentiation from naive iPSCs, treatment with a FOXO1 inhibitor resulted in the enhanced expression of TE markers, CDX2 and HAND1, but conversely decreased the expression of ST markers, such as ERVW1 (Syncytin-1) and GCM1, and an EVT marker, HLA-G. The proportion of cells positive for an early TE marker TACSTD2 and negative for a late TE marker ENPEP was higher in FOXO1 inhibitor-treated cells than in non-treated cells. The expressions of ERVW1 (Syncytin-1), ERVFRD-1 (Syncytin-2), and other endogenous retrovirus (ERV)-associated genes that have been reported to be expressed in trophoblasts were suppressed in the cells obtained by differentiating the TE cells treated with FOXO1 inhibitor. Conclusions Treatment with a FOXO1 inhibitor during TE induction from naive iPSCs promotes early TE differentiation but hinders the progression of differentiation into ST and EVT. The suppression of ERV-associated genes may be involved in this process.
Collapse
Affiliation(s)
- Erika Tanaka
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Michiyo Koyanagi-Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Japan
| | - Sayumi Shimode
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima, 739-0046, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Hideto Yamada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yoshito Terai
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Takashi Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Division of Signal Pathways, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-0013, Japan
| |
Collapse
|
2
|
Mechanisms of Choice in X-Chromosome Inactivation. Cells 2022; 11:cells11030535. [PMID: 35159344 PMCID: PMC8833938 DOI: 10.3390/cells11030535] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
Early in development, placental and marsupial mammals harbouring at least two X chromosomes per nucleus are faced with a choice that affects the rest of their lives: which of those X chromosomes to transcriptionally inactivate. This choice underlies phenotypical diversity in the composition of tissues and organs and in their response to the environment, and can determine whether an individual will be healthy or affected by an X-linked disease. Here, we review our current understanding of the process of choice during X-chromosome inactivation and its implications, focusing on the strategies evolved by different mammalian lineages and on the known and unknown molecular mechanisms and players involved.
Collapse
|
3
|
Masuda K, Han X, Kato H, Sato H, Zhang Y, Sun X, Hirofuji Y, Yamaza H, Yamada A, Fukumoto S. Dental Pulp-Derived Mesenchymal Stem Cells for Modeling Genetic Disorders. Int J Mol Sci 2021; 22:ijms22052269. [PMID: 33668763 PMCID: PMC7956585 DOI: 10.3390/ijms22052269] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022] Open
Abstract
A subpopulation of mesenchymal stem cells, developmentally derived from multipotent neural crest cells that form multiple facial tissues, resides within the dental pulp of human teeth. These stem cells show high proliferative capacity in vitro and are multipotent, including adipogenic, myogenic, osteogenic, chondrogenic, and neurogenic potential. Teeth containing viable cells are harvested via minimally invasive procedures, based on various clinical diagnoses, but then usually discarded as medical waste, indicating the relatively low ethical considerations to reuse these cells for medical applications. Previous studies have demonstrated that stem cells derived from healthy subjects are an excellent source for cell-based medicine, tissue regeneration, and bioengineering. Furthermore, stem cells donated by patients affected by genetic disorders can serve as in vitro models of disease-specific genetic variants, indicating additional applications of these stem cells with high plasticity. This review discusses the benefits, limitations, and perspectives of patient-derived dental pulp stem cells as alternatives that may complement other excellent, yet incomplete stem cell models, such as induced pluripotent stem cells, together with our recent data.
Collapse
Affiliation(s)
- Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
- Correspondence: (K.M.); (S.F.); Tel.: +81-92-642-6402 (K.M. & S.F.)
| | - Xu Han
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan;
| | - Hiroshi Sato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Yu Zhang
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Xiao Sun
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Yuta Hirofuji
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Haruyoshi Yamaza
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8577, Japan;
| | - Satoshi Fukumoto
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8577, Japan;
- Correspondence: (K.M.); (S.F.); Tel.: +81-92-642-6402 (K.M. & S.F.)
| |
Collapse
|
4
|
Xiao L, Ma L, Wang Z, Yu Y, Lye SJ, Shan Y, Wei Y. Deciphering a distinct regulatory network of TEAD4, CDX2 and GATA3 in humans for trophoblast transition from embryonic stem cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118736. [PMID: 32389642 DOI: 10.1016/j.bbamcr.2020.118736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 11/25/2022]
Abstract
The placenta is an essential organ for the fetus, but its regulatory mechanism for formation of functional trophoblast lineage remains elusive in humans. Although widely known in mice, TEAD4 and its downstream targets CDX2 and GATA3 have not been determined in human models. In this work, we used a human model of trophoblast transition from BAP (BMP4, A83-01 and PD173074)-treated human embryonic stem cells (hESCs) and performed multiple gain- and loss-of-function tests of TEAD4, CDX2 or GATA3 to study their roles during this process. Although hESCs with TEAD4 deletion maintain pluripotency, their trophoblast transition potentials are attenuated. This impaired trophoblast transition could be rescued by separately overexpressing TEAD4, CDX2 or GATA3. Furthermore, trophoblast transition from hESCs is also attenuated by knockout of CDX2 but remains unaffected with deletion of GATA3. However, CDX2-overexpressed hESCs maintain pluripotency, whereas overexpression of GATA3 in hESCs leads to spontaneous differentiation including trophoblast lineage. In brief, our findings using a human model of trophoblast transition from BAP-treated hESCs reveal transcription roles of TEAD4, CDX2 and GATA in humans that are different from those in mice. We hope that this evidence can aid in understanding the distinct transcriptional network regulating trophoblast development in humans.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lishi Ma
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yanhong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Stephen J Lye
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, M5T 3H7, Canada; Department of Obstetrics & Gynecology, University of Toronto, Toronto M5G1L4, Canada; Department of Physiology, University of Toronto, Toronto M5G1L4, Canada
| | - Yongli Shan
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Yanxing Wei
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, M5T 3H7, Canada.
| |
Collapse
|
5
|
Initiation of X Chromosome Inactivation during Bovine Embryo Development. Cells 2020; 9:cells9041016. [PMID: 32325818 PMCID: PMC7226380 DOI: 10.3390/cells9041016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
X-chromosome inactivation (XCI) is a developmental process that aims to equalize the dosage of X-linked gene products between XY males and XX females in eutherian mammals. In female mouse embryos, paternal XCI is initiated at the 4-cell stage; however, the X chromosome is reactivated in the inner cell mass cells of blastocysts, and random XCI is subsequently initiated in epiblast cells. However, recent findings show that the patterns of XCI are not conserved among mammals. In this study, we used quantitative RT-PCR and RNA in situ hybridization combined with immunofluorescence to investigate the pattern of XCI during bovine embryo development. Expression of XIST (X-inactive specific transcript) RNA was significantly upregulated at the morula stage. For the first time, we demonstrate that XIST accumulation in bovine embryos starts in nuclei of female morulae, but its colocalization with histone H3 lysine 27 trimethylation was first detected in day 7 blastocysts. Both in the inner cell mass and in putative epiblast precursors, we observed a proportion of cells with XIST RNA and H3K27me3 colocalization. Surprisingly, the onset of XCI did not lead to a global downregulation of X-linked genes, even in day 9 blastocysts. Together, our findings confirm that diverse patterns of XCI initiation exist among developing mammalian embryos.
Collapse
|
6
|
Wen L, Tang F. Human Germline Cell Development: from the Perspective of Single-Cell Sequencing. Mol Cell 2019; 76:320-328. [PMID: 31563431 DOI: 10.1016/j.molcel.2019.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 01/01/2023]
Abstract
Germline cells are the beginning of new individuals in multicellular animals, including humans. Our understanding of these cell types is limited by the difficulty of analyzing the precious and heterogeneous germline tissue samples. The rapid development of single-cell sequencing technologies provides a chance for comprehensive profiling of the omics dynamics of human germline development. In this review, we discuss progress in analyzing the development of human germline cells, including preimplantation and implantation embryos, fetal germ cells (FGCs), and adult spermatogenesis by single-cell transcriptome and epigenome sequencing technologies.
Collapse
Affiliation(s)
- Lu Wen
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), College of Life Sciences, Peking University, Beijing 100871, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Boroviak T, Nichols J. Primate embryogenesis predicts the hallmarks of human naïve pluripotency. Development 2017; 144:175-186. [PMID: 28096211 PMCID: PMC5430762 DOI: 10.1242/dev.145177] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Naïve pluripotent mouse embryonic stem cells (ESCs) resemble the preimplantation epiblast and efficiently contribute to chimaeras. Primate ESCs correspond to the postimplantation embryo and fail to resume development in chimaeric assays. Recent data suggest that human ESCs can be ‘reset’ to an earlier developmental stage, but their functional capacity remains ill defined. Here, we discuss how the naïve state is inherently linked to preimplantation epiblast identity in the embryo. We hypothesise that distinctive features of primate development provide stringent criteria to evaluate naïve pluripotency in human and other primate cells. Based on our hypothesis, we define 12 key hallmarks of naïve pluripotency, five of which are specific to primates. These hallmarks may serve as a functional framework to assess human naïve ESCs. Summary: This Hypothesis article highlights several fundamental differences between rodent and primate early development and exploits these to predict key hallmarks of naïve pluripotency in primates.
Collapse
Affiliation(s)
- Thorsten Boroviak
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 4BG, UK
| |
Collapse
|
8
|
Early X chromosome inactivation during human preimplantation development revealed by single-cell RNA-sequencing. Sci Rep 2017; 7:10794. [PMID: 28883481 PMCID: PMC5589911 DOI: 10.1038/s41598-017-11044-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/18/2017] [Indexed: 12/16/2022] Open
Abstract
In female mammals, one X chromosome is transcriptionally inactivated (XCI), leading to dosage compensation between sexes, fundamental for embryo viability. A previous study using single-cell RNA-sequencing (scRNA-seq) data proposed that female human preimplantation embryos achieve dosage compensation by downregulating both Xs, a phenomenon named dampening of X expression. Using a novel pipeline on those data, we identified a decrease in the proportion of biallelically expressed X-linked genes during development, consistent with XCI. Moreover, we show that while the expression sum of biallelically expressed X-linked genes decreases with embryonic development, their median expression remains constant, rejecting the hypothesis of X dampening. In addition, analyses of a different dataset of scRNA-seq suggest the appearance of X-linked monoallelic expression by the late blastocyst stage in females, another hallmark of initiation of XCI. Finally, we addressed the issue of dosage compensation between the single active X and autosomes in males and females for the first time during human preimplantation development, showing emergence of X to autosome dosage compensation by the upregulation of the active X chromosome in both male and female embryonic stem cells. Our results show compelling evidence of an early process of X chromosome inactivation during human preimplantation development.
Collapse
|
9
|
Plaza Reyes A, Lanner F. Towards a CRISPR view of early human development: applications, limitations and ethical concerns of genome editing in human embryos. Development 2017; 144:3-7. [DOI: 10.1242/dev.139683] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developmental biologists have become increasingly aware that the wealth of knowledge generated through genetic studies of pre-implantation mouse development might not easily be translated to the human embryo. Comparative studies have been fueled by recent technological advances in single-cell analysis, allowing in-depth analysis of the human embryo. This field could shortly gain more momentum as novel genome editing technologies might, for the first time, also allow functional genetic studies in the human embryo. In this Spotlight article, we summarize the CRISPR-Cas9 genome editing system and discuss its potential applications and limitations in human pre-implantation embryos, and the ethical considerations thereof.
Collapse
Affiliation(s)
- Alvaro Plaza Reyes
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm 14186, Sweden
| | - Fredrik Lanner
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm 14186, Sweden
| |
Collapse
|
10
|
Grzybek M, Golonko A, Walczak M, Lisowski P. Epigenetics of cell fate reprogramming and its implications for neurological disorders modelling. Neurobiol Dis 2016; 99:84-120. [PMID: 27890672 DOI: 10.1016/j.nbd.2016.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 11/03/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023] Open
Abstract
The reprogramming of human induced pluripotent stem cells (hiPSCs) proceeds in a stepwise manner with reprogramming factors binding and epigenetic composition changes during transition to maintain the epigenetic landscape, important for pluripotency. There arises a question as to whether the aberrant epigenetic state after reprogramming leads to epigenetic defects in induced stem cells causing unpredictable long term effects in differentiated cells. In this review, we present a comprehensive view of epigenetic alterations accompanying reprogramming, cell maintenance and differentiation as factors that influence applications of hiPSCs in stem cell based technologies. We conclude that sample heterogeneity masks DNA methylation signatures in subpopulations of cells and thus believe that beside a genetic evaluation, extensive epigenomic screening should become a standard procedure to ensure hiPSCs state before they are used for genome editing and differentiation into neurons of interest. In particular, we suggest that exploitation of the single-cell composition of the epigenome will provide important insights into heterogeneity within hiPSCs subpopulations to fast forward development of reliable hiPSC-based analytical platforms in neurological disorders modelling and before completed hiPSC technology will be implemented in clinical approaches.
Collapse
Affiliation(s)
- Maciej Grzybek
- Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland.
| | - Aleksandra Golonko
- Department of Biotechnology, Faculty of Civil and Environmental Engineering, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland.
| | - Marta Walczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland.
| | - Pawel Lisowski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland; iPS Cell-Based Disease Modelling Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Str. 10, 13092 Berlin, Germany.
| |
Collapse
|
11
|
Balachandar V, Dhivya V, Gomathi M, Mohanadevi S, Venkatesh B, Geetha B. A review of Rett syndrome (RTT) with induced pluripotent stem cells. Stem Cell Investig 2016; 3:52. [PMID: 27777941 DOI: 10.21037/sci.2016.09.05] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/08/2016] [Indexed: 11/06/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) are pluripotent stem cells generated from somatic cells by the introduction of a combination of pluripotency-associated genes such as OCT4, SOX2, along with either KLF4 and c-MYC or NANOG and LIN28 via retroviral or lentiviral vectors. Most importantly, hiPSCs are similar to human embryonic stem cells (hESCs) functionally as they are pluripotent and can potentially differentiate into any desired cell type when provided with the appropriate cues, but do not have the ethical issues surrounding hESCs. For these reasons, hiPSCs have huge potential in translational medicine such as disease modeling, drug screening, and cellular therapy. Indeed, patient-specific hiPSCs have been generated for a multitude of diseases, including many with a neurological basis, in which disease phenotypes have been recapitulated in vitro and proof-of-principle drug screening has been performed. As the techniques for generating hiPSCs are refined and these cells become a more widely used tool for understanding brain development, the insights they produce must be understood in the context of the greater complexity of the human genome and the human brain. Disease models using iPS from Rett syndrome (RTT) patient's fibroblasts have opened up a new avenue of drug discovery for therapeutic treatment of RTT. The analysis of X chromosome inactivation (XCI) upon differentiation of RTT-hiPSCs into neurons will be critical to conclusively demonstrate the isolation of pre-XCI RTT-hiPSCs in comparison to post-XCI RTT-hiPSCs. The current review projects on iPSC studies in RTT as well as XCI in hiPSC were it suggests for screening new potential therapeutic targets for RTT in future for the benefit of RTT patients. In conclusion, patient-specific drug screening might be feasible and would be particularly helpful in disorders where patients frequently have to try multiple drugs before finding a regimen that works.
Collapse
Affiliation(s)
- Vellingiri Balachandar
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Venkatesan Dhivya
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Mohan Gomathi
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Subramaniam Mohanadevi
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Balasubramanian Venkatesh
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Bharathi Geetha
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| |
Collapse
|
12
|
Single-Cell RNA-Seq Reveals Lineage and X Chromosome Dynamics in Human Preimplantation Embryos. Cell 2016; 165:1012-26. [PMID: 27062923 PMCID: PMC4868821 DOI: 10.1016/j.cell.2016.03.023] [Citation(s) in RCA: 625] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 02/04/2016] [Accepted: 03/15/2016] [Indexed: 01/17/2023]
Abstract
Mouse studies have been instrumental in forming our current understanding of early cell-lineage decisions; however, similar insights into the early human development are severely limited. Here, we present a comprehensive transcriptional map of human embryo development, including the sequenced transcriptomes of 1,529 individual cells from 88 human preimplantation embryos. These data show that cells undergo an intermediate state of co-expression of lineage-specific genes, followed by a concurrent establishment of the trophectoderm, epiblast, and primitive endoderm lineages, which coincide with blastocyst formation. Female cells of all three lineages achieve dosage compensation of X chromosome RNA levels prior to implantation. However, in contrast to the mouse, XIST is transcribed from both alleles throughout the progression of this expression dampening, and X chromosome genes maintain biallelic expression while dosage compensation proceeds. We envision broad utility of this transcriptional atlas in future studies on human development as well as in stem cell research. Transcriptomes of 1,529 individual cells from 88 human preimplantation embryos Lineage segregation of trophectoderm, primitive endoderm, and pluripotent epiblast X chromosome dosage compensation in the human blastocyst
Collapse
|
13
|
Geens M, Seriola A, Barbé L, Santalo J, Veiga A, Dée K, Van Haute L, Sermon K, Spits C. Female human pluripotent stem cells rapidly lose X chromosome inactivation marks and progress to a skewed methylation pattern during culture. Mol Hum Reprod 2016; 22:285-98. [DOI: 10.1093/molehr/gaw004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/13/2016] [Indexed: 12/25/2022] Open
|
14
|
Fonseca SAS, Costas RM, Pereira LV. Searching for naïve human pluripotent stem cells. World J Stem Cells 2015; 7:649-656. [PMID: 25914771 PMCID: PMC4404399 DOI: 10.4252/wjsc.v7.i3.649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023] Open
Abstract
Normal mouse pluripotent stem cells were originally derived from the inner cell mass (ICM) of blastocysts and shown to be the in vitro equivalent of those pre-implantation embryonic cells, and thus were called embryonic stem cells (ESCs). More than a decade later, pluripotent cells were isolated from the ICM of human blastocysts. Despite being called human ESCs, these cells differ significantly from mouse ESCs, including different morphology and mechanisms of control of pluripotency, suggesting distinct embryonic origins of ESCs from the two species. Subsequently, mouse pluripotent stem cells were established from the ICM-derived epiblast of post-implantation embryos. These mouse epiblast stem cells (EpiSCs) are morphological and epigenetically more similar to human ESCs. This raised the question of whether cells from the human ICM are in a more advanced differentiation stage than their murine counterpart, or whether the available culture conditions were not adequate to maintain those human cells in their in vivo state, leading to a transition into EpiSC-like cells in vitro. More recently, novel culture conditions allowed the conversion of human ESCs into mouse ESC-like cells called naïve (or ground state) human ESCs, and the derivation of naïve human ESCs from blastocysts. Here we will review the characteristics of each type of pluripotent stem cells, how (and whether) these relate to different stages of embryonic development, and discuss the potential implications of naïve human ESCs in research and therapy.
Collapse
|
15
|
Aberrant patterns of X chromosome inactivation in a new line of human embryonic stem cells established in physiological oxygen concentrations. Stem Cell Rev Rep 2015; 10:472-9. [PMID: 24633531 DOI: 10.1007/s12015-014-9505-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One of the differences between murine and human embryonic stem cells (ESCs) is the epigenetic state of the X chromosomes in female lines. Murine ESCs (mESCs) present two transcriptionally active Xs that will undergo the dosage compensation process of XCI upon differentiation, whereas most human ESCs (hESCs) spontaneously inactivate one X while keeping their pluripotency. Whether this reflects differences in embryonic development of mice and humans, or distinct culture requirements for the two kinds of pluripotent cells is not known. Recently it has been shown that hESCs established in physiological oxygen levels are in a stable pre-XCI state equivalent to that of mESCs, suggesting that culture in low oxygen concentration is enough to preserve that epigenetic state of the X chromosomes. Here we describe the establishment of two new lines of hESCs under physiological oxygen level and the characterization of the XCI state in the 46,XX line BR-5. We show that a fraction of undifferentiated cells present XIST RNA accumulation and single H3K27me foci, characteristic of the inactive X. Moreover, analysis of allele specific gene expression suggests that pluripotent BR-5 cells present completely skewed XCI. Our data indicate that physiological levels of oxygen are not sufficient for the stabilization of the pre-XCI state in hESCs.
Collapse
|
16
|
De Paepe C, Krivega M, Cauffman G, Geens M, Van de Velde H. Totipotency and lineage segregation in the human embryo. ACTA ACUST UNITED AC 2014; 20:599-618. [DOI: 10.1093/molehr/gau027] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Schoorlemmer J, Pérez-Palacios R, Climent M, Guallar D, Muniesa P. Regulation of Mouse Retroelement MuERV-L/MERVL Expression by REX1 and Epigenetic Control of Stem Cell Potency. Front Oncol 2014; 4:14. [PMID: 24567914 PMCID: PMC3915180 DOI: 10.3389/fonc.2014.00014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/21/2014] [Indexed: 11/17/2022] Open
Abstract
About half of the mammalian genome is occupied by DNA sequences that originate from transposable elements. Retrotransposons can modulate gene expression in different ways and, particularly retrotransposon-derived long terminal repeats, profoundly shape expression of both surrounding and distant genomic loci. This is especially important in pre-implantation development, during which extensive reprograming of the genome takes place and cells pass through totipotent and pluripotent states. At this stage, the main mechanism responsible for retrotransposon silencing, i.e., DNA methylation, is inoperative. A particular retrotransposon called muERV-L/MERVL is expressed during pre-implantation stages and contributes to the plasticity of mouse embryonic stem cells. This review will focus on the role of MERVL-derived sequences as controlling elements of gene expression specific for pre-implantation development, two-cell stage-specific gene expression, and stem cell pluripotency, the epigenetic mechanisms that control their expression, and the contributions of the pluripotency marker REX1 and the related Yin Yang 1 family of transcription factors to this regulation process.
Collapse
Affiliation(s)
- Jon Schoorlemmer
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud , Zaragoza , Spain ; ARAID Foundation , Zaragoza , Spain
| | - Raquel Pérez-Palacios
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud , Zaragoza , Spain
| | - María Climent
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza , Zaragoza , Spain
| | - Diana Guallar
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud , Zaragoza , Spain
| | - Pedro Muniesa
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza , Zaragoza , Spain
| |
Collapse
|
18
|
Soma A, Sato K, Nakanishi T. Visualization of inactive X chromosome in preimplantation embryos utilizing MacroH2A-EGFP transgenic mouse. Genesis 2013; 51:259-67. [PMID: 23349035 DOI: 10.1002/dvg.22369] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/28/2012] [Accepted: 01/12/2013] [Indexed: 12/13/2022]
Abstract
One of the two X chromosomes is inactivated in female eutherian mammals. MacroH2A, an unusual histone variant, is known to accumulate on the inactive X chromosome (Xi) during early embryo development, and can thus be used as a marker of the Xi. In this study, we produced a transgenic mouse line expressing the mouse MacroH2A1.2-enhanced green fluorescent protein (EGFP) fusion protein (MacroH2A-EGFP) under the control of a CAG promoter and verified whether MacroH2A-EGFP would be useful for tracing the process of X chromosome inactivation by visualizing Xi noninvasively in preimplantation embryos. In transgenic female mice, MacroH2A-EGFP formed a fluorescent focus in nuclei throughout the body. In female blastocysts, the MacroH2A-EGFP focus colocalized with Xist RNA, well known as a marker of Xi. Fluorescence marking of Xi was first observed in some embryonic cells between the 4- and 8-cell stages. These results demonstrate that MacroH2A can bind to the Xi by around the 8-cell stage in female mouse embryos. These MacroH2A-EGFP transgenic mice might be useful to elucidate the process of X chromosome inactivation during the mouse life cycle.
Collapse
Affiliation(s)
- Atsumi Soma
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori, 683-8503, Japan
| | | | | |
Collapse
|
19
|
Nguyen HT, Geens M, Spits C. Genetic and epigenetic instability in human pluripotent stem cells. Hum Reprod Update 2012; 19:187-205. [PMID: 23223511 DOI: 10.1093/humupd/dms048] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND There is an increasing body of evidence that human pluripotent stem cells (hPSCs) are prone to (epi)genetic instability during in vitro culture. This review aims at giving a comprehensive overview of the current knowledge on culture-induced (epi)genetic alterations in hPSCs and their phenotypic consequences. METHODS Combinations of the following key words were applied as search criteria: human induced pluripotent stem cells and human embryonic stem cells in combination with malignancy, tumorigenicity, X inactivation, mitochondrial mutations, genomic integrity, chromosomal abnormalities, culture adaptation, aneuploidy and CD30. Only studies in English, on hPSCs and focused on (epi)genomic integrity were included. Further manuscripts were added from cross-references. RESULTS Numerous (epi)genetic aberrations have been detected in hPSCs. Recurrent genetic alterations give a selective advantage in culture to the altered cells leading to overgrowth of abnormal, culture-adapted cells. The functional effects of these alterations are not yet fully understood, but suggest a (pre)malignant transformation of abnormal cells with decreased differentiation and increased proliferative capacity. CONCLUSIONS Given the high degree of (epi)genetic alterations reported in the literature and altered phenotypic characteristics of the abnormal cells, controlling for the (epi)genetic integrity of hPSCs before any clinical application is an absolute necessity.
Collapse
Affiliation(s)
- H T Nguyen
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Jette, Brussels, Belgium
| | | | | |
Collapse
|
20
|
Essential role of the CUL4B ubiquitin ligase in extra-embryonic tissue development during mouse embryogenesis. Cell Res 2012; 22:1258-69. [PMID: 22453236 DOI: 10.1038/cr.2012.48] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mutations of the CUL4B ubiquitin ligase gene are causally linked to syndromic X-linked mental retardation (XLMR). However, the pathogenic role of CUL4B mutations in neuronal and developmental defects is not understood. We have generated mice with targeted disruption of Cul4b, and observed embryonic lethality with pronounced growth inhibition and increased apoptosis in extra-embryonic tissues. Cul4b, but not its paralog Cul4a, is expressed at high levels in extra-embryonic tissues post implantation. Silencing of CUL4B expression in an extra-embryonic cell line resulted in the robust accumulation of the CUL4 substrate p21(Cip1/WAF) and G2/M cell cycle arrest, which could be partially rescued by silencing of p21(Cip1/WAF). Epiblast-specific deletion of Cul4b prevented embryonic lethality and gave rise to viable Cul4b null mice. Therefore, while dispensable in the embryo proper, Cul4b performs an essential developmental role in the extra-embryonic tissues. Our study offers a strategy to generate viable Cul4b-deficient mice to model the potential neuronal and behavioral deficiencies of human CUL4B XLMR patients.
Collapse
|
21
|
Roehl AC, Mussotter T, Cooper DN, Kluwe L, Wimmer K, Högel J, Zetzmann M, Vogt J, Mautner VF, Kehrer-Sawatzki H. Tissue-specific differences in the proportion of mosaic large NF1 deletions are suggestive of a selective growth advantage of hematopoietic del(+/-) stem cells. Hum Mutat 2012; 33:541-50. [PMID: 22190464 DOI: 10.1002/humu.22013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 12/12/2011] [Indexed: 11/10/2022]
Abstract
Type-2 NF1 deletions spanning 1.2 Mb are frequently of postzygotic origin and hence tend to be associated with mosaicism for normal cells and those harboring the deletion (del(+/-) cells). Eleven patients with mosaic type-2 deletions were investigated by FISH and high proportions (94-99%) of del(+/-) cells were detected both in whole blood and in isolated CD3+, CD14+, CD15+, and CD19+ leukocytes. Significantly lower proportions of del(+/-) cells (24-82%) were however noted in urine-derived epithelial cells. A patient harboring an atypical large NF1 deletion with nonrecurrent breakpoints was also found to have a much higher proportion of del(+/-) cells in blood (96%) than in urine (51%). The tissue-specific differences in the proportions of del(+/-) cells as well as the X chromosome inactivation (XCI) patterns observed in these mosaic patients suggest that the majority of the deletions had occurred before or during the preimplantation blastocyst stage before the onset of XCI. We postulate that hematopoietic del(+/-) stem cells present at an early developmental stage are characterized by a selective growth advantage over normal cells lacking the deletion, leading to a high proportion of del(+/-) cells in peripheral blood from the affected patients.
Collapse
Affiliation(s)
- Angelika C Roehl
- Institute of Human Genetics, University of Ulm, Albert-Einstein-Allee 11, Ulm, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cheung AYL, Horvath LM, Carrel L, Ellis J. X-chromosome inactivation in rett syndrome human induced pluripotent stem cells. Front Psychiatry 2012; 3:24. [PMID: 22470355 PMCID: PMC3311266 DOI: 10.3389/fpsyt.2012.00024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/05/2012] [Indexed: 12/20/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder that affects girls due primarily to heterozygous mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MECP2). Random X-chromosome inactivation (XCI) results in cellular mosaicism in which some cells express wild-type (WT) MECP2 while other cells express mutant MECP2. The generation of patient-specific human induced pluripotent stem cells (hiPSCs) facilitates the production of RTT-hiPSC-derived neurons in vitro to investigate disease mechanisms and identify novel drug treatments. The generation of RTT-hiPSCs has been reported by many laboratories, however, the XCI status of RTT-hiPSCs has been inconsistent. Some report RTT-hiPSCs retain the inactive X-chromosome (post-XCI) of the founder somatic cell allowing isogenic RTT-hiPSCs that express only the WT or mutant MECP2 allele to be isolated from the same patient. Post-XCI RTT-hiPSCs-derived neurons retain this allele-specific expression pattern of WT or mutant MECP2. Conversely, others report RTT-hiPSCs in which the inactive X-chromosome of the founder somatic cell reactivates (pre-XCI) upon reprogramming into RTT-hiPSCs. Pre-XCI RTT-hiPSC-derived neurons exhibit random XCI resulting in cellular mosaicism with respect to WT and mutant MECP2 expression. Here we review and attempt to interpret the inconsistencies in XCI status of RTT-hiPSCs generated to date by comparison to other pluripotent systems in vitro and in vivo and the methods used to analyze XCI. Finally, we discuss the relative strengths and weaknesses of post- and pre-XCI hiPSCs in the context of RTT, and other X-linked and autosomal disorders for translational medicine.
Collapse
Affiliation(s)
- Aaron Y L Cheung
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Toronto, ON, Canada
| | | | | | | |
Collapse
|
23
|
Scialdone A, Cataudella I, Barbieri M, Prisco A, Nicodemi M. Conformation regulation of the X chromosome inactivation center: a model. PLoS Comput Biol 2011; 7:e1002229. [PMID: 22046112 PMCID: PMC3203058 DOI: 10.1371/journal.pcbi.1002229] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 08/30/2011] [Indexed: 11/18/2022] Open
Abstract
X-Chromosome Inactivation (XCI) is the process whereby one, randomly chosen X becomes transcriptionally silenced in female cells. XCI is governed by the Xic, a locus on the X encompassing an array of genes which interact with each other and with key molecular factors. The mechanism, though, establishing the fate of the X's, and the corresponding alternative modifications of the Xic architecture, is still mysterious. In this study, by use of computer simulations, we explore the scenario where chromatin conformations emerge from its interaction with diffusing molecular factors. Our aim is to understand the physical mechanisms whereby stable, non-random conformations are established on the Xic's, how complex architectural changes are reliably regulated, and how they lead to opposite structures on the two alleles. In particular, comparison against current experimental data indicates that a few key cis-regulatory regions orchestrate the organization of the Xic, and that two major molecular regulators are involved. In mammal female cells X-Chromosome Inactivation (XCI) is the vital process whereby one X, randomly chosen, is silenced to compensate dosage of X products with respect to males. XCI is governed by a region on the X, the X Inactivation Centre (Xic), which undergoes a sequence of conformational modifications during the process. The two Xic are exposed, though, to the same environment, and it is obscure how they attain different architectures. By use of computer simulations of a molecular model, here we individuate general physical mechanisms whereby random Brownian molecules can assemble chromatin stable architectures, reliably regulate conformational changes, and establish opposite transformations on identical alleles. In the case-study of the murine Xic, our analysis highlights the existence of a few key regulatory regions and molecular factors. It also predicts, e.g., the effects of genetic modifications in the locus, which are compared with current deletion/insertion experiments. The physical mechanisms we describe are rooted in thermodynamics and could be relevant well beyond XCI.
Collapse
Affiliation(s)
- Antonio Scialdone
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Ilaria Cataudella
- Center for Models of Life, Niels Bohr Institute, Copenhagen, Denmark
| | - Mariano Barbieri
- Dipartimento di Scienze Fisiche, Università di Napoli “Federico II,” INFN, Napoli, Italy
| | - Antonella Prisco
- CNR Istituto di Genetica e Biofisica “B. Traverso”, Napoli, Italy
| | - Mario Nicodemi
- Dipartimento di Scienze Fisiche, Università di Napoli “Federico II,” INFN, CNR-SPIN, Napoli, Italy
- * E-mail:
| |
Collapse
|
24
|
Abstract
The 50th anniversary of Mary Lyon's 1961 Nature paper, proposing random inactivation in early embryonic life of one of the two X chromosomes in the cells of mammalian females, provides an opportunity to remember and celebrate the work of those involved. While the hypothesis was initially put forward by Lyon based on findings in the mouse, it was founded on earlier studies, notably the work of Susumu Ohno; it was also suggested independently by Beutler and colleagues using experimental evidence from a human X-linked disorder, glucose-6-phosphate dehydrogenase deficiency, and has proved to be of as great importance for human and medical genetics as it has for general mammalian genetics. Alongside the hypothesis itself, previous cytological studies of mouse and human chromosomes, and the observations on X-linked mutants in both species deserve recognition for their essential role in underpinning the hypothesis of random X-inactivation, while subsequent research on the X-inactivation centre and the molecular mechanisms underlying the inactivation process represent some of the most outstanding contributions to human and wider mammalian genetics over the past 50 years.
Collapse
Affiliation(s)
- Peter S Harper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
25
|
Abstract
In humans, sexual dimorphism is associated with the presence of two X chromosomes in the female, whereas males possess only one X and a small and largely degenerate Y chromosome. How do men cope with having only a single X chromosome given that virtually all other chromosomal monosomies are lethal? Ironically, or even typically many might say, women and more generally female mammals contribute most to the job by shutting down one of their two X chromosomes at random. This phenomenon, called X-inactivation, was originally described some 50 years ago by Mary Lyon and has captivated an increasing number of scientists ever since. The fascination arose in part from the realisation that the inactive X corresponded to a dense heterochromatin mass called the “Barr body” whose number varied with the number of Xs within the nucleus and from the many intellectual questions that this raised: How does the cell count the X chromosomes in the nucleus and inactivate all Xs except one? What kind of molecular mechanisms are able to trigger such a profound, chromosome-wide metamorphosis? When is X-inactivation initiated? How is it transmitted to daughter cells and how is it reset during gametogenesis? This review retraces some of the crucial findings, which have led to our current understanding of a biological process that was initially considered as an exception completely distinct from conventional regulatory systems but is now viewed as a paradigm “par excellence” for epigenetic regulation.
Collapse
Affiliation(s)
- Céline Morey
- Institut Pasteur, Unité de Génétique Moléculaire Murine, CNRS, URA2578, Paris, France
- * E-mail:
| | - Philip Avner
- Institut Pasteur, Unité de Génétique Moléculaire Murine, CNRS, URA2578, Paris, France
| |
Collapse
|