1
|
Wiese CB, Avetisyan R, Reue K. The impact of chromosomal sex on cardiometabolic health and disease. Trends Endocrinol Metab 2023; 34:652-665. [PMID: 37598068 PMCID: PMC11090013 DOI: 10.1016/j.tem.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/21/2023]
Abstract
Many aspects of metabolism are sex-biased, from gene expression in metabolic tissues to the prevalence and presentation of cardiometabolic diseases. The influence of hormones produced by male and female gonads has been widely documented, but recent studies have begun to elucidate the impact of genetic sex (XX or XY chromosomes) on cellular and organismal metabolism. XX and XY cells have differential gene dosage conferred by specific genes that escape X chromosome inactivation or the presence of Y chromosome genes that are absent from XX cells. Studies in mouse models that dissociate chromosomal and gonadal sex have uncovered mechanisms for sex-biased epigenetic, transcriptional, and post-transcriptional regulation of gene expression in conditions such as obesity, atherosclerosis, pulmonary hypertension, autoimmune disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Carrie B Wiese
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Rozeta Avetisyan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Kubasova N, Alves-Pereira CF, Gupta S, Vinogradova S, Gimelbrant A, Barreto VM. In Vivo Clonal Analysis Reveals Random Monoallelic Expression in Lymphocytes That Traces Back to Hematopoietic Stem Cells. Front Cell Dev Biol 2022; 10:827774. [PMID: 36003148 PMCID: PMC9393635 DOI: 10.3389/fcell.2022.827774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Evaluating the epigenetic landscape in the stem cell compartment at the single-cell level is essential to assess the cells’ heterogeneity and predict their fate. Here, using a genome-wide transcriptomics approach in vivo, we evaluated the allelic expression imbalance in the progeny of single hematopoietic cells (HSCs) as a read-out of epigenetic marking. After 4 months of extensive proliferation and differentiation, we found that X-chromosome inactivation (XCI) is tightly maintained in all single-HSC derived hematopoietic cells. In contrast, the vast majority of the autosomal genes did not show clonal patterns of random monoallelic expression (RME). However, a persistent allele-specific autosomal transcription in HSCs and their progeny was found in a rare number of cases, none of which has been previously reported. These data show that: 1) XCI and RME in the autosomal chromosomes are driven by different mechanisms; 2) the previously reported high frequency of genes under RME in clones expanded in vitro (up to 15%) is not found in clones undergoing multiple differentiation steps in vivo; 3) prior to differentiation, HSCs have stable patterns of autosomal RME. We propose that most RME patterns in autosomal chromosomes are erased and established de novo during cell lineage differentiation.
Collapse
Affiliation(s)
- Nadiya Kubasova
- Chronic Diseases Research Centre, Nova Medical School, CEDOC, Lisbon, Portugal
- Genetagus, Egas Moniz – Cooperativa de Ensino Superior, CRL, Monte de Caparica, Portugal
| | - Clara F. Alves-Pereira
- Center of Cancer Systems Biology, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Saumya Gupta
- Center of Cancer Systems Biology, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Svetlana Vinogradova
- Center of Cancer Systems Biology, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Alexander Gimelbrant
- Center of Cancer Systems Biology, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- *Correspondence: Vasco M. Barreto, ; Alexander Gimelbrant,
| | - Vasco M. Barreto
- Chronic Diseases Research Centre, Nova Medical School, CEDOC, Lisbon, Portugal
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Costa da Caparica, Portugal
- *Correspondence: Vasco M. Barreto, ; Alexander Gimelbrant,
| |
Collapse
|
3
|
Bista B, Wu Z, Literman R, Valenzuela N. Thermosensitive sex chromosome dosage compensation in ZZ/ZW softshell turtles, Apalone spinifera. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200101. [PMID: 34304598 DOI: 10.1098/rstb.2020.0101] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sex chromosome dosage compensation (SCDC) overcomes gene-dose imbalances that disturb transcriptional networks, as when ZW females or XY males are hemizygous for Z/X genes. Mounting data from non-model organisms reveal diverse SCDC mechanisms, yet their evolution remains obscure, because most informative lineages with variable sex chromosomes are unstudied. Here, we discovered SCDC in turtles and an unprecedented thermosensitive SCDC in eukaryotes. We contrasted RNA-seq expression of Z-genes, their autosomal orthologues, and control autosomal genes in Apalone spinifera (ZZ/ZW) and Chrysemys picta turtles with temperature-dependent sex determination (TSD) (proxy for ancestral expression). This approach disentangled chromosomal context effects on Z-linked and autosomal expression, from lineage effects owing to selection or drift. Embryonic Apalone SCDC is tissue- and age-dependent, regulated gene-by-gene, complete in females via Z-upregulation in both sexes (Type IV) but partial and environmentally plastic via Z-downregulation in males (accentuated at colder temperature), present in female hatchlings and a weakly suggestive in adult liver (Type I). Results indicate that embryonic SCDC evolved with/after sex chromosomes in Apalone's family Tryonichidae, while co-opting Z-gene upregulation present in the TSD ancestor. Notably, Apalone's SCDC resembles pygmy snake's, and differs from the full-SCDC of Anolis lizards who share homologous sex chromosomes (XY), advancing our understanding of how XX/XY and ZZ/ZW systems compensate gene-dose imbalance. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Basanta Bista
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Zhiqiang Wu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA.,Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, People's Republic of China
| | - Robert Literman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
4
|
Bonomi M, Rochira V, Pasquali D, Balercia G, Jannini EA, Ferlin A. Klinefelter syndrome (KS): genetics, clinical phenotype and hypogonadism. J Endocrinol Invest 2017; 40:123-134. [PMID: 27644703 PMCID: PMC5269463 DOI: 10.1007/s40618-016-0541-6] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/25/2016] [Indexed: 01/29/2023]
Abstract
Klinefelter Syndrome (KS) is characterized by an extreme heterogeneity in its clinical and genetic presentation. The relationship between clinical phenotype and genetic background has been partially disclosed; nevertheless, physicians are aware that several aspects concerning this issue are far to be fully understood. By improving our knowledge on the role of some genetic aspects as well as on the KS, patients' interindividual differences in terms of health status will result in a better management of this chromosomal disease. The aim of this review is to provide an update on both genetic and clinical phenotype and their interrelationships.
Collapse
Affiliation(s)
- M Bonomi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Division of Endocrine and Metabolic Diseases & Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - V Rochira
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126, Modena, Italy.
- Azienda USL of Modena, NOCSAE, Via P. Giardini 1355, 41126, Modena, Italy.
| | - D Pasquali
- Department of Cardiothoracic and Respiratory Science, Second University of Naples, Naples, Italy
| | - G Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Umberto I Hospital, Polytechnic University of Marche, Via Conca 71, 60126, Ancona, Italy
| | - E A Jannini
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - A Ferlin
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Balachandar V, Dhivya V, Gomathi M, Mohanadevi S, Venkatesh B, Geetha B. A review of Rett syndrome (RTT) with induced pluripotent stem cells. Stem Cell Investig 2016; 3:52. [PMID: 27777941 DOI: 10.21037/sci.2016.09.05] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/08/2016] [Indexed: 11/06/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) are pluripotent stem cells generated from somatic cells by the introduction of a combination of pluripotency-associated genes such as OCT4, SOX2, along with either KLF4 and c-MYC or NANOG and LIN28 via retroviral or lentiviral vectors. Most importantly, hiPSCs are similar to human embryonic stem cells (hESCs) functionally as they are pluripotent and can potentially differentiate into any desired cell type when provided with the appropriate cues, but do not have the ethical issues surrounding hESCs. For these reasons, hiPSCs have huge potential in translational medicine such as disease modeling, drug screening, and cellular therapy. Indeed, patient-specific hiPSCs have been generated for a multitude of diseases, including many with a neurological basis, in which disease phenotypes have been recapitulated in vitro and proof-of-principle drug screening has been performed. As the techniques for generating hiPSCs are refined and these cells become a more widely used tool for understanding brain development, the insights they produce must be understood in the context of the greater complexity of the human genome and the human brain. Disease models using iPS from Rett syndrome (RTT) patient's fibroblasts have opened up a new avenue of drug discovery for therapeutic treatment of RTT. The analysis of X chromosome inactivation (XCI) upon differentiation of RTT-hiPSCs into neurons will be critical to conclusively demonstrate the isolation of pre-XCI RTT-hiPSCs in comparison to post-XCI RTT-hiPSCs. The current review projects on iPSC studies in RTT as well as XCI in hiPSC were it suggests for screening new potential therapeutic targets for RTT in future for the benefit of RTT patients. In conclusion, patient-specific drug screening might be feasible and would be particularly helpful in disorders where patients frequently have to try multiple drugs before finding a regimen that works.
Collapse
Affiliation(s)
- Vellingiri Balachandar
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Venkatesan Dhivya
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Mohan Gomathi
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Subramaniam Mohanadevi
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Balasubramanian Venkatesh
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Bharathi Geetha
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| |
Collapse
|
6
|
Vacca M, Della Ragione F, Scalabrì F, D'Esposito M. X inactivation and reactivation in X-linked diseases. Semin Cell Dev Biol 2016; 56:78-87. [PMID: 26994527 DOI: 10.1016/j.semcdb.2016.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/22/2022]
Abstract
X chromosome inactivation (XCI) is the phenomenon by which mammals compensate for dosage of X-linked genes in females (XX) versus males (XY). XCI patterns can be random or show extreme skewing, and can modify the mode of inheritance of X-driven phenotypes, which contributes to the variability of human pathologies. Recent findings have shown reversibility of the XCI process, which has opened new avenues in the approaches used for the treatment of X-linked diseases.
Collapse
Affiliation(s)
- Marcella Vacca
- Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, via Pietro Castellino, 111, 80131, Naples, Italy.
| | - Floriana Della Ragione
- Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, via Pietro Castellino, 111, 80131, Naples, Italy; IRCCS Neuromed, Pozzilli, Isernia, Italy
| | | | - Maurizio D'Esposito
- Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, via Pietro Castellino, 111, 80131, Naples, Italy; IRCCS Neuromed, Pozzilli, Isernia, Italy
| |
Collapse
|
7
|
Hasegawa Y, Tang D, Takahashi N, Hayashizaki Y, Forrest ARR, Suzuki H. CCL2 enhances pluripotency of human induced pluripotent stem cells by activating hypoxia related genes. Sci Rep 2014; 4:5228. [PMID: 24957798 PMCID: PMC4067614 DOI: 10.1038/srep05228] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/04/2014] [Indexed: 12/22/2022] Open
Abstract
Standard culture of human induced pluripotent stem cells (hiPSCs) requires basic Fibroblast Growth Factor (bFGF) to maintain the pluripotent state, whereas hiPSC more closely resemble epiblast stem cells than true naïve state ES which requires LIF to maintain pluripotency. Here we show that chemokine (C-C motif) ligand 2 (CCL2) enhances the expression of pluripotent marker genes through the phosphorylation of the signal transducer and activator of transcription 3 (STAT3) protein. Moreover, comparison of transcriptomes between hiPSCs cultured with CCL2 versus with bFGF, we found that CCL2 activates hypoxia related genes, suggesting that CCL2 enhanced pluripotency by inducing a hypoxic-like response.Further, we show that hiPSCs cultured with CCL2 can differentiate at a higher efficiency than culturing withjust bFGF and we show CCL2 can be used in feeder-free conditions [corrected]. Taken together, our finding indicates the novel functions of CCL2 in enhancing its pluripotency in hiPSCs.
Collapse
Affiliation(s)
- Yuki Hasegawa
- 1] Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan [2] RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan
| | - Dave Tang
- 1] Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan [2] RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan
| | - Naoko Takahashi
- 1] Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan [2] RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan
| | - Yoshihide Hayashizaki
- 1] Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan [2] RIKEN Preventive Medicine and Diagnosis Innovation Program, 2-1 Hirosawa, Wako-shi, Saitama, 551-0198 Japan
| | - Alistair R R Forrest
- 1] Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan [2] RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan
| | | | - Harukazu Suzuki
- 1] Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan [2] RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
8
|
Bruck T, Yanuka O, Benvenisty N. Human pluripotent stem cells with distinct X inactivation status show molecular and cellular differences controlled by the X-Linked ELK-1 gene. Cell Rep 2013; 4:262-70. [PMID: 23871667 DOI: 10.1016/j.celrep.2013.06.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 06/02/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022] Open
Abstract
Female human pluripotent stem cells show vast heterogeneity regarding the status of X chromosome inactivation. By comparing the gene expression profile of cells with two active X chromosomes (XaXa cells) to that of cells with only one active X chromosome (XaXi cells), a set of autosomal genes was shown to be overexpressed in the XaXa cells. Among these genes, we found significant enrichment for genes regulated by the X-linked transcription factor ELK-1. Comparison of the phenotype of XaXa and XaXi cells demonstrated differences in programmed cell death and differentiation, implying some growth disadvantage of the XaXa cells. Interestingly, ELK-1-overexpressing cells mimicked the phenotype of XaXa cells, whereas knockdown of ELK-1 with small hairpin RNA mimicked the phenotype of XaXi cells. When cultured at low oxygen levels, these cellular differences were considerably weakened. Our analysis implies a role of ELK-1 in the differences between pluripotent stem cells with distinct X chromosome inactivation statuses.
Collapse
Affiliation(s)
- Tal Bruck
- Stem Cell Unit, Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | | | | |
Collapse
|
9
|
Tomoda K, Takahashi K, Leung K, Okada A, Narita M, Yamada NA, Eilertson KE, Tsang P, Baba S, White MP, Sami S, Srivastava D, Conklin BR, Panning B, Yamanaka S. Derivation conditions impact X-inactivation status in female human induced pluripotent stem cells. Cell Stem Cell 2012; 11:91-9. [PMID: 22770243 DOI: 10.1016/j.stem.2012.05.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 04/19/2012] [Accepted: 05/15/2012] [Indexed: 11/19/2022]
Abstract
Female human induced pluripotent stem cell (hiPSC) lines exhibit variability in X-inactivation status. The majority of hiPSC lines maintain one transcriptionally active X (Xa) and one inactive X (Xi) chromosome from donor cells. However, at low frequency, hiPSC lines with two Xas are produced, suggesting that epigenetic alterations of the Xi occur sporadically during reprogramming. We show here that X-inactivation status in female hiPSC lines depends on derivation conditions. hiPSC lines generated by the Kyoto method (retroviral or episomal reprogramming), which uses leukemia inhibitory factor (LIF)-expressing SNL feeders, frequently had two Xas. Early passage Xa/Xi hiPSC lines generated on non-SNL feeders were converted into Xa/Xa hiPSC lines after several passages on SNL feeders, and supplementation with recombinant LIF caused reactivation of some of X-linked genes. Thus, feeders are a significant factor affecting X-inactivation status. The efficient production of Xa/Xa hiPSC lines provides unprecedented opportunities to understand human X-reactivation and -inactivation.
Collapse
Affiliation(s)
- Kiichiro Tomoda
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Oates RD. The natural history of endocrine function and spermatogenesis in Klinefelter syndrome: what the data show. Fertil Steril 2012; 98:266-73. [PMID: 22846647 DOI: 10.1016/j.fertnstert.2012.06.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/18/2012] [Accepted: 06/18/2012] [Indexed: 01/18/2023]
Abstract
Once thought to be a chromosomal aberration associated with absolute sterility, Klinefelter syndrome may now be potentially treatable by testicular sperm retrieval coupled with intracytoplasmic sperm injection. With these therapeutic advances, azoospermic 47,XXY men now may have an opportunity for biological paternity. However, our knowledge of the basic mechanisms underlying germ cell loss and Leydig cell compromise is lagging, and is just now beginning to evolve and provide answers to some of the field's most vexing questions: how to maximize and preserve fertility in Klinefelter males many years or even decades before they wish to actively pursue fatherhood. This article reviews the development of the androgenic and spermatogenic compartments of the Klinefelter testis through puberty, and recommends that it is only with a clear understanding of the basic facts that a rational, considered approach to fertility optimization and preservation can be determined.
Collapse
Affiliation(s)
- Robert D Oates
- School of Medicine, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
11
|
Mortensen KH, Andersen NH, Gravholt CH. Cardiovascular phenotype in Turner syndrome--integrating cardiology, genetics, and endocrinology. Endocr Rev 2012; 33:677-714. [PMID: 22707402 DOI: 10.1210/er.2011-1059] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease is emerging as a cardinal trait of Turner syndrome, being responsible for half of the 3-fold excess mortality. Turner syndrome has been proposed as an independent risk marker for cardiovascular disease that manifests as congenital heart disease, aortic dilation and dissection, valvular heart disease, hypertension, thromboembolism, myocardial infarction, and stroke. Risk stratification is unfortunately not straightforward because risk markers derived from the general population inadequately identify the subset of females with Turner syndrome who will suffer events. A high prevalence of endocrine disorders adds to the complexity, exacerbating cardiovascular prognosis. Mounting knowledge about the prevalence and interplay of cardiovascular and endocrine disease in Turner syndrome is paralleled by improved understanding of the genetics of the X-chromosome in both normal health and disease. At present in Turner syndrome, this is most advanced for the SHOX gene, which partly explains the growth deficit. This review provides an up-to-date condensation of current state-of-the-art knowledge in Turner syndrome, the main focus being cardiovascular morbidity and mortality. The aim is to provide insight into pathogenesis of Turner syndrome with perspectives to advances in the understanding of genetics of the X-chromosome. The review also incorporates important endocrine features, in order to comprehensively explain the cardiovascular phenotype and to highlight how raised attention to endocrinology and genetics is important in the identification and modification of cardiovascular risk.
Collapse
Affiliation(s)
- Kristian H Mortensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8000 Aarhus, Denmark
| | | | | |
Collapse
|
12
|
Tachibana M, Ma H, Sparman ML, Lee HS, Ramsey CM, Woodward JS, Sritanaudomchai H, Masterson KR, Wolff EE, Jia Y, Mitalipov SM. X-chromosome inactivation in monkey embryos and pluripotent stem cells. Dev Biol 2012; 371:146-55. [PMID: 22935618 DOI: 10.1016/j.ydbio.2012.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/26/2012] [Accepted: 08/14/2012] [Indexed: 10/28/2022]
Abstract
Inactivation of one X chromosome in female mammals (XX) compensates for the reduced dosage of X-linked gene expression in males (XY). However, the inner cell mass (ICM) of mouse preimplantation blastocysts and their in vitro counterparts, pluripotent embryonic stem cells (ESCs), initially maintain two active X chromosomes (XaXa). Random X chromosome inactivation (XCI) takes place in the ICM lineage after implantation or upon differentiation of ESCs, resulting in mosaic tissues composed of two cell types carrying either maternal or paternal active X chromosomes. While the status of XCI in human embryos and ICMs remains unknown, majority of human female ESCs show non-random XCI. We demonstrate here that rhesus monkey ESCs also display monoallelic expression and methylation of X-linked genes in agreement with non-random XCI. However, XIST and other X-linked genes were expressed from both chromosomes in isolated female monkey ICMs indicating that ex vivo pluripotent cells retain XaXa. Intriguingly, the trophectoderm (TE) in preimplantation monkey blastocysts also expressed X-linked genes from both alleles suggesting that, unlike the mouse, primate TE lineage does not support imprinted paternal XCI. Our results provide insights into the species-specific nature of XCI in the primate system and reveal fundamental epigenetic differences between in vitro and ex vivo primate pluripotent cells.
Collapse
Affiliation(s)
- Masahito Tachibana
- Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, OR 97006, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bermejo-Alvarez P, Ramos-Ibeas P, Gutierrez-Adan A. Solving the "X" in embryos and stem cells. Stem Cells Dev 2012; 21:1215-24. [PMID: 22309156 DOI: 10.1089/scd.2011.0685] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
X-chromosome inactivation (XCI) is a complex epigenetic process that ensures that most X-linked genes are expressed equally for both sexes. Female eutherian mammals inactivate randomly the maternal or paternal inherited X-chromosome early in embryogenesis, whereas the extra-embryonic tissues experience an imprinting XCI that results in the inactivation of the paternal X-chromosome in mice. Although the phenomenon was initially described 40 years ago, many aspects remain obscure. In the last 2 years, some trademark publications have shed new light on the ongoing debate regarding the timing and mechanism of imprinted or random XCI. It has been observed that XCI is not accomplished at the blastocyst stage in bovines, rabbits, and humans, contrasting with the situation reported in mice, the standard model. All the species present 2 active X-chromosomes (Xa) in the early epiblast of the blastocyst, the cellular source for embryonic stem cells (ESCs). In this perspective, it would make sense to expect an absence of XCI in undifferentiated ESCs, but human ESCs are highly heterogeneous for this parameter and the presence of 2 Xa has been proposed as a true hallmark of ground-state pluripotency and a quality marker for female ESCs. Similarly, XCI reversal in female induced pluripotent stem cells is a key reprogramming event on the path to achieve the naïve pluripotency, and key pluripotency regulators can interact directly or indirectly with Xist. Finally, the presence of 2 Xa may lead to a sex-specific transcriptional regulation resulting in sexual dimorphism in reprogramming and differentiation.
Collapse
|
14
|
Cheung AYL, Horvath LM, Carrel L, Ellis J. X-chromosome inactivation in rett syndrome human induced pluripotent stem cells. Front Psychiatry 2012; 3:24. [PMID: 22470355 PMCID: PMC3311266 DOI: 10.3389/fpsyt.2012.00024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/05/2012] [Indexed: 12/20/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder that affects girls due primarily to heterozygous mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MECP2). Random X-chromosome inactivation (XCI) results in cellular mosaicism in which some cells express wild-type (WT) MECP2 while other cells express mutant MECP2. The generation of patient-specific human induced pluripotent stem cells (hiPSCs) facilitates the production of RTT-hiPSC-derived neurons in vitro to investigate disease mechanisms and identify novel drug treatments. The generation of RTT-hiPSCs has been reported by many laboratories, however, the XCI status of RTT-hiPSCs has been inconsistent. Some report RTT-hiPSCs retain the inactive X-chromosome (post-XCI) of the founder somatic cell allowing isogenic RTT-hiPSCs that express only the WT or mutant MECP2 allele to be isolated from the same patient. Post-XCI RTT-hiPSCs-derived neurons retain this allele-specific expression pattern of WT or mutant MECP2. Conversely, others report RTT-hiPSCs in which the inactive X-chromosome of the founder somatic cell reactivates (pre-XCI) upon reprogramming into RTT-hiPSCs. Pre-XCI RTT-hiPSC-derived neurons exhibit random XCI resulting in cellular mosaicism with respect to WT and mutant MECP2 expression. Here we review and attempt to interpret the inconsistencies in XCI status of RTT-hiPSCs generated to date by comparison to other pluripotent systems in vitro and in vivo and the methods used to analyze XCI. Finally, we discuss the relative strengths and weaknesses of post- and pre-XCI hiPSCs in the context of RTT, and other X-linked and autosomal disorders for translational medicine.
Collapse
Affiliation(s)
- Aaron Y L Cheung
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Toronto, ON, Canada
| | | | | | | |
Collapse
|