1
|
Chen C, Zhou H, Fu F, Huang R, Wang Y, Guo F, Ma C, Li F, Wang D, Yu Q, Lu Y, Chen G, Lei T, Li R. Genetic burden in neonatal and pediatric-onset pulmonary hypertension: A single-center retrospective study using exome sequencing in a Chinese population. Pediatr Neonatol 2024:S1875-9572(24)00194-3. [PMID: 39542781 DOI: 10.1016/j.pedneo.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 11/17/2024] Open
Abstract
OBJECTIVE This single-center retrospective study aimed to investigate the genetic factors contributing to neonatal and pediatric pulmonary hypertension in a Chinese population using trio whole-exome sequencing (trio-WES). METHOD This retrospective analysis reviewed the clinical and genetic profiles of children under 18 years of age diagnosed with pulmonary hypertension between March 2017 and March 2022. The diagnosis of pediatric pulmonary hypertension was confirmed through echocardiography and catheterization. Trio-WES was performed on the patients and their parents after obtaining informed consent. RESULTS A total of 51 children with neonatal and pediatric pulmonary hypertension were included, comprising 20 with pediatric pulmonary arterial hypertension and 31 with persistent pulmonary hypertension of the newborn. Trio-WES detected 16 pathogenic or likely pathogenic variants in 14 patients across ten genes, including: BMPR2 (n = 2), CHD7 (n = 2), FOXF1 (n = 2), MED13L (n = 1), TNNI3 (n = 2), ALMS1 (n = 1), KMT2D (n = 2), NKX2-1 (n = 1), NONO (n = 1), and CACNA1E (n = 1). In addition, two patients exhibited de novo pathogenic copy number variations. CONCLUSION Our findings demonstrate the significant diagnostic value of trio-WES in pediatric pulmonary hypertension, supporting its recommendation for these patients.
Collapse
Affiliation(s)
- Chen Chen
- Respiratory Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China; Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hang Zhou
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fang Fu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ruibin Huang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - You Wang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fei Guo
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chunlin Ma
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fucheng Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dan Wang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiuxia Yu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yan Lu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guilan Chen
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tingying Lei
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ru Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Rodríguez García C, López Valdivia C, Ferrer Lozano J, Mancheño Franch N. Alveolar capillary dysplasia with misalignment of the pulmonary veins: A surgical lung biopsy and autopsy in a full-term newborn. REVISTA ESPANOLA DE PATOLOGIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ANATOMIA PATOLOGICA Y DE LA SOCIEDAD ESPANOLA DE CITOLOGIA 2024; 57:305-308. [PMID: 39393900 DOI: 10.1016/j.patol.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 10/13/2024]
Abstract
Alveolar capillary dysplasia with misalignment of the pulmonary veins (ACD/MPV) is a rare and lethal interstitial lung disorder, caused by a congenital abnormality affecting the development of the parenchyma and pulmonary vessels. We report the case of a newborn at the end of 40 weeks of pregnancy, who showed no cardiopulmonary anomalies in prenatal control ultrasounds. However, after delivery, pulmonary hypertension and hypoxemic respiratory failure became apparent. She died after 12 days from refractory hemodynamic and respiratory failure despite intensive therapy. A surgical lung biopsy and clinical autopsy were performed, both revealing the same histopathological signs consistent with this disorder. In our case, the findings of digestive and genital malformations, together with the genetic result of the alteration in the FOXF1 gene, led us to conclude the definitive diagnosis of alveolar capillary dysplasia.
Collapse
Affiliation(s)
| | - Cecilia López Valdivia
- Servicio de Anatomía Patológica, Hospital Universitari i Politècnic La Fe, València, Spain
| | - Jaime Ferrer Lozano
- Servicio de Anatomía Patológica, Hospital Universitari i Politècnic La Fe, València, Spain
| | - Nuria Mancheño Franch
- Servicio de Anatomía Patológica, Hospital Universitari i Politècnic La Fe, València, Spain
| |
Collapse
|
3
|
Gomez-Arroyo J, Houweling AC, Bogaard HJ, Aman J, Kitzmiller JA, Porollo A, Dooijes D, Meijboom LJ, Hale P, Pauciulo MW, Hong J, Zhu N, Welch C, Shen Y, Zacharias WJ, McCormack FX, Aldred MA, Weirauch MT, Graf S, Rhodes C, Chung WK, Whitsett JA, Martin LJ, Kalinichenko VV, Nichols WC. Role of Forkhead box F1 in the Pathobiology of Pulmonary Arterial Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.611448. [PMID: 39345371 PMCID: PMC11429893 DOI: 10.1101/2024.09.18.611448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Rationale Approximately 80% of patients with non-familial pulmonary arterial hypertension (PAH) lack identifiable pathogenic genetic variants. While most genetic studies of PAH have focused on predicted loss-of-function variants, recent approaches have identified ultra-rare missense variants associated with the disease. FOXF1 encodes a highly conserved transcription factor, essential for angiogenesis and vasculogenesis in human and mouse lungs. Objectives We identified a rare FOXF1 missense coding variant in two unrelated probands with PAH. FOXF1 is an evolutionarily conserved transcription factor required for lung vascular development and vascular integrity. Our aims were to determine the frequency of FOXF1 variants in larger PAH cohorts compared to the general population, study FOXF1 expression in explanted lung tissue from PAH patients versus control (failed-donor) lungs, and define potential downstream targets linked to PAH development. Methods Three independent, international, multicenter cohorts were analyzed to evaluate the frequency of FOXF1 rare variants. Various composite prediction models assessed the deleteriousness of individual variants. Bulk RNA sequencing datasets from human explanted lung tissues were compared to failed-donor controls to determine FOXF1 expression. Bioinformatic tools identified putative FOXF1 binding targets, which were orthogonally validated using mouse ChIP-seq datasets. Measurements and Main Results Seven novel or ultra-rare missense coding variants were identified across three patient cohorts in different regions of the FOXF1 gene, including the DNA binding domain. FOXF1 expression was dysregulated in PAH lungs, correlating with disease severity. Histological analysis showed heterogeneous FOXF1 expression, with the lowest levels in phenotypically abnormal endothelial cells within complex vascular lesions in PAH samples. A hybrid bioinformatic approach identified FOXF1 downstream targets potentially involved in PAH pathogenesis, including BMPR2 . Conclusions Large genomic and transcriptomic datasets suggest that decreased FOXF1 expression or predicted dysfunction is associated with PAH.
Collapse
|
4
|
Kuklinski CA, Blatter JA. Interstitial lung disease as an indication for pediatric lung transplant. Pediatr Pulmonol 2024; 59:2313-2320. [PMID: 38131509 DOI: 10.1002/ppul.26812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 11/09/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Interstitial lung disease can be an indication for lung transplant at any age, but it is a particularly common indication for lung transplant in infants. Nevertheless, not all interstitial lung diseases will lead to lung transplant in childhood. Genetic testing has aided the identification of these diseases in children. In severely affected patients, however, definitive diagnosis is not always necessary to consider referral to a transplant center. At experienced transplant centers, a multidisciplinary team educates patient families and aids in the transplant evaluation of children with interstitial lung disease. Children who have undergone transplant require lifetime immunosuppression and close surveillance, but can enjoy good quality of life for years following surgery.
Collapse
Affiliation(s)
- Cadence A Kuklinski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joshua A Blatter
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Gazeu A, Collardeau-Frachon S. Practical Approach to Congenital Anomalies of the Kidneys: Focus on Anomalies With Insufficient or Abnormal Nephron Development: Renal Dysplasia, Renal Hypoplasia, and Renal Tubular Dysgenesis. Pediatr Dev Pathol 2024; 27:459-493. [PMID: 39270126 DOI: 10.1177/10935266241239241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) accounts for up to 30% of antenatal congenital anomalies and is the main cause of kidney failure in children worldwide. This review focuses on practical approaches to CAKUT, particularly those with insufficient or abnormal nephron development, such as renal dysplasia, renal hypoplasia, and renal tubular dysgenesis. The review provides insights into the histological features, pathogenesis, mechanisms, etiologies, antenatal and postnatal presentation, management, and prognosis of these anomalies. Differential diagnoses are discussed as several syndromes may include CAKUT as a phenotypic component and renal dysplasia may occur in some ciliopathies, tumor predisposition syndromes, and inborn errors of metabolism. Diagnosis and genetic counseling for CAKUT are challenging, due to the extensive variability in presentation, genetic and phenotypic heterogeneity, and difficulties to assess postnatal lung and renal function on prenatal imaging. The review highlights the importance of perinatal autopsy and pathological findings in surgical specimens to establish the diagnosis and prognosis of CAKUT. The indications and the type of genetic testing are discussed. The aim is to provide essential insights into the practical approaches, diagnostic processes, and genetic considerations offering valuable guidance for pediatric and perinatal pathologists.
Collapse
Affiliation(s)
- Alexia Gazeu
- Department of pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, University Hospital of Lyon, Lyon Bron, France
- Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
| | - Sophie Collardeau-Frachon
- Department of pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, University Hospital of Lyon, Lyon Bron, France
- Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
- Société française de Fœtopathologie, Soffoet, Paris, France
| |
Collapse
|
6
|
Deutsch GH, Young LR. Lung biopsy in the diagnosis and management of chILD. Pediatr Pulmonol 2024; 59:2298-2312. [PMID: 37154500 DOI: 10.1002/ppul.26454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
Children's interstitial and diffuse lung disease (chILD) comprises a large number of diverse entities ranging from disorders of lung development, maturation and function unique in infancy to immune-mediated, environmental, vascular and other conditions overlapping with adult disease. Pathologic evaluation of the lung has played a central role in characterizing many of these disorders, resulting in revised nomenclature and classifications to help guide clinical management(1-4). Technological advancements are rapidly uncovering genetic and molecular underpinnings of these conditions, as well as widening the phenotypes which bridge adult disease, often reducing the perceived need for diagnostic lung biopsy. As such the decision to get a lung biopsy in chILD is frequently for rapid ascertainment of disease in a critically ill child or when clinical presentation, imaging and laboratory studies fail to provide a cohesive diagnosis needed for treatment. While there have been modifications in surgical procedures for lung biopsy that minimize postoperative morbidity, it remains a high-risk invasive procedure, especially in a medically complex patient(5). Thus, it is essential that the lung biopsy be handled properly to maximize diagnostic yield, including close communication between the clinician, radiologist, surgeon, and pathologist before biopsy to determine best sampling site(s) and prioritization of tissue utilization. This review provides an overview of optimal handling and evaluation of a surgical lung biopsy for suspected chILD, with emphasis on specific conditions in which pathologic features play a critical role in providing an integrated diagnosis and guiding management.
Collapse
Affiliation(s)
- Gail H Deutsch
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle Children's Hospital, Department of Laboratories, Seattle, Washington, USA
| | - Lisa R Young
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
El-Atawi K, Abdul Wahab MG, Alallah J, Osman MF, Hassan M, Siwji Z, Saleh M. Beyond Bronchopulmonary Dysplasia: A Comprehensive Review of Chronic Lung Diseases in Neonates. Cureus 2024; 16:e64804. [PMID: 39156276 PMCID: PMC11329945 DOI: 10.7759/cureus.64804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
In neonates, pulmonary diseases such as bronchopulmonary dysplasia and other chronic lung diseases (CLDs) pose significant challenges due to their complexity and high degree of morbidity and mortality. This review discusses the etiology, pathophysiology, clinical presentation, and diagnostic criteria for these conditions, as well as current management strategies. The review also highlights recent advancements in understanding the pathophysiology of these diseases and evolving strategies for their management, including gene therapy and stem cell treatments. We emphasize how supportive care is useful in managing these diseases and underscore the importance of a multidisciplinary approach. Notably, we discuss the emerging role of personalized medicine, enabled by advances in genomics and precision therapeutics, in tailoring therapy according to an individual's genetic, biochemical, and lifestyle factors. We conclude with a discussion on future directions in research and treatment, emphasizing the importance of furthering our understanding of these conditions, improving diagnostic criteria, and exploring targeted treatment modalities. The review underscores the need for multicentric and longitudinal studies to improve preventative strategies and better understand long-term outcomes. Ultimately, a comprehensive, innovative, and patient-centered approach can enhance the quality of care and outcomes for neonates with CLDs.
Collapse
Affiliation(s)
| | | | - Jubara Alallah
- Neonatology, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Neonatology, King Abdulaziz Medical City, Ministry of National Guard - Health Affairs, Jeddah, SAU
| | | | | | | | - Maysa Saleh
- Pediatrics and Child Health, Al Jalila Children's Specialty Hospital, Dubai, ARE
| |
Collapse
|
8
|
Wang G, Wen B, Guo M, Li E, Zhang Y, Whitsett JA, Kalin TV, Kalinichenko VV. Identification of endothelial and mesenchymal FOXF1 enhancers involved in alveolar capillary dysplasia. Nat Commun 2024; 15:5233. [PMID: 38898031 PMCID: PMC11187179 DOI: 10.1038/s41467-024-49477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Mutations in the FOXF1 gene, a key transcriptional regulator of pulmonary vascular development, cause Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins, a lethal lung disease affecting newborns and infants. Identification of new FOXF1 upstream regulatory elements is critical to explain why frequent non-coding FOXF1 deletions are linked to the disease. Herein, we use multiome single-nuclei RNA and ATAC sequencing of mouse and human patient lungs to identify four conserved endothelial and mesenchymal FOXF1 enhancers. We demonstrate that endothelial FOXF1 enhancers are autoactivated, whereas mesenchymal FOXF1 enhancers are regulated by EBF1 and GLI1. The cell-specificity of FOXF1 enhancers is validated by disrupting these enhancers in mouse embryonic stem cells using CRISPR/Cpf1 genome editing followed by lineage-tracing of mutant embryonic stem cells in mouse embryos using blastocyst complementation. This study resolves an important clinical question why frequent non-coding FOXF1 deletions that interfere with endothelial and mesenchymal enhancers can lead to the disease.
Collapse
Affiliation(s)
- Guolun Wang
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Bingqiang Wen
- Phoenix Children's Research Institute, Department of Child Health, University of Arizona, College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Minzhe Guo
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Enhong Li
- Phoenix Children's Research Institute, Department of Child Health, University of Arizona, College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Yufang Zhang
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Jeffrey A Whitsett
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tanya V Kalin
- Phoenix Children's Research Institute, Department of Child Health, University of Arizona, College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Vladimir V Kalinichenko
- Phoenix Children's Research Institute, Department of Child Health, University of Arizona, College of Medicine - Phoenix, Phoenix, AZ, USA.
- Division of Neonatology, Phoenix Children's Hospital, Phoenix, AZ, USA.
| |
Collapse
|
9
|
Danhaive O, Galambos C, Lakshminrusimha S, Abman SH. Pulmonary Hypertension in Developmental Lung Diseases. Clin Perinatol 2024; 51:217-235. [PMID: 38325943 DOI: 10.1016/j.clp.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Diverse genetic developmental lung diseases can present in the neonatal period with hypoxemic respiratory failure, often associated with with pulmonary hypertension. Intractable hypoxemia and lack of sustained response to medical management should increase the suspicion of a developmental lung disorder. Genetic diagnosis and lung biopsy are helpful in establishing the diagnosis. Early diagnosis can result in optimizing management and redirecting care if needed. This article reviews normal lung development, various developmental lung disorders that can result from genetic abnormalities at each stage of lung development, their clinical presentation, management, prognosis, and differential diagnoses.
Collapse
Affiliation(s)
- Olivier Danhaive
- Division of Neonatology, Saint-Luc University Hospital, UCLouvain, Avenue Hippocrate 10, B-1200 Brussels, Belgium; Department of Pediatrics, University of California San Francisco, 530 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - Csaba Galambos
- Department of Pathology and Laboratory Medicine, University of Colorado Anschutz School of Medicine, 13001 East 17th Place, Aurora, CO 80045, USA
| | - Satyan Lakshminrusimha
- Department of Pediatrics, University of California, UC Davis Children's Hospital, 2516 Stockton Boulevard, Sacramento CA 95817, USA
| | - Steven H Abman
- Department of Pediatrics, The Pediatric Heart Lung Center, University of Colorado Anschutz Medical Campus, Mail Stop B395, 13123 East 16th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
10
|
Miao Y, Tan C, Pek NM, Yu Z, Iwasawa K, Kechele DO, Sundaram N, Pastrana-Gomez V, Kishimoto K, Yang MC, Jiang C, Tchieu J, Whitsett JA, McCracken KW, Rottier RJ, Kotton DN, Helmrath MA, Wells JM, Takebe T, Zorn AM, Chen YW, Guo M, Gu M. Deciphering Endothelial and Mesenchymal Organ Specification in Vascularized Lung and Intestinal Organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.577460. [PMID: 38370768 PMCID: PMC10871227 DOI: 10.1101/2024.02.06.577460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
To investigate the co-development of vasculature, mesenchyme, and epithelium crucial for organogenesis and the acquisition of organ-specific characteristics, we constructed a human pluripotent stem cell-derived organoid system comprising lung or intestinal epithelium surrounded by organotypic mesenchyme and vasculature. We demonstrated the pivotal role of co-differentiating mesoderm and endoderm via precise BMP regulation in generating multilineage organoids and gut tube patterning. Single-cell RNA-seq analysis revealed organ specificity in endothelium and mesenchyme, and uncovered key ligands driving endothelial specification in the lung (e.g., WNT2B and Semaphorins) or intestine (e.g., GDF15). Upon transplantation under the kidney capsule in mice, these organoids further matured and developed perfusable human-specific sub-epithelial capillaries. Additionally, our model recapitulated the abnormal endothelial-epithelial crosstalk in patients with FOXF1 deletion or mutations. Multilineage organoids provide a unique platform to study developmental cues guiding endothelial and mesenchymal cell fate determination, and investigate intricate cell-cell communications in human organogenesis and disease. Highlights BMP signaling fine-tunes the co-differentiation of mesoderm and endoderm.The cellular composition in multilineage organoids resembles that of human fetal organs.Mesenchyme and endothelium co-developed within the organoids adopt organ-specific characteristics.Multilineage organoids recapitulate abnormal endothelial-epithelial crosstalk in FOXF1-associated disorders.
Collapse
|
11
|
Kamp JC, Neubert L, Schupp JC, Braubach P, Wrede C, Laenger F, Salditt T, Reichmann J, Welte T, Ruhparwar A, Ius F, Schwerk N, Bergmann AK, von Hardenberg S, Griese M, Rapp C, Olsson KM, Fuge J, Park DH, Hoeper MM, Jonigk DD, Knudsen L, Kuehnel MP. Multilamellated Basement Membranes in the Capillary Network of Alveolar Capillary Dysplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:180-194. [PMID: 38029923 DOI: 10.1016/j.ajpath.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
A minimal diffusion barrier is key to the pulmonary gas exchange. In alveolar capillary dysplasia (ACD), a rare genetically driven disease of early infancy, this crucial fibrovascular interface is compromised while the underlying pathophysiology is insufficiently understood. Recent in-depth analyses of vascular alterations in adult lung disease encouraged researchers to extend these studies to ACD and compare the changes of the microvasculature. Lung tissue samples of children with ACD (n = 12), adults with non-specific interstitial pneumonia (n = 12), and controls (n = 20) were studied using transmission electron microscopy, single-gene sequencing, immunostaining, exome sequencing, and broad transcriptome profiling. In ACD, pulmonary capillary basement membranes were hypertrophied, thickened, and multilamellated. Transcriptome profiling revealed increased CDH5, COL4A1, COL15A1, PTK2B, and FN1 and decreased VIT expression, confirmed by immunohistochemistry. In contrast, non-specific interstitial pneumonia samples showed a regular basement membrane architecture with preserved VIT expression but also increased COL15A1+ vessels. This study provides insight into the ultrastructure and pathophysiology of ACD. The lack of normally developed lung capillaries appeared to cause a replacement by COL15A1+ vessels, a mechanism recently described in interstitial lung disease. The VIT loss and FN1 overexpression might contribute to the unique appearance of basement membranes in ACD. Future studies are needed to explore the therapeutic potential of down-regulating the expression of FN1 and balancing VIT deficiency.
Collapse
Affiliation(s)
- Jan C Kamp
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany.
| | - Lavinia Neubert
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Jonas C Schupp
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Peter Braubach
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Christoph Wrede
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Florian Laenger
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Tim Salditt
- Institute of X-Ray Physics, University of Göttingen, Göttingen, Germany
| | - Jakob Reichmann
- Institute of X-Ray Physics, University of Göttingen, Göttingen, Germany
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Arjang Ruhparwar
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Fabio Ius
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Nicolaus Schwerk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Clinic for Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anke K Bergmann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Matthias Griese
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital of Ludwig Maximilian University Munich, German Center for Lung Research, Munich, Germany
| | - Christina Rapp
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital of Ludwig Maximilian University Munich, German Center for Lung Research, Munich, Germany
| | - Karen M Olsson
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Jan Fuge
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Da-Hee Park
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Marius M Hoeper
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Danny D Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, University of Aachen, Aachen, Germany
| | - Lars Knudsen
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Mark P Kuehnel
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, University of Aachen, Aachen, Germany
| |
Collapse
|
12
|
Brady S, Krishnan U, Saqi A, Vargas D. Twins with alveolar capillary dysplasia with misalignment of pulmonary veins: Strategies for diagnosis and management. J Neonatal Perinatal Med 2024; 17:147-152. [PMID: 38251067 DOI: 10.3233/npm-230085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
We present a case of dichorionic-diamniotic twin females who developed hypoxemic respiratory failure. They were ultimately diagnosed by lung biopsy with alveolar capillary dysplasia with misalignment of pulmonary veins. This case highlights a practical approach to reaching a diagnosis in infants with suspected developmental lung disease.
Collapse
Affiliation(s)
- S Brady
- Department of Pediatrics, New York Presbyterian-Morgan Stanley Children's Hospital, Columbia University Irving Medical Center, New York, NY, USA
| | - U Krishnan
- Department of Pediatrics, New York Presbyterian-Morgan Stanley Children's Hospital, Columbia University Irving Medical Center, New York, NY, USA
| | - A Saqi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - D Vargas
- Department of Pediatrics, New York Presbyterian-Morgan Stanley Children's Hospital, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
13
|
Isobe S, Nair RV, Kang HY, Wang L, Moonen JR, Shinohara T, Cao A, Taylor S, Otsuki S, Marciano DP, Harper RL, Adil MS, Zhang C, Lago-Docampo M, Körbelin J, Engreitz JM, Snyder MP, Rabinovitch M. Reduced FOXF1 links unrepaired DNA damage to pulmonary arterial hypertension. Nat Commun 2023; 14:7578. [PMID: 37989727 PMCID: PMC10663616 DOI: 10.1038/s41467-023-43039-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/30/2023] [Indexed: 11/23/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease in which pulmonary arterial (PA) endothelial cell (EC) dysfunction is associated with unrepaired DNA damage. BMPR2 is the most common genetic cause of PAH. We report that human PAEC with reduced BMPR2 have persistent DNA damage in room air after hypoxia (reoxygenation), as do mice with EC-specific deletion of Bmpr2 (EC-Bmpr2-/-) and persistent pulmonary hypertension. Similar findings are observed in PAEC with loss of the DNA damage sensor ATM, and in mice with Atm deleted in EC (EC-Atm-/-). Gene expression analysis of EC-Atm-/- and EC-Bmpr2-/- lung EC reveals reduced Foxf1, a transcription factor with selectivity for lung EC. Reducing FOXF1 in control PAEC induces DNA damage and impaired angiogenesis whereas transfection of FOXF1 in PAH PAEC repairs DNA damage and restores angiogenesis. Lung EC targeted delivery of Foxf1 to reoxygenated EC-Bmpr2-/- mice repairs DNA damage, induces angiogenesis and reverses pulmonary hypertension.
Collapse
Affiliation(s)
- Sarasa Isobe
- Basic Science and Engineering (BASE) Initiative at the Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ramesh V Nair
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Helen Y Kang
- Basic Science and Engineering (BASE) Initiative at the Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lingli Wang
- Basic Science and Engineering (BASE) Initiative at the Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jan-Renier Moonen
- Basic Science and Engineering (BASE) Initiative at the Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tsutomu Shinohara
- Basic Science and Engineering (BASE) Initiative at the Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aiqin Cao
- Basic Science and Engineering (BASE) Initiative at the Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shalina Taylor
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shoichiro Otsuki
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - David P Marciano
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Rebecca L Harper
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mir S Adil
- Basic Science and Engineering (BASE) Initiative at the Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chongyang Zhang
- Basic Science and Engineering (BASE) Initiative at the Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mauro Lago-Docampo
- Basic Science and Engineering (BASE) Initiative at the Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jesse M Engreitz
- Basic Science and Engineering (BASE) Initiative at the Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P Snyder
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Marlene Rabinovitch
- Basic Science and Engineering (BASE) Initiative at the Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA.
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
14
|
Edel GG, Hol JA, Slot E, von der Thüsen JH, van Bever Y, de Jonge RCJ, van Tienhoven M, Brüggenwirth HT, de Klein A, Rottier RJ. Clinical Relevance of Rapid FOXF1-Targeted Sequencing in Patients Suspected of Alveolar Capillary Dysplasia With Misalignment of Pulmonary Veins. J Transl Med 2023; 103:100233. [PMID: 37567389 DOI: 10.1016/j.labinv.2023.100233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal congenital lung disorder that presents shortly after birth with respiratory failure and therapy-resistant pulmonary hypertension. It is associated with heterozygous point mutations and genomic deletions that involve the FOXF1 gene or its upstream regulatory region. Patients are unresponsive to the intensive treatment regimens and suffer unnecessarily because ACDMPV is not always timely recognized and histologic diagnosis is invasive and time consuming. Here, we demonstrate the usefulness of a noninvasive, fast genetic test for FOXF1 variants that we previously developed to rapidly diagnose ACDMPV and reduce the time of hospitalization.
Collapse
Affiliation(s)
- Gabriëla G Edel
- Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Janna A Hol
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Evelien Slot
- Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands; Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Jan H von der Thüsen
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Yolande van Bever
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Rogier C J de Jonge
- Pediatric Intensive Care Unit, Department of Pediatrics and Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands.
| |
Collapse
|
15
|
Szafranski P, Garimella RP, Mani H, Hartman R, Deutsch G, Silk A, Benheim A, Stankiewicz P. Further refinement of the differentially methylated distant lung-specific FOXF1 enhancer in a neonate with alveolar capillary dysplasia. Clin Epigenetics 2023; 15:169. [PMID: 37865798 PMCID: PMC10589973 DOI: 10.1186/s13148-023-01587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023] Open
Abstract
Heterozygous SNVs or CNV deletions involving the FOXF1 gene, or its distant enhancer, are causative for 80-90% of cases of alveolar capillary dysplasia with misalignment of pulmonary veins. Recently, we proposed bimodal structure and parental functional dimorphism of the lung-specific FOXF1 enhancer, with Unit 1 having higher activity on the paternal chr16 and Unit 2 on the maternal chr16. Here, we describe a novel unusually sized pathogenic de novo copy-number variant deletion involving a portion of the FOXF1 enhancer on maternal chr16 that implies narrowing Unit 2 to an essential ~ 9-kb segment. Using a restrictase-based assay, we found that this enhancer segment is weakly methylated at ApT adenine, with about twice the frequency of methylation on the maternal versus paternal chr16. Our data provide further insight into the FOXF1 enhancer structure and function.
Collapse
Affiliation(s)
- Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, ABBR-R809, Houston, TX, 77030, USA
| | - Rijutha P Garimella
- Department of Pediatrics, Inova LJ Murphy Children's Hospital, Falls Church, VA, USA
| | - Haresh Mani
- Department of Pathology, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Ryan Hartman
- Inova Department of Genetics, Inova Fairfax Medical Campus, Falls Church, VA, USA
| | - Gail Deutsch
- University of Washington School of Medicine, Seattle, WA, USA
| | - Alan Silk
- Neonatology, Fairfax Neonatology Associates, Inova Fair Oaks Hospital, Inova LJ Murphy, Children's Hospital, Fairfax, VA, USA
| | - Alan Benheim
- Division of Pediatric Cardiology, Inova LJ Murphy Children's Hospital, Falls Church, VA, USA
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, ABBR-R809, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Szafranski P, Stankiewicz P. A Small De Novo CNV Deletion of the Paternal Copy of FOXF1, Leaving lncRNA FENDRR Intact, Provides Insight into Their Bidirectional Promoter Region. Noncoding RNA 2023; 9:61. [PMID: 37888207 PMCID: PMC10609350 DOI: 10.3390/ncrna9050061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Pathogenic single-nucleotide variants (SNVs) and copy-number variant (CNV) deletions involving the FOXF1 transcription factor gene or CNV deletions of its distant lung-specific enhancer are responsible for alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), a rarely diagnosed lethal lung developmental disorder in neonates. In contrast to SNVs within FOXF1 and CNV deletions involving only the FOXF1 enhancer, larger-sized deletions involving FOXF1 and the adjacent, oppositely oriented lncRNA gene FENDRR have additionally been associated with hypoplastic left heart syndrome and single umbilical artery (SUA). Here, in an ACDMPV infant without any congenital heart defect or SUA, we identified a small 5 kb CNV deletion that removed the paternal allele of FOXF1 and its promoter, leaving FENDRR and its promoter intact. Reporter assay in the IMR-90 fetal cell line implied that the deletion may indeed not have significantly affected FENDRR expression. It also showed a polarization of the FOXF1-FENDRR inter-promoter region consisting of its ability to increase the transcription of FENDRR but not FOXF1. Interestingly, this transcription-stimulating activity was suppressed in the presence of the FOXF1 promoter. Our data shed more light on the interactions between neighboring promoters of FOXF1-FENDRR and possibly other divergently transcribed mRNA-lncRNA gene pairs.
Collapse
Affiliation(s)
- Przemyslaw Szafranski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
17
|
Guo M, Wikenheiser-Brokamp KA, Kitzmiller JA, Jiang C, Wang G, Wang A, Preissl S, Hou X, Buchanan J, Karolak JA, Miao Y, Frank DB, Zacharias WJ, Sun X, Xu Y, Gu M, Stankiewicz P, Kalinichenko VV, Wambach JA, Whitsett JA. Single Cell Multiomics Identifies Cells and Genetic Networks Underlying Alveolar Capillary Dysplasia. Am J Respir Crit Care Med 2023; 208:709-725. [PMID: 37463497 PMCID: PMC10515568 DOI: 10.1164/rccm.202210-2015oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/18/2023] [Indexed: 07/20/2023] Open
Abstract
Rationale: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal developmental disorder of lung morphogenesis caused by insufficiency of FOXF1 (forkhead box F1) transcription factor function. The cellular and transcriptional mechanisms by which FOXF1 deficiency disrupts human lung formation are unknown. Objectives: To identify cell types, gene networks, and cell-cell interactions underlying the pathogenesis of ACDMPV. Methods: We used single-nucleus RNA and assay for transposase-accessible chromatin sequencing, immunofluorescence confocal microscopy, and RNA in situ hybridization to identify cell types and molecular networks influenced by FOXF1 in ACDMPV lungs. Measurements and Main Results: Pathogenic single-nucleotide variants and copy-number variant deletions involving the FOXF1 gene locus in all subjects with ACDMPV (n = 6) were accompanied by marked changes in lung structure, including deficient alveolar development and a paucity of pulmonary microvasculature. Single-nucleus RNA and assay for transposase-accessible chromatin sequencing identified alterations in cell number and gene expression in endothelial cells (ECs), pericytes, fibroblasts, and epithelial cells in ACDMPV lungs. Distinct cell-autonomous roles for FOXF1 in capillary ECs and pericytes were identified. Pathogenic variants involving the FOXF1 gene locus disrupt gene expression in EC progenitors, inhibiting the differentiation or survival of capillary 2 ECs and cell-cell interactions necessary for both pulmonary vasculogenesis and alveolar type 1 cell differentiation. Loss of the pulmonary microvasculature was associated with increased VEGFA (vascular endothelial growth factor A) signaling and marked expansion of systemic bronchial ECs expressing COL15A1 (collagen type XV α 1 chain). Conclusions: Distinct FOXF1 gene regulatory networks were identified in subsets of pulmonary endothelial and fibroblast progenitors, providing both cellular and molecular targets for the development of therapies for ACDMPV and other diffuse lung diseases of infancy.
Collapse
Affiliation(s)
- Minzhe Guo
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
- Department of Pediatrics and
| | - Kathryn A. Wikenheiser-Brokamp
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
- Division of Pathology and Laboratory Medicine
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Joseph A. Kitzmiller
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
| | - Cheng Jiang
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
| | - Guolun Wang
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
- Center for Lung Regenerative Medicine
| | - Allen Wang
- Center for Epigenomics & Department of Cellular & Molecular Medicine
| | - Sebastian Preissl
- Center for Epigenomics & Department of Cellular & Molecular Medicine
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Xiaomeng Hou
- Center for Epigenomics & Department of Cellular & Molecular Medicine
| | - Justin Buchanan
- Center for Epigenomics & Department of Cellular & Molecular Medicine
| | - Justyna A. Karolak
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Yifei Miao
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
- Division of Developmental Biology, and
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics and
| | - David B. Frank
- Penn-CHOP Lung Biology Institute and
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Cardiology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - William J. Zacharias
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
- Department of Pediatrics and
| | - Xin Sun
- Department of Pediatrics, and
- Department of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Yan Xu
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
- Division of Biomedical Informatics
- Department of Pediatrics and
| | - Mingxia Gu
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
- Division of Developmental Biology, and
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics and
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas; and
| | - Vladimir V. Kalinichenko
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
- Center for Lung Regenerative Medicine
- Department of Pediatrics and
| | - Jennifer A. Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children’s Hospital, St. Louis, Missouri
| | - Jeffrey A. Whitsett
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
- Department of Pediatrics and
| |
Collapse
|
18
|
Bzdęga K, Kutkowska-Kaźmierczak A, Deutsch GH, Plaskota I, Smyk M, Niemiec M, Barczyk A, Obersztyn E, Modzelewski J, Lipska I, Stankiewicz P, Gajecka M, Rydzanicz M, Płoski R, Szczapa T, Karolak JA. Prenatal Detection of a FOXF1 Deletion in a Fetus with ACDMPV and Hydronephrosis. Genes (Basel) 2023; 14:genes14030563. [PMID: 36980834 PMCID: PMC10048226 DOI: 10.3390/genes14030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by the arrest of fetal lung formation, resulting in neonatal death due to acute respiratory failure and pulmonary arterial hypertension. Heterozygous single-nucleotide variants or copy-number variant (CNV) deletions involving the FOXF1 gene and/or its lung-specific enhancer are found in the vast majority of ACDMPV patients. ACDMPV is often accompanied by extrapulmonary malformations, including the gastrointestinal, cardiac, or genitourinary systems. Thus far, most of the described ACDMPV patients have been diagnosed post mortem, based on histologic evaluation of the lung tissue and/or genetic testing. Here, we report a case of a prenatally detected de novo CNV deletion (~0.74 Mb) involving the FOXF1 gene in a fetus with ACDMPV and hydronephrosis. Since ACDMPV is challenging to detect by ultrasound examination, the more widespread implementation of prenatal genetic testing can facilitate early diagnosis, improve appropriate genetic counselling, and further management.
Collapse
Affiliation(s)
- Katarzyna Bzdęga
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | | | - Gail H. Deutsch
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Izabela Plaskota
- Department of Medical Genetics, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Marta Smyk
- Department of Medical Genetics, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Magdalena Niemiec
- Department of Medical Genetics, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Artur Barczyk
- Department of Medical Genetics, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Ewa Obersztyn
- Department of Medical Genetics, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Jan Modzelewski
- 1st Clinic of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland
| | - Iwona Lipska
- Department of Pathomorphology, Wolski Hospital, 01-211 Warsaw, Poland
| | - Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marzena Gajecka
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Małgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Tomasz Szczapa
- II Department of Neonatology, Neonatal Biophysical Monitoring and Cardiopulmonary Therapies Research Unit, Poznan University of Medical Science, 60-535 Poznan, Poland
| | - Justyna A. Karolak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Correspondence:
| |
Collapse
|
19
|
Rose AT, Keene S. Changing populations being treated with ECMO in the neonatal period - who are the others? Semin Fetal Neonatal Med 2022; 27:101402. [PMID: 36414493 DOI: 10.1016/j.siny.2022.101402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Extracorporeal life support via extracorporeal membrane oxygenation (ECMO) has served the sickest of neonates for almost 50 years. Naturally, the characteristics of neonates receiving ECMO have changed. Advances in care have averted the need for ECMO for some, while complex cases with uncertain outcomes, previously not eligible for ECMO, are now considered. Characterizing the disease states and outcomes for neonates on ECMO is challenging as many infants do not fall into classic categories, i.e. meconium aspiration syndrome (MAS), respiratory distress syndrome (RDS), or congenital diaphragmatic hernia (CDH). Since 2017, over one third of neonatal respiratory ECMO runs reported to the Extracorporeal Life Support Organization Registry are grouped as Other, a catch-all that encompasses those with a diagnosis not included in the classic categories. This review summarizes the historical neonatal ECMO population, reviews advances in therapy and technology impacting neonatal care, and addresses the unknowns in the ever-growing category of Other.
Collapse
Affiliation(s)
- Allison T Rose
- Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, NE, Atlanta, GA, 30322, USA.
| | - Sarah Keene
- Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, NE, Atlanta, GA, 30322, USA.
| |
Collapse
|
20
|
Wang X, Guo L, Zhang B, Wu J, Sun Y, Tao H, Sha J, Zhai J, Liu M. Haploinsufficiencies of FOXF1, FOXC2 and FOXL1 genes originated from deleted 16q24.1q24.2 fragment related with alveolar capillary dysplasia with misalignment of pulmonary veins and lymphedema-distichiasis syndrome: relationship to phenotype. Mol Cytogenet 2022; 15:48. [PMID: 36329475 PMCID: PMC9632103 DOI: 10.1186/s13039-022-00627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Objective We describe a fetus with a 2.12-Mb terminal deleted fragment in 16q associated with alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) and lymphedema-distichiasis syndrome (LDS) and intend to provide a comprehensive prenatal management strategy for the fetuses with ACDMPV and LDS through reviewing other similar published studies. Methods The fetus presented a series of diverse structural malformations including congenital cardiovascular, genitourinary and gastro-intestinal anomalies in ultrasound at 23 + 5 weeks of gestation (GA).
Amniocentesis was conducted for karyotype analysis and copy number variation sequencing (CNV-seq) after informed consent. Results The fetal karyotype was 46,XX, however the result of CNV-seq showed an approximately 2.12-Mb deletion in 16q24.1q24.2 (85220000-87340000) × 1 indicating pathogenicity. Conclusion Genomic testing should be recommend as a first line diagnostic tool for suspected ACDMPV and/or LDS or other genetic syndromes for the fetuses with structural abnormalities in clinical practice.
Collapse
Affiliation(s)
- Xuezhen Wang
- grid.252957.e0000 0001 1484 5512Graduate School of Bengbu Medical College, Donghai Avenue No. 2600, Bengbu, 233000 Anhui China ,grid.452207.60000 0004 1758 0558Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, No. 199 South Jiefang Road, Xuzhou, 221009 Jiangsu China
| | - Lili Guo
- grid.252957.e0000 0001 1484 5512Graduate School of Bengbu Medical College, Donghai Avenue No. 2600, Bengbu, 233000 Anhui China ,grid.452207.60000 0004 1758 0558Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, No. 199 South Jiefang Road, Xuzhou, 221009 Jiangsu China
| | - Bei Zhang
- grid.252957.e0000 0001 1484 5512Graduate School of Bengbu Medical College, Donghai Avenue No. 2600, Bengbu, 233000 Anhui China ,grid.452207.60000 0004 1758 0558Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, No. 199 South Jiefang Road, Xuzhou, 221009 Jiangsu China ,grid.417303.20000 0000 9927 0537Graduate School of Xuzhou Medical University, Jiangsu, 221000 Xuzhou China
| | - Jiebin Wu
- grid.252957.e0000 0001 1484 5512Graduate School of Bengbu Medical College, Donghai Avenue No. 2600, Bengbu, 233000 Anhui China ,grid.452207.60000 0004 1758 0558Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, No. 199 South Jiefang Road, Xuzhou, 221009 Jiangsu China ,grid.417303.20000 0000 9927 0537Graduate School of Xuzhou Medical University, Jiangsu, 221000 Xuzhou China
| | - Yu Sun
- grid.417303.20000 0000 9927 0537Graduate School of Xuzhou Medical University, Jiangsu, 221000 Xuzhou China ,Department of Obstetrics, Fengxian People’s Hospital, Feng Xian Renmin West Road No.51, Xuzhou, 221700 Jiangsu China
| | - Huimin Tao
- grid.452207.60000 0004 1758 0558Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, No. 199 South Jiefang Road, Xuzhou, 221009 Jiangsu China ,grid.417303.20000 0000 9927 0537Graduate School of Xuzhou Medical University, Jiangsu, 221000 Xuzhou China
| | - Jing Sha
- grid.452207.60000 0004 1758 0558Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, No. 199 South Jiefang Road, Xuzhou, 221009 Jiangsu China
| | - Jingfang Zhai
- grid.252957.e0000 0001 1484 5512Graduate School of Bengbu Medical College, Donghai Avenue No. 2600, Bengbu, 233000 Anhui China ,grid.452207.60000 0004 1758 0558Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, No. 199 South Jiefang Road, Xuzhou, 221009 Jiangsu China ,grid.417303.20000 0000 9927 0537Graduate School of Xuzhou Medical University, Jiangsu, 221000 Xuzhou China
| | - Min Liu
- grid.452207.60000 0004 1758 0558Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, No. 199 South Jiefang Road, Xuzhou, 221009 Jiangsu China ,grid.417303.20000 0000 9927 0537Graduate School of Xuzhou Medical University, Jiangsu, 221000 Xuzhou China
| |
Collapse
|
21
|
Yıldız Bölükbaşı E, Karolak JA, Szafranski P, Gambin T, Matsika A, McManus S, Scott HS, Arts P, Ha T, Barnett CP, Rodgers J, Stankiewicz P. Variable expressivity in a four-generation ACDMPV family with a non-coding hypermorphic SNV in trans to the frameshifting FOXF1 variant. Eur J Hum Genet 2022; 30:1182-1186. [PMID: 35902696 PMCID: PMC9554184 DOI: 10.1038/s41431-022-01159-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022] Open
Abstract
Heterozygous single nucleotide variants (SNVs) or copy-number variant deletions involving FOXF1 or its distant lung-specific enhancer on chromosome 16q24.1 have been identified in 80-90% of patients with Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), a lethal neonatal lung developmental disorder. We describe a four-generation family with a deceased ACDMPV neonate, her sibling from the electively terminated pregnancy, healthy mother with a history of pulmonary arterial hypertension (PAH), an unaffected aunt, an aunt deceased due to findings consistent with ACDMPV, and a reportedly unaffected grandmother, all with the frameshifting variant c.881_902dup (p.Gly302Profs*46) in FOXF1, and a deceased great-grandmother with a history of PAH. Genome sequencing analyses in the proband's unaffected mother revealed a non-coding putative regulatory SNV rs560517434-A within the lung-specific distant FOXF1 enhancer in trans to the FOXF1 frameshift mutation. Functional testing of this variant using an in vitro luciferase reporter assay showed that it increased FOXF1 promoter activity 10-fold. Our studies further demonstrate that non-coding SNVs in the FOXF1 enhancer region can rescue the lethal ACDMPV phenotype and support the compound inheritance gene dosage model.
Collapse
Affiliation(s)
- Esra Yıldız Bölükbaşı
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Justyna A Karolak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Przemyslaw Szafranski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Admire Matsika
- Mater Pathology, Mater Hospital Brisbane, South Brisbane, QLD, Australia
| | - Sam McManus
- Mater Pathology, Mater Hospital Brisbane, South Brisbane, QLD, Australia
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, , SA Pathology, Adelaide, SA, Australia
- Australian Genomics, Melbourne, VIC, Australia
| | - Peer Arts
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Thuong Ha
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Christopher P Barnett
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Paediatric and Reproductive Genetics Unit, South Australian Clinical Genetics Service, Women's and Children's Hospital, North Adelaide, SA, Australia
| | - Jonathan Rodgers
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
22
|
Yıldız Bölükbaşı E, Karolak JA, Szafranski P, Gambin T, Willard N, Abman SH, Galambos C, Kinsella JP, Stankiewicz P. High-level gonosomal mosaicism for a pathogenic non-coding CNV deletion of the lung-specific FOXF1 enhancer in an unaffected mother of an infant with ACDMPV. Mol Genet Genomic Med 2022; 10:e2062. [PMID: 36124617 PMCID: PMC9651602 DOI: 10.1002/mgg3.2062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/22/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) results from haploinsufficiency of the mesenchymal transcription factor FOXF1 gene. To date, only one case of an ACDMPV-causative CNV deletion inherited from a very-low level somatic mosaic mother has been reported. METHODS Clinical, histopathological, and molecular studies, including whole genome sequencing, chromosomal microarray analysis, qPCR, and Sanger sequencing, followed by in vitro fertilization (IVF) with preimplantation genetic testing (PGT) were used to study a family with a deceased neonate with ACDMPV. RESULTS A pathogenic CNV deletion of the lung-specific FOXF1 enhancer in the proband was found to be inherited from an unaffected mother, 36% mosaic for this deletion in her peripheral blood cells. The qPCR analyses of saliva, buccal cells, urine, nail, and hair samples revealed 19%, 18%, 15%, 19%, and 27% variant allele fraction, respectively, indicating a high recurrence risk. Grandparental studies revealed that the deletion arose on the mother's paternal chromosome 16. PGT studies revealed 44% embryos with the deletion, reflecting high-level germline mosaicism. CONCLUSION Our data further demonstrate the importance of parental testing in ACDMPV families and reproductive usefulness of IVF with PGT in families with high-level parental gonosomal mosaicism.
Collapse
Affiliation(s)
| | - Justyna A. Karolak
- Chair and Department of Genetics and Pharmaceutical MicrobiologyPoznan University of Medical SciencesPoznanPoland
| | | | - Tomasz Gambin
- Institute of Computer ScienceWarsaw University of TechnologyWarsawPoland
| | - Nicholas Willard
- Department of Pathology and Laboratory MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Steven H. Abman
- Department of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Csaba Galambos
- Department of Pathology and Laboratory MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA,Department of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - John P. Kinsella
- Department of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Paweł Stankiewicz
- Department of Molecular & Human GeneticsBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
23
|
Lin YB, Xia B, Cao J, Tang ZJ. Ultrasound findings in neonates with alveolar capillary dysplasia with misalignment of the pulmonary veins: report of two cases. J Int Med Res 2022; 50:3000605221126876. [PMID: 36173014 PMCID: PMC9528008 DOI: 10.1177/03000605221126876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 08/30/2022] [Indexed: 02/05/2023] Open
Abstract
Alveolar capillary dysplasia with misalignment of the pulmonary veins (ACDMPV) is a rare congenital pulmonary disease that affects newborns. Most patients with ACDMPV are born at full term and are healthy. The main clinical manifestations are refractory pulmonary hypertension and pulmonary failure with gastrointestinal, urinary, or cardiac malformations. ACDMPV often progresses rapidly, but no conventional biological or imaging tests other than genetic testing are available for its diagnosis. Lung biopsy is currently the gold standard for diagnosis. We herein report two cases of ACDMPV confirmed by pathological examination and discuss their ultrasonographic findings.
Collapse
Affiliation(s)
- Yan-bing Lin
- Department of Ultrasound, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Bei Xia
- Department of Ultrasound, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
- Bei Xia, Department of Ultrasound, Shenzhen Children’s Hospital, 7019 Yitian Road, Shenzhen 518026, China. E-mail:
| | - Juan Cao
- Department of Pathology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Zi-Jian Tang
- Department of Ultrasound, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
24
|
Kamp JC, Neubert L, Ackermann M, Stark H, Plucinski E, Shah HR, Janciauskiene S, Bergmann AK, Schmidt G, Welte T, Haverich A, Werlein C, Braubach P, Laenger F, Schwerk N, Olsson KM, Fuge J, Park DH, Schupp JC, Hoeper MM, Kuehnel MP, Jonigk DD. A Morphomolecular Approach to Alveolar Capillary Dysplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1110-1121. [PMID: 35649494 DOI: 10.1016/j.ajpath.2022.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Alveolar capillary dysplasia (ACD) is a rare lung developmental disorder leading to persistent pulmonary arterial hypertension and fatal outcomes in newborns. The current study analyzed the microvascular morphology and the underlying molecular background of ACD. One ACD group (n = 7), one pulmonary arterial hypertension group (n = 20), and one healthy con1trol group (n = 16) were generated. Samples of histologically confirmed ACD were examined by exome sequencing and array-based comparative genomic hybridization. Vascular morphology was analyzed using scanning electron microscopy of microvascular corrosion casts. Gene expression and biological pathways were analyzed using two panels on inflammation/kinase-specific genes and a comparison analysis tool. Compartment-specific protein expression was analyzed using immunostaining. In ACD, there was an altered capillary network, a high prevalence of intussusceptive angiogenesis, and increased activity of C-X-C motif chemokine receptor 4 (CXCR4), hypoxia-inducible factor 1α (HIF1A), and angiopoietin signaling pathways compared with pulmonary arterial hypertension/healthy controls. Histologically, there was a markedly increased prevalence of endothelial tyrosine kinase receptor (TEK/TIE2)+ macrophages in ACD, compared with the other groups, whereas the CXCR4 ligand CXCL12 and HIF1A showed high expression in all groups. ACD is characterized by dysfunctional capillaries and a high prevalence of intussusceptive angiogenesis. The results indicate that endothelial CXCR4, HIF1A, and angiopoietin signaling as well as TIE2+ macrophages are crucial for the induction of intussusceptive angiogenesis and vascular remodeling. Future studies should address the use of anti-angiogenic agents in ACD, where TIE2 appears as a promising target.
Collapse
Affiliation(s)
- Jan C Kamp
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany.
| | - Lavinia Neubert
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Pathology and Department of Molecular Pathology, Helios University Clinic Wuppertal, University of Witten-Herdecke, Wuppertal, Germany
| | - Helge Stark
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Edith Plucinski
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Harshit R Shah
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Anke K Bergmann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Gunnar Schmidt
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Axel Haverich
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Christopher Werlein
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Peter Braubach
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Florian Laenger
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Nicolaus Schwerk
- Clinic for Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Karen M Olsson
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Jan Fuge
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Da-Hee Park
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Jonas C Schupp
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Marius M Hoeper
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Mark P Kuehnel
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Danny D Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
25
|
Karolak JA, Deutsch G, Gambin T, Szafranski P, Popek E, Stankiewicz P. Transcriptome and Immunohistochemical Analyses in TBX4- and FGF10-Deficient Lungs Imply TMEM100 as a Mediator of Human Lung Development. Am J Respir Cell Mol Biol 2022; 66:694-697. [PMID: 35648090 PMCID: PMC9163642 DOI: 10.1165/rcmb.2021-0470le] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Gail Deutsch
- University of Washington School of MedicineSeattle, Washington
| | - Tomasz Gambin
- Baylor College of MedicineHouston, Texas
- Warsaw University of TechnologyWarsaw, Poland
| | | | | | | |
Collapse
|
26
|
Yıldız Bölükbaşı E, Karolak JA, Gambin T, Szafranski P, Deutsch GH, Stankiewicz P. Do paternal deletions involving the FOXF1 locus on chromosome 16q24.1 manifest with more severe non-lung anomalies? Eur J Med Genet 2022; 65:104519. [PMID: 35533956 PMCID: PMC10022888 DOI: 10.1016/j.ejmg.2022.104519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/31/2022]
Abstract
Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare lethal lung developmental disorder in neonates due to heterozygous loss-of-function of the mesenchymal transcription factor gene, FOXF1. Interestingly, unlike ACDMPV-causing point mutations in FOXF1 that can be inherited from the mother or father, causative copy-number variant (CNV) deletions arise de novo and almost exclusively on chromosome 16 inherited from the mother (n = 50 vs. n = 3). Here, we describe a fourth case of a de novo paternal CNV deletion encompassing FOXF1, its neighboring long non-coding RNA gene FENDRR, and their distant lung-specific enhancer, identified in a 21-week-old fetus with tetralogy of Fallot, gastrointestinal and genitourinary abnormalities, a single umbilical artery, and patchy histopathological findings of ACDMPV in autopsy lung. We also review the ACDMPV-causative CNV deletions detected prenatally and propose that the majority of paternal deletions manifest with more severe additional non-lung abnormalities.
Collapse
Affiliation(s)
- Esra Yıldız Bölükbaşı
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Justyna A Karolak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Tomasz Gambin
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA; Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Przemyslaw Szafranski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Gail H Deutsch
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
27
|
Michelson M, Lidzbarsky G, Nishri D, Israel-Elgali I, Berger R, Gafner M, Shomron N, Lev D, Goldberg Y. Microdeletion of 16q24.1-q24.2-A unique etiology of Lymphedema-Distichiasis syndrome and neurodevelopmental disorder. Am J Med Genet A 2022; 188:1990-1996. [PMID: 35312147 PMCID: PMC9314700 DOI: 10.1002/ajmg.a.62730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/09/2021] [Accepted: 01/28/2022] [Indexed: 01/15/2023]
Abstract
Interstitial deletions of 16q24.1–q24.2 are associated with alveolar capillary dysplasia, congenital renal malformations, neurodevelopmental disorders, and congenital abnormalities. Lymphedema–Distichiasis syndrome (LDS; OMIM # 153400) is a dominant condition caused by heterozygous pathogenic variants in FOXC2. Usually, lymphedema and distichiasis occur in puberty or later on, and affected individuals typically achieve normal developmental milestones. Here, we describe a boy with congenital lymphedema, distichiasis, bilateral hydronephrosis, and global developmental delay, with a de novo microdeletion of 894 kb at 16q24.1–q24.2. This report extends the phenotype of both 16q24.1–q24.2 microdeletion syndrome and of LDS. Interestingly, the deletion involves only the 3′‐UTR part of FOXC2.
Collapse
Affiliation(s)
- Marina Michelson
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel.,The Genetic Institute of Maccabi Health Medicinal Organization, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gabriel Lidzbarsky
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel
| | - Daniella Nishri
- Child Developmental Center of Maccabi Health Medicinal Organization, Tel-Aviv, Israel
| | - Ifat Israel-Elgali
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Rachel Berger
- The Genetic Institute of Maccabi Health Medicinal Organization, Tel-Aviv, Israel
| | - Michal Gafner
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Noam Shomron
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Dorit Lev
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel.,The Genetic Institute of Maccabi Health Medicinal Organization, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yael Goldberg
- The Genetic Institute of Maccabi Health Medicinal Organization, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel
| |
Collapse
|
28
|
Scimone C, Donato L, Sidoti A. Investigating the role of imprinted genes in pediatric sporadic brain arteriovenous malformations. Neural Regen Res 2022; 17:101-102. [PMID: 34100440 PMCID: PMC8451545 DOI: 10.4103/1673-5374.314296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Concetta Scimone
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Luigi Donato
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| |
Collapse
|
29
|
Abstract
Neonatal lung biopsy guides important medical decisions when the diagnosis is not clear from prior clinical assessment, imaging, or genetic testing. Common scenarios that lead to biopsy include severe acute respiratory distress in a term neonate, pulmonary hypertension disproportionate to that expected for gestational age or known cardiac anomalies, and assessment of suspected genetic disorder based on clinical features or genetic variant of unknown significance. The differential diagnosis includes genetic developmental disorders, genetic surfactant disorders, vascular disorders, acquired infection, and meconium aspiration. This article describes pathologic patterns in the neonatal lung and correlation with molecular abnormalities, where appropriate.
Collapse
|
30
|
Two cases of different genetic variants of alveolar capillary dysplasia associated with left-sided obstructive CHDs. Cardiol Young 2021; 31:1368-1370. [PMID: 33663630 DOI: 10.1017/s1047951121000676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Alveolar capillary dysplasia with misalignment of the pulmonary veins is an uncommon disorder that affects the lung vasculature development in the neonatal period and leads to pulmonary hypertension. We describe two patients with alveolar capillary dysplasia associated with left-sided obstructive heart defects with two different genetic variants. Our cases highlight the importance of early recognition of this disease in the setting of persistent and supra-systemic pulmonary hypertension despite surgical correction of the associated lesions. Identification of these cases will facilitate the development of a multidisciplinary approach and provide guidance to the affected families.
Collapse
|
31
|
Slot E, Boers R, Boers J, van IJcken WFJ, Tibboel D, Gribnau J, Rottier R, de Klein A. Genome wide DNA methylation analysis of alveolar capillary dysplasia lung tissue reveals aberrant methylation of genes involved in development including the FOXF1 locus. Clin Epigenetics 2021; 13:148. [PMID: 34325731 PMCID: PMC8323302 DOI: 10.1186/s13148-021-01134-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Background Alveolar capillary dysplasia with or without misalignment of the pulmonary veins (ACD/MPV) is a lethal congenital lung disorder associated with a variety of heterozygous genomic alterations in the FOXF1 gene or its 60 kb enhancer. Cases without a genomic alteration in the FOXF1 locus have been described as well. The mechanisms responsible for FOXF1 haploinsufficiency and the cause of ACD/MPV in patients without a genomic FOXF1 variant are poorly understood, complicating the search for potential therapeutic targets for ACD/MPV. To investigate the contribution of aberrant DNA methylation, genome wide methylation patterns of ACD/MPV lung tissues were compared with methylation patterns of control lung tissues using the recently developed technique Methylated DNA sequencing (MeD-seq).
Results Eight ACD/MPV lung tissue samples and three control samples were sequenced and their mutual comparison resulted in identification of 319 differentially methylated regions (DMRs) genome wide, involving 115 protein coding genes. The potentially upregulated genes were significantly enriched in developmental signalling pathways, whereas potentially downregulated genes were mainly enriched in O-linked glycosylation. In patients with a large maternal deletion encompassing the 60 kb FOXF1 enhancer, DNA methylation patterns in this FOXF1 enhancer were not significantly different compared to controls. However, two hypermethylated regions were detected in the 60 kb FOXF1 enhancer of patients harbouring a FOXF1 point mutation. Lastly, a large hypermethylated region overlapping the first FOXF1 exon was found in one of the ACD/MPV patients without a known pathogenic FOXF1 variation.
Conclusion This is the first study providing genome wide methylation data on lung tissue of ACD/MPV patients. DNA methylation analyses in the FOXF1 locus excludes maternal imprinting of the 60 kb FOXF1 enhancer. Hypermethylation at the 60 kb FOXF1 enhancer might contribute to FOXF1 haploinsufficiency caused by heterozygous mutations in the FOXF1 coding region. Interestingly, DNA methylation analyses of patients without a genomic FOXF1 variant suggest that abnormal hypermethylation of exon 1 might play a role in some ACD/MPV in patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01134-1.
Collapse
Affiliation(s)
- Evelien Slot
- Department of Paediatric Surgery, Erasmus MC - Sophia Children's Hospital Rotterdam, Rotterdam, Netherlands.,Department of Clinical Genetics, Rm Ee2089, Erasmus MC Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands
| | - Ruben Boers
- Department of Developmental Biology, Oncode Institute, Erasmus MC Rotterdam, Rotterdam, Netherlands
| | - Joachim Boers
- Department of Developmental Biology, Oncode Institute, Erasmus MC Rotterdam, Rotterdam, Netherlands
| | - Wilfred F J van IJcken
- Center for Biomics, Erasmus University Medical Center, Erasmus MC, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus University Medical Center, Erasmus MC, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Paediatric Surgery, Erasmus MC - Sophia Children's Hospital Rotterdam, Rotterdam, Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Oncode Institute, Erasmus MC Rotterdam, Rotterdam, Netherlands
| | - Robbert Rottier
- Department of Paediatric Surgery, Erasmus MC - Sophia Children's Hospital Rotterdam, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus University Medical Center, Erasmus MC, Rotterdam, Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Rm Ee2089, Erasmus MC Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands.
| |
Collapse
|
32
|
Karolak JA, Gambin T, Szafranski P, Maywald RL, Popek E, Heaney JD, Stankiewicz P. Perturbation of semaphorin and VEGF signaling in ACDMPV lungs due to FOXF1 deficiency. Respir Res 2021; 22:212. [PMID: 34315444 PMCID: PMC8314029 DOI: 10.1186/s12931-021-01797-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare lethal congenital lung disorder in neonates characterized by severe progressive respiratory failure and refractory pulmonary hypertension, resulting from underdevelopment of the peripheral pulmonary tree. Causative heterozygous single nucleotide variants (SNVs) or copy-number variant (CNV) deletions involving FOXF1 or its distant lung-specific enhancer on chromosome 16q24.1 have been identified in 80-90% of ACDMPV patients. FOXF1 maps closely to and regulates the oppositely oriented FENDRR, with which it also shares regulatory elements. METHODS To better understand the transcriptional networks downstream of FOXF1 that are relevant for lung organogenesis, using RNA-seq, we have examined lung transcriptomes in 12 histopathologically verified ACDMPV patients with or without pathogenic variants in the FOXF1 locus and analyzed gene expression profile in FENDRR-depleted fetal lung fibroblasts, IMR-90. RESULTS RNA-seq analyses in ACDMPV neonates revealed changes in the expression of several genes, including semaphorins (SEMAs), neuropilin 1 (NRP1), and plexins (PLXNs), essential for both epithelial branching and vascular patterning. In addition, we have found deregulation of the vascular endothelial growth factor (VEGF) signaling that also controls pulmonary vasculogenesis and a lung-specific endothelial gene TMEM100 known to be essential in vascular morphogenesis. Interestingly, we have observed a substantial difference in gene expression profiles between the ACDMPV samples with different types of FOXF1 defect. Moreover, partial overlap between transcriptome profiles of ACDMPV lungs with FOXF1 SNVs and FENDRR-depleted IMR-90 cells suggests contribution of FENDRR to ACDMPV etiology. CONCLUSIONS Our transcriptomic data imply potential crosstalk between several lung developmental pathways, including interactions between FOXF1-SHH and SEMA-NRP or VEGF/VEGFR2 signaling, and provide further insight into complexity of lung organogenesis in humans.
Collapse
Affiliation(s)
- Justyna A Karolak
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.,Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-781, Poznań, Poland
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.,Institute of Computer Science, Warsaw University of Technology, 00-665, Warsaw, Poland
| | - Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA
| | - Rebecca L Maywald
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA
| | - Edwina Popek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.
| |
Collapse
|
33
|
Mukherjee D, Konduri GG. Pediatric Pulmonary Hypertension: Definitions, Mechanisms, Diagnosis, and Treatment. Compr Physiol 2021; 11:2135-2190. [PMID: 34190343 PMCID: PMC8289457 DOI: 10.1002/cphy.c200023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pediatric pulmonary hypertension (PPH) is a multifactorial disease with diverse etiologies and presenting features. Pulmonary hypertension (PH), defined as elevated pulmonary artery pressure, is the presenting feature for several pulmonary vascular diseases. It is often a hidden component of other lung diseases, such as cystic fibrosis and bronchopulmonary dysplasia. Alterations in lung development and genetic conditions are an important contributor to pediatric pulmonary hypertensive disease, which is a distinct entity from adult PH. Many of the causes of pediatric PH have prenatal onset with altered lung development due to maternal and fetal conditions. Since lung growth is altered in several conditions that lead to PPH, therapy for PPH includes both pulmonary vasodilators and strategies to restore lung growth. These strategies include optimal alveolar recruitment, maintaining physiologic blood gas tension, nutritional support, and addressing contributing factors, such as airway disease and gastroesophageal reflux. The outcome for infants and children with PH is highly variable and largely dependent on the underlying cause. The best outcomes are for neonates with persistent pulmonary hypertension (PPHN) and reversible lung diseases, while some genetic conditions such as alveolar capillary dysplasia are lethal. © 2021 American Physiological Society. Compr Physiol 11:2135-2190, 2021.
Collapse
Affiliation(s)
- Devashis Mukherjee
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children’s Research Institute, Children’s Wisconsin, Milwaukee, Wisconsin, 53226 USA
| | - Girija G. Konduri
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children’s Research Institute, Children’s Wisconsin, Milwaukee, Wisconsin, 53226 USA
| |
Collapse
|
34
|
Hrudka J, Prouzová Z, Mydlíková K, Jedličková K, Holešta M, Whitley A, Havlůj L. FOXF1 as an Immunohistochemical Marker of Hilar Cholangiocarcinoma or Metastatic Pancreatic Ductal Adenocarcinoma. Single Institution Experience. Pathol Oncol Res 2021; 27:1609756. [PMID: 34257615 PMCID: PMC8262193 DOI: 10.3389/pore.2021.1609756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022]
Abstract
Cholangiocarcinoma (CCA) is a liver malignancy associated with a poor prognosis. Its main subtypes are peripheral/intrahepatic and hilar/extrahepatic CCA. Several molecular, morphological and clinical similarities between hilar/extrahepatic CCA and pancreatic ductal adenocarcinoma (PDAC) have been described. FOXF1 is a transcription factor which has been described to have prognostic significance in various tumors and it is involved in the development of bile ducts. The aim of this study is to determine occurrence of nuclear expression of FOXF1 in both subtypes of CCA and metastatic PDAC and assess its potential usefulness as a diagnostic marker. Secondary aims were to investigate the use of C-reactive protein (CRP) immunohistochemistry for diagnosing intrahepatic peripheral CCA and the significance of histological features in CCA subtypes. 32 archive specimens of CCA, combined hepatocellular carcinoma-CCA (HCC-CCA) and liver metastasis of PDAC were stained by FOXF1 and CRP immunohistochemistry and evaluated to determine histological pattern. The CCAs were classified radiologically into peripheral/intrahepatic and hilar subtype. Using Fisher exact test, we identified nuclear FOXF1 as a fairly specific (87%) but insensitive (65%) marker of hilar and extrahepatic CCA and metastatic PDAC (p = 0.005). CRP immunohistochemistry was characterized by a high sensitivity and specificity, of 79% and 88%, respectively (p = 0.001). We did not identify any histomorphological features associated with either types of CCA or metastatic PDAC. As a conclusion of novel finding, FOXF1 immunohistochemistry may be regarded as a specific but insensitive marker of hilar/extrahepatic CCA and metastatic PDAC and it may help distinguish them from peripheral CCA.
Collapse
Affiliation(s)
- Jan Hrudka
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, Prague, Czech Republic
| | - Zuzana Prouzová
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, Prague, Czech Republic
| | - Katarína Mydlíková
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, Prague, Czech Republic
| | - Kristína Jedličková
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Michal Holešta
- Department of Radiodiagnostics, Charles University, 3rd Faculty of Medicine, Charles University and Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Adam Whitley
- Department of General Surgery, Charles University, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, Prague, Czech Republic
| | - Lukáš Havlůj
- Department of General Surgery, Charles University, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, Prague, Czech Republic
| |
Collapse
|
35
|
Szafranski P, Gambin T, Karolak JA, Popek E, Stankiewicz P. Lung-specific distant enhancer cis regulates expression of FOXF1 and lncRNA FENDRR. Hum Mutat 2021; 42:694-698. [PMID: 33739555 DOI: 10.1002/humu.24198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/22/2021] [Accepted: 03/14/2021] [Indexed: 12/21/2022]
Abstract
The FOXF1 gene, causative for a neonatal lethal lung developmental disorder alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), maps 1.7 kb away from the long noncoding RNA gene FENDRR on the opposite strand, suggesting they may be coregulated. Using RNA sequencing in lung tissue from ACDMPV patients with heterozygous deletions of the FOXF1 distant enhancer located 286 kb upstream, leaving FOXF1 and FENDRR intact, we have found that the FENDRR and FOXF1 expressions were reduced by approximately 75% and 50%, respectively, and were monoallelic from the intact chromosome 16q24.1. In contrast, ACDMPV patients with FOXF1 SNVs had biallelic FENDRR expression reduced by 66%-82%. Corroboratively, depletion of FOXF1 by small interfering RNA in lung fibroblasts resulted in a 50% decrease of FENDRR expression. These data indicate that FENDRR expression in the lungs is regulated both in cis by the FOXF1 distant enhancer and in trans by FOXF1. Our findings are compatible with the involvement of FENDRR in FOXF1-related disorders, including ACDMPV.
Collapse
Affiliation(s)
- Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland.,Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Justyna A Karolak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Edwina Popek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
36
|
Onda T, Akimoto T, Hayasaka I, Ikeda M, Furuse Y, Ando A, Nakamura Y, Honjo R, Manabe A, Furuta I, Cho K. Incidence of alveolar capillary dysplasia with misalignment of pulmonary veins in infants with unexplained severe pulmonary hypertension: The roles of clinical, pathological, and genetic testing. Early Hum Dev 2021; 155:105323. [PMID: 33578219 DOI: 10.1016/j.earlhumdev.2021.105323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare and fatal disorder that occurs in the developing fetal lungs; at birth, infants exhibit an oxygenation disorder accompanied by severe pulmonary hypertension (PH) and have a very short life span. ACDMPV is definitively diagnosed by pathological findings, and infants born with unexplained severe PH may not be properly diagnosed without a biopsy or autopsy. METHODS Japanese infants with unexplained severe PH were enrolled in this study. Genetic analyses were performed on DNA extracted from peripheral blood leukocytes. Sanger sequencing or next-generation sequencing was performed by coding exons and introns for FOXF1 in all samples. For individuals without pathogenic exonic variants, multiplex ligation-dependent probe amplification was performed to identify copy number variations (CNVs) in exons, introns, and in the upstream region of FOXF1. RESULTS This study included 30 infants who were diagnosed over the course of nine years. Four individuals had the pathogenic variations on the exon 1 of FOXF1, including two frameshift and two missense variations. Pathogenic CNVs were found in another five individuals. CONCLUSION In the pathologically proven ACDMPV patients, the ratios of cases with exonic variations, CNVs, and no genetic findings were reported as 45%, 45% and 10%, respectively. We estimate that about 30% (10 (9 + 1) out of 30) of individuals with unexplained severe PH had ACDMPV.
Collapse
Affiliation(s)
- Tetsuo Onda
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan.
| | - Takuma Akimoto
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Itaru Hayasaka
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan.
| | - Masahiko Ikeda
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Yuta Furuse
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan.
| | - Akiko Ando
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan.
| | - Yuichi Nakamura
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan.
| | - Ryota Honjo
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Atsushi Manabe
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Itsuko Furuta
- Department of Obstetrics and Gynecology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Kazutoshi Cho
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan.
| |
Collapse
|
37
|
Vollbach K, Trepels-Kottek S, Elbracht M, Kurth I, Wagner N, Orlikowsky T, Braunschweig T, Tenbrock K. Alveolar capillary dysplasia without misalignment of pulmonary veins, hyperinflammation, megalocornea and overgrowth - Association with a homozygous 2bp-insertion in LTBP2? Eur J Med Genet 2021; 64:104209. [PMID: 33766794 DOI: 10.1016/j.ejmg.2021.104209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/28/2022]
Abstract
We present a male infant with alveolar capillary dysplasia without misalignment of pulmonary veins, hyperinflammation, megalocornea and macrosomia/macrocephaly at birth. Whole-exome sequencing revealed a homozygous 2bp-insertion in the latent transforming growth factor-beta binding protein 2 (LTBP2) (c.278_279dup, p.(Ser94Glyfs*187)). So far, LTBP2-variants have been frequently reported with an eye-restricted phenotype including primary congenital glaucoma and megalocornea/microspherphakia and ectopia lentis with/without secondary glaucoma. Hitherto reported systemic phenotypes showed, among others, features as tall stature, finger anomalies, high-arched palate and cardiovascular anomalies. The main pathophysiological finding of our patient was an alveolar capillary dysplasia (with pulmonary arterial hypertension and right ventricular impairment but without misalignment of pulmonary veins) resulting in almost continuous oxygen demand and prolonged dependence on mechanical ventilation. He died of respiratory failure at the age of seven months. This patient may extend the LTBP2-related phenotype with resulting diagnostic implications.
Collapse
Affiliation(s)
- Kristina Vollbach
- Department of Pediatrics, RWTH Aachen University Hospital, Aachen, Germany.
| | - Sonja Trepels-Kottek
- Department of Pediatrics, Division of Neonatology, RWTH Aachen University Hospital, Aachen, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University Hospital, Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University Hospital, Aachen, Germany
| | - Norbert Wagner
- Department of Pediatrics, RWTH Aachen University Hospital, Aachen, Germany
| | - Thorsten Orlikowsky
- Department of Pediatrics, Division of Neonatology, RWTH Aachen University Hospital, Aachen, Germany
| | - Till Braunschweig
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Klaus Tenbrock
- Department of Pediatrics, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
38
|
Genetic Testing for Neonatal Respiratory Disease. CHILDREN-BASEL 2021; 8:children8030216. [PMID: 33799761 PMCID: PMC8001923 DOI: 10.3390/children8030216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022]
Abstract
Genetic mechanisms are now recognized as rare causes of neonatal lung disease. Genes potentially responsible for neonatal lung disease include those encoding proteins important in surfactant function and metabolism, transcription factors important in lung development, proteins involved in ciliary assembly and function, and various other structural and immune regulation genes. The phenotypes of infants with genetic causes of neonatal lung disease may have some features that are difficult to distinguish clinically from more common, reversible causes of lung disease, and from each other. Multigene panels are now available that can allow for a specific diagnosis, providing important information for treatment and prognosis. This review discusses genes in which abnormalities are known to cause neonatal lung disease and their associated phenotypes, and advantages and limitations of genetic testing.
Collapse
|
39
|
Slot E, von der Thüsen JH, van Heijst A, van Marion R, Magielsen F, Dubbink HJ, Post M, Debeer A, Tibboel D, Rottier RJ, de Klein A. Fast detection of FOXF1 variants in patients with alveolar capillary dysplasia with misalignment of pulmonary veins using targeted sequencing. Pediatr Res 2021; 89:518-525. [PMID: 32413891 DOI: 10.1038/s41390-020-0931-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a lethal congenital lung disorder associated with heterozygous variants in the FOXF1 gene or its regulatory region. Patients with ACD/MPV unnecessarily undergo invasive and expensive treatments while awaiting a diagnosis. The aim of this study was to reduce the time to diagnose ACD/MPV by developing a targeted next-generation sequencing (NGS) panel that detects FOXF1 variants. METHODS A FOXF1-targeted NGS panel was developed for detection of mutations and large genomic alterations and used for retrospective testing of ACD/MPV patients and controls. Results were confirmed with Sanger sequencing and SNP array analysis. RESULTS Each amplicon of the FOXF1-targeted NGS panel was efficiently sequenced using DNA isolated from blood or cell lines of 15 ACD/MPV patients and 8 controls. Moreover, testing of ACD/MPV patients revealed six novel and six previously described pathogenic or likely pathogenic FOXF1 alterations. CONCLUSION We successfully designed a fast and reliable targeted genetic test to detect variants in the FOXF1 gene and its regulatory region in one run. This relatively noninvasive test potentially prevents unnecessary suffering for patients and reduces the use of futile and expensive treatments like extra-corporeal membrane oxygenation. IMPACT FOXF1-targeted NGS potentially prevents ACD/MPV patients from unnecessary suffering and expensive treatments. FOXF1-targeted NGS potentially reduces the number of misdiagnosis in ACD/MPV patients. Retrospective testing of ACD/MPV patients using FOXF1-targeted NGS revealed six novel pathogenic or likely pathogenic variants.
Collapse
Affiliation(s)
- Evelien Slot
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan H von der Thüsen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Arno van Heijst
- Department of Neonatology, Radboud University Medical Center-Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Ronald van Marion
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Frank Magielsen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hendrikus J Dubbink
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martin Post
- Department of Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Anne Debeer
- Department of Neonatology, University Hospitals Leuven, Leuven, Belgium
| | - Dick Tibboel
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
40
|
Karolak JA, Gambin T, Szafranski P, Stankiewicz P. Potential interactions between the TBX4-FGF10 and SHH-FOXF1 signaling during human lung development revealed using ChIP-seq. Respir Res 2021; 22:26. [PMID: 33478486 PMCID: PMC7818749 DOI: 10.1186/s12931-021-01617-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Background The epithelial-mesenchymal signaling involving SHH-FOXF1, TBX4-FGF10, and TBX2 pathways is an essential transcriptional network operating during early lung organogenesis. However, precise regulatory interactions between different genes and proteins in this pathway are incompletely understood. Methods To identify TBX2 and TBX4 genome-wide binding sites, we performed chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) in human fetal lung fibroblasts IMR-90. Results We identified 14,322 and 1,862 sites strongly-enriched for binding of TBX2 and TBX4, respectively, 43.95% and 18.79% of which are located in the gene promoter regions. Gene Ontology, pathway enrichment, and DNA binding motif analyses revealed a number of overrepresented cues and transcription factor binding motifs relevant for lung branching that can be transcriptionally regulated by TBX2 and/or TBX4. In addition, TBX2 and TBX4 binding sites were found enriched around and within FOXF1 and its antisense long noncoding RNA FENDRR, indicating that the TBX4-FGF10 cascade may directly interact with the SHH-FOXF1 signaling. Conclusions We highlight the complexity of transcriptional network driven by TBX2 and TBX4 and show that disruption of this crosstalk during morphogenesis can play a substantial role in etiology of lung developmental disorders.
Collapse
Affiliation(s)
- Justyna A Karolak
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.,Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-781, Poznan, Poland
| | - Tomasz Gambin
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.,Institute of Computer Science, Warsaw University of Technology, 00-665, Warsaw, Poland
| | - Przemyslaw Szafranski
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA
| | - Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.
| |
Collapse
|
41
|
Lin Z, Chen M, Wan Y, Lei L, Ruan H. miR-574-5p Targets FOXN3 to Regulate the Invasion of Nasopharyngeal Carcinoma Cells via Wnt/β-Catenin Pathway. Technol Cancer Res Treat 2020; 19:1533033820971659. [PMID: 33317407 PMCID: PMC7745553 DOI: 10.1177/1533033820971659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miR) are a class of non-coding endogenous RNA molecules that suppress the translation of protein-coding genes by destabilizing target mRNAs. The MiR-574-5p has been reported to be involved in the several types of cancer. However, the expression of miR-574-5p and its mechanism in nasopharyngeal carcinoma (NPC) remain unclear. We found that the expression level of miR-574-5p was significantly increased in the NPC cell lines. We further demonstrated that Forkhead box N3 (FOXN3) was a target gene of miR-574-5p. FOXN3 overexpression and inhibition reversed the promoting or suppressing effect, respectively, of NPC cell proliferation, migration and invasion caused by miR-574-5p. Furthermore, miR-574-5p enhanced the β-catenin and TCF4 protein expression by repressing FOXN3 expression, resulting in the activation of the Wnt/β-catenin signaling pathway, but the activity of the Wnt/β-catenin signaling pathway was inhibited by a miR-574-5p inhibitor or FOXN3 overexpression, which reversed the effect of miR-574-5p. Wound-healing and Transwell assays also showed that miR-574-5p promotes the cell migration and invasion of NPC cells, whereas the promoting effect of miR-574-5p was also reversed by a miR-574-5p inhibitor or FOXN3 overexpression. Collectively, these data suggested that miR-574-5p promotes NPC cell proliferation, migration, and invasion at least partly by targeting the FOXN3/Wnt/β-Catenin signaling pathway.
Collapse
Affiliation(s)
- Zhonghao Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Mindong Hospital of Fujian Medical University, Ningde, Fujian, China
| | - Miaoan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Mindong Hospital of Fujian Medical University, Ningde, Fujian, China
| | - Yawen Wan
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Mindong Hospital of Fujian Medical University, Ningde, Fujian, China
| | - Liguang Lei
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Mindong Hospital of Fujian Medical University, Ningde, Fujian, China
| | - Huiqing Ruan
- Department of Endocrinology, The Affiliated Mindong Hospital of Fujian Medical University, Ningde, Fujian, China
| |
Collapse
|
42
|
Abstract
There is a wide differential diagnosis of early onset respiratory distress especially in term babies, and interstitial lung disease (chILD) is a rare but important consideration in this context. chILD manifesting immediately after birth is usually related to mutations in surfactant protein genes, or conditions related to the Congenital Acinar Dysplasia -Alveolar capillary dysplasia - Congenital Alveolar Dysplasia (CAD-ACD) spectrum. There is currently no specific treatment for these conditions, and management is supportive. Prognosis is very poor in most of these babies if onset is early, with relentless respiratory deterioration unless transplanted. Ideally, the diagnosis is made on genetic analysis, but this may be time-consuming and complex in CAD-ACD spectrum, so lung biopsy may be needed to avoid prolonged and futile treatment being instituted. Milder forms with prolonged survival have been reported. Early onset, less severe chILD is usually related to neuroendocrine cell hyperplasia of infancy (NEHI), pulmonary interstitial glycogenosis (PIG) and less severe disorders of surfactant proteins. PIG and NEHI are not specific entities, but are pulmonary dysmaturity syndromes, and there may be a number of underlying genetic and other cause. If the child is stable and thriving, many will not be subject to lung biopsy, and slow improvement and weaning of supplemental oxygen can be anticipated. Where possible, a precise genetic diagnosis should be made in early onset cHILD allow for genetic counselling. chILD survivors and their families have complex respiratory and other needs, and co-ordinated, multi-disciplinary support in the community is essential.
Collapse
Affiliation(s)
- Andrew Bush
- Imperial College, UK; Royal Brompton and Harefield NHS Foundation Trust, UK.
| | | | - Jo Gregory
- Royal Brompton and Harefield NHS Foundation Trust, UK
| | - Andrew Gordon Nicholson
- Royal Brompton and Harefield NHS Foundation Trust, UK; National Heart and Lung Institute, Imperial College, UK
| | - Thomas Semple
- Imperial College, UK; Royal Brompton and Harefield NHS Foundation Trust, UK
| | - Rishi Pabary
- Imperial College, UK; Royal Brompton and Harefield NHS Foundation Trust, UK
| |
Collapse
|
43
|
Alturkustani M, Li D, Byers JT, Szymanski L, Parham DM, Shi W, Wang LL. Histopathologic features of alveolar capillary dysplasia with misalignment of pulmonary veins with atypical clinical presentation. Cardiovasc Pathol 2020; 50:107289. [PMID: 32949727 DOI: 10.1016/j.carpath.2020.107289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a rare neonatal lung disease with fatal outcome. Typically, respiratory symptoms present in the first 24 hours of life and patients die within the neonatal period. Atypical, delayed clinical presentations and/or longer survival have also been reported. Here, we studied the clinicopathologic relationship of ACD/MPV by examining 16 cases of ACD/MPV, focusing on atypical features. Based on the presence of diffuse vs. focal/patchy ACD/MPV histopathologic changes, we divided the cases into classic and nonclassic pathology groups. MPV was found in all ACD/MPV. Ten of 16 cases exhibited classic diffuse abnormalities, while 6 of 16 had a nonclassic focal/patchy distribution. However, among 7 patients with atypical clinical features, only 2 had nonclassic pathology, while 4 out of 9 clinically typical cases had nonclassic ACD/MPV pathology. Marked intrapulmonary aberrant arteriovenous vessels were present in all atypical cases. In conclusion, clinical presentation is not always correlated with histopathology in ACD/MPV. Atypical ACD/MPV should be suspected in any infants with fulminant pulmonary hypertension. Abnormal pulmonary veins and aberrant intraseptal vessels are the most important clues for diagnosis. Additional studies are needed for further elucidation of diagnostic histological criteria of atypical ACD/MPV and to explore its pathogenesis.
Collapse
Affiliation(s)
- Murad Alturkustani
- Department of Pathology and Laboratory medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Department of Pathology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Duo Li
- Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Joshua T Byers
- Department of Pathology and Laboratory medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Linda Szymanski
- Department of Pathology and Laboratory medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - David M Parham
- Department of Pathology and Laboratory medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Wei Shi
- Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Larry L Wang
- Department of Pathology and Laboratory medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
44
|
Jourdan-Voyen L, Touraine R, Masutti JP, Busa T, Vincent-Delorme C, Dreyfus L, Molin A, Savey B, Mounzer A, Assaf Z, Atallah V, da Cruz V, Gaillard D, Leroy-Terquem E, Mouton JB, Ghoumid J, Picaud JC, Dijoud F, Bouquillon S, Baumann C, Lambert L. Phenotypic and genetic spectrum of alveolar capillary dysplasia: a retrospective cohort study. Arch Dis Child Fetal Neonatal Ed 2020; 105:387-392. [PMID: 31641027 DOI: 10.1136/archdischild-2019-317121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/19/2019] [Accepted: 09/28/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Alveolar capillary dysplasia (ACD) is one of the causes of pulmonary hypertension. Its diagnosis is histological but new pathogenetic data have emerged. The aim of this study was to describe a French cohort of patients with ACD to improve the comprehension and the diagnosis of this pathology which is probably underdiagnosed. METHODS A retrospective observational study was conducted in French hospitals. Patients born between 2005 and 2017, whose biological samples were sent to the French genetic reference centres, were included. Clinical, histological and genetic data were retrospectively collected. RESULTS We presented a series of 21 patients. The mean of postmenstrual age at birth was 37.6 weeks. The first symptoms appeared on the median of 2.5 hours. Pulmonary hypertension was diagnosed in 20 patients out of 21. Two cases had prolonged survival (3.3 and 14 months). Histological analysis was done on lung tissue from autopsy (57.1% of cases) or from percutaneous biopsy (28.6%). FOXF1 was found abnormal in 15 patients (71.4%): 8 deletions and 7 point mutations. Two deletions were found by chromosomal microarray. CONCLUSION This study is one of the largest clinically described series in literature. It seems crucial to integrate genetics early into diagnostic support. We propose a diagnostic algorithm for helping medical teams to improve diagnosis of this pathology.
Collapse
Affiliation(s)
| | | | | | - Tiffany Busa
- Medical Genetics, Hôpital de la Timone, Marseille, France
| | | | | | | | | | | | - Ziad Assaf
- Neonatology, Hopital Universitaire Necker-Enfants Malades, Paris, France
| | | | | | | | | | | | - Jamal Ghoumid
- Genetics, CHRU Lille Pôle Spécialités Médico-Chirurgicales, Arras, France
| | - Jean-Charles Picaud
- Neonatology, Hopital Croix Rousse, Lyon, France.,Neonatology, Universite Lyon 1 Faculte de Medecine et de Maieutique Lyon-Sud Charles Merieux, Oullins, France
| | | | - Sonia Bouquillon
- Cytogenetics, CHRU Lille Pôle Spécialités Médico-Chirurgicales, Arras, France
| | - Cédric Baumann
- Platform of Clinical Research Facility PARC, CHU Nancy, Nancy, France
| | | |
Collapse
|
45
|
Kozłowska Z, Owsiańska Z, Wroblewska JP, Kałużna A, Marszałek A, Singh Y, Mroziński B, Liu Q, Karolak JA, Stankiewicz P, Deutsch G, Szymankiewicz-Bręborowicz M, Szczapa T. Genotype-phenotype correlation in two Polish neonates with alveolar capillary dysplasia. BMC Pediatr 2020; 20:320. [PMID: 32600276 PMCID: PMC7322906 DOI: 10.1186/s12887-020-02200-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/12/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alveolar capillary dysplasia (ACD) is a rare cause of severe pulmonary hypertension and respiratory failure in neonates. The onset of ACD is usually preceded by a short asymptomatic period. The condition is refractory to all available therapies as it irreversibly affects development of the capillary bed in the lungs. The diagnosis of ACD is based on histopathological evaluation of lung biopsy or autopsy tissue or genetic testing of FOXF1 on chromosome 16q24.1. Here, we describe the first two Polish patients with ACD confirmed by histopathological and genetic examination. CASE PRESENTATION The patients were term neonates with high Apgar scores in the first minutes of life. They both were diagnosed prenatally with heart defects. Additionally, the first patient presented with omphalocele. The neonate slightly deteriorated around 12th hour of life, but underwent surgical repair of omphalocele followed by mechanical ventilation. Due to further deterioration, therapy included inhaled nitric oxide (iNO), inotropes and surfactant administration. The second patient was treated with prostaglandin E1 since birth due to suspicion of aortic coarctation (CoA). After ruling out CoA in the 3rd day of life, infusion of prostaglandin E1 was discountinued and immediately patient's condition worsened. Subsequent treatment included re-administration of prostaglandin E1, iNO and mechanical ventilation. Both patients presented with transient improvement after application of iNO, but died despite maximized therapy. They were histopathologically diagnosed post-mortem with ACD. Array comparative genomic hybridization in patient one and patient two revealed copy-number variant (CNV) deletions, respectively, ~ 1.45 Mb in size involving FOXF1 and an ~ 0.7 Mb in size involving FOXF1 enhancer and leaving FOXF1 intact. CONCLUSIONS Both patients presented with a distinct course of ACD, extra-pulmonary manifestations and response to medications. Surgery and ceasing of prostaglandin E1 infusion should be considered as potential causes of this variability. We further highlight the necessity of thorough genetic testing and histopathological examination and propose immunostaining for CD31 and CD34 to facilitate the diagnostic process for better management of infants with ACD.
Collapse
Affiliation(s)
- Zuzanna Kozłowska
- Department of Neonatology, Neonatal Biophysical Monitoring and Cardiopulmonary Therapies Research Unit, Poznan University of Medical Sciences, Poznan, Poland.
| | - Zuzanna Owsiańska
- Department of Neonatology, Neonatal Biophysical Monitoring and Cardiopulmonary Therapies Research Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna P Wroblewska
- Department of Pathology, Poznan University of Medical Sciences and Greater Poland Cancer Center, Poznan, Poland
| | - Apolonia Kałużna
- Department of Pathology, Poznan University of Medical Sciences and Greater Poland Cancer Center, Poznan, Poland
| | - Andrzej Marszałek
- Department of Pathology, Poznan University of Medical Sciences and Greater Poland Cancer Center, Poznan, Poland
| | - Yogen Singh
- Department of Neonatology and Paediatric Cardiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Bartłomiej Mroziński
- Department of Pediatric Cardiology and Nephrology, Poznan University of Medical Sciences, Poznan, Poland
| | - Qian Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Justyna A Karolak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Gail Deutsch
- Department of Pathology, Seattle Children's Hospital, Seattle, USA
| | - Marta Szymankiewicz-Bręborowicz
- Department of Neonatology, Neonatal Biophysical Monitoring and Cardiopulmonary Therapies Research Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Tomasz Szczapa
- Department of Neonatology, Neonatal Biophysical Monitoring and Cardiopulmonary Therapies Research Unit, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
46
|
Neuhäuser CA, Kreymborg KG, Müller C, Khalil M, Jux C, Galambos C, Schranz D. Successful Management of an Infant with Atypical Presentation of Alveolar Capillary Dysplasia with Misalignment of the Pulmonary Veins. J Pediatr Intensive Care 2020; 10:228-231. [PMID: 34395042 DOI: 10.1055/s-0040-1713437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/10/2020] [Indexed: 10/24/2022] Open
Abstract
A newborn infant patient presented with persistent pulmonary hypertension. For right ventricular decompression, the ductus arteriosus was kept open by prostaglandin E 1 infusion and was stented at the age of 4 weeks during heart catheterization. The child was weaned from mechanical ventilation, since pulmonary functions were adequate. A small atrial septal defect was identified and closed in cardiac catheterization laboratory to decrease preductal hypoxemia. Diagnostic workup led to the diagnosis of alveolar capillary dysplasia with misalignment of the pulmonary veins. Suprasystemic pulmonary arterial hypertension with persisting nitric oxide dependency remained the leading symptoms. The child underwent bilateral lung transplantation at the age of 28 months. He is well at the age of 44 months.
Collapse
Affiliation(s)
- Christoph Armin Neuhäuser
- Department of Pediatric Cardiology, Pediatric Heart Center, University Children's Hospital, Justus Liebig University, Giessen, Germany
| | - Karsten Grosse Kreymborg
- Department of Pediatric Cardiology, Pediatric Heart Center, University Children's Hospital, Justus Liebig University, Giessen, Germany
| | - Carsten Müller
- Department of Pediatric Pneumology and Neonatology, University Children's Hospital, Hannover Medical School, Hannover, Germany
| | - Markus Khalil
- Department of Pediatric Cardiology, Pediatric Heart Center, University Children's Hospital, Justus Liebig University, Giessen, Germany
| | - Christian Jux
- Department of Pediatric Cardiology, Pediatric Heart Center, University Children's Hospital, Justus Liebig University, Giessen, Germany
| | - Csaba Galambos
- Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Dietmar Schranz
- Department of Pediatric Cardiology, Pediatric Heart Center, University Children's Hospital, Justus Liebig University, Giessen, Germany
| |
Collapse
|
47
|
Kitano A, Nakaguro M, Tomotaki S, Hanaoka S, Kawai M, Saito A, Hayakawa M, Takahashi Y, Kawasaki H, Yamada T, Ikeda M, Onda T, Cho K, Haga H, Nakazawa A, Minamiguchi S. A familial case of alveolar capillary dysplasia with misalignment of the pulmonary veins: the clinicopathological features and unusual glomeruloid endothelial proliferation. Diagn Pathol 2020; 15:48. [PMID: 32386508 PMCID: PMC7211333 DOI: 10.1186/s13000-020-00972-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/05/2020] [Indexed: 11/12/2022] Open
Abstract
Background Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a rare disorder of pulmonary vascular abnormality with persistent pulmonary hypertension of the newborn. The symptom usually presents within hours after birth, leading to an early demise. Heterozygous de novo point mutations and genomic deletions of the FOXF1 (forkhead box F1) gene or its upstream enhancer have been identified in most patients with ACD/MPV. Most cases of ACD/MPV are sporadic; however, familial cases are also reported in 10% of patients. Case presentation We herein report a case of familial ACD/MPV that showed unusual glomeruloid proliferation of endothelial cells. In this family, three of the four siblings died within two to 3 days after birth because of persistent pulmonary hypertension and respiratory failure. Only the second child remains alive and healthy. An autopsy was performed for the third and fourth children, resulting in a diagnosis of ACD/MPV based on the characteristic features, including misalignment of smaller pulmonary veins and lymphangiectasis. In both of these children, glomeruloid endothelial proliferation of vessels was noted in the interlobular septa. The vessels were immunohistochemically positive for D2–40, CD31, Factor VIII, and ERG, suggestive of differentiation for both lymphatic and blood vessels. Conclusions Unusual glomeruloid endothelial proliferation was observed in a familial ACD/MPV case. This histologic feature has not been described previously in ACD/MPV or any other pulmonary disease. Although the histogenesis of this histologic feature is unclear, this finding may suggest that ACD/MPV is a compound vascular and lymphovascular system disorder that exhibits various histologic features.
Collapse
Affiliation(s)
- Akiko Kitano
- Department of Diagnostic Pathology, Kyoto University Hospital, 54 Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masato Nakaguro
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Seiichi Tomotaki
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shintaro Hanaoka
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiko Kawai
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akiko Saito
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Masahiro Hayakawa
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Takahiro Yamada
- Clinical Genetics Unit, Kyoto University Hospital, Kyoto, Japan
| | - Masahiko Ikeda
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Tetsuo Onda
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Kazutoshi Cho
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, 54 Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Atsuko Nakazawa
- Department of Clinical Research, Saitama Children's Medical Center, Saitama, Japan
| | - Sachiko Minamiguchi
- Department of Diagnostic Pathology, Kyoto University Hospital, 54 Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
48
|
Verma N, Altmayer S, Hochhegger B, Barros MC, Rajderkar D, Mohammed TL. ChILD: A Pictorial Review of Pulmonary Imaging Findings in Childhood Interstitial Lung Diseases. Curr Probl Diagn Radiol 2020; 50:95-103. [PMID: 32317133 DOI: 10.1067/j.cpradiol.2020.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/18/2020] [Indexed: 11/22/2022]
Abstract
Childhood interstitial lung disease (chILD) is a group of lung disorders characterized by lung remodeling leading to abnormal gas exchange. ChILD is classified differently from adult interstitial lung disease and encompasses 2 broad categories: "disorders more prevalent in infancy" (<2 years) and "disorders not specific to infancy" (>2 years). High-resolution computed tomography can play an important role in the evaluation of chILD by narrowing the differential diagnosis and preventing unnecessary invasive procedures if typical imaging patterns are recognized. Thus, the pediatric radiologist should consider chILD in children with respiratory distress and identify the imaging patterns to suggest the diagnosis.
Collapse
Affiliation(s)
- Nupur Verma
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL
| | - Stephan Altmayer
- Department of Radiology, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruno Hochhegger
- Department of Radiology, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Dhanashree Rajderkar
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL
| | - Tan-Lucien Mohammed
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL.
| |
Collapse
|
49
|
Vincent M, Karolak JA, Deutsch G, Gambin T, Popek E, Isidor B, Szafranski P, Le Caignec C, Stankiewicz P. Clinical, Histopathological, and Molecular Diagnostics in Lethal Lung Developmental Disorders. Am J Respir Crit Care Med 2020; 200:1093-1101. [PMID: 31189067 DOI: 10.1164/rccm.201903-0495tr] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lethal lung developmental disorders are a rare but important group of pediatric diffuse lung diseases presenting with neonatal respiratory failure. On the basis of histopathological appearance at lung biopsy or autopsy, they have been termed: alveolar capillary dysplasia with misalignment of the pulmonary veins, acinar dysplasia, congenital alveolar dysplasia, and other unspecified primary pulmonary hypoplasias. However, the histopathological continuum in these lethal developmental disorders has made accurate diagnosis challenging, which has implications for recurrence risk. Over the past decade, genetic studies in infants with alveolar capillary dysplasia with misalignment of the pulmonary veins have revealed the causative role of the dosage-sensitive FOXF1 gene and its noncoding regulatory variants in the distant lung-specific enhancer at chromosome 16q24.1. In contrast, the molecular bases of acinar dysplasia and congenital alveolar dysplasia have remained poorly understood. Most recently, disruption of the TBX4-FGF10-FGFR2 epithelial-mesenchymal signaling pathway has been reported in patients with these lethal pulmonary dysplasias. Application of next-generation sequencing techniques, including exome sequencing and whole-genome sequencing, has demonstrated their complex compound inheritance. These data indicate that noncoding regulatory elements play a critical role in lung development in humans. We propose that for more precise lethal lung developmental disorder diagnosis, a diagnostic pathway including whole-genome sequencing should be implemented.
Collapse
Affiliation(s)
- Marie Vincent
- Service de Genetique Medicale, Centre Hospitalier Universitaire de Nantes, Nantes, France.,Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Nantes, L'institut du Thorax, Nantes, France
| | - Justyna A Karolak
- Department of Molecular and Human Genetics and.,Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Gail Deutsch
- Department of Pathology, Seattle Children's Hospital, Seattle, Washington
| | - Tomasz Gambin
- Department of Molecular and Human Genetics and.,Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland; and.,Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Edwina Popek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Bertrand Isidor
- Service de Genetique Medicale, Centre Hospitalier Universitaire de Nantes, Nantes, France.,Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Nantes, L'institut du Thorax, Nantes, France
| | | | - Cedric Le Caignec
- Service de Genetique Medicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | | |
Collapse
|
50
|
Wambach JA, Nogee LM. A Step toward Treating a Lethal Neonatal Lung Disease. STAT3 and Alveolar Capillary Dysplasia. Am J Respir Crit Care Med 2020; 200:961-962. [PMID: 31343895 PMCID: PMC6794102 DOI: 10.1164/rccm.201906-1102ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jennifer A Wambach
- Department of PediatricsSt. Louis Children's Hospital and Washington University in St. LouisSt. Louis, Missouriand
| | - Lawrence M Nogee
- Department of PediatricsJohns Hopkins University School of MedicineBaltimore, Maryland
| |
Collapse
|