1
|
Linkova N, Diatlova A, Zinchenko Y, Kornilova A, Snetkov P, Morozkina S, Medvedev D, Krasichkov A, Polyakova V, Yablonskiy P. Pulmonary Sarcoidosis: Experimental Models and Perspectives of Molecular Diagnostics Using Quantum Dots. Int J Mol Sci 2023; 24:11267. [PMID: 37511027 PMCID: PMC10379333 DOI: 10.3390/ijms241411267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Sarcoidosis is a complex inflammatory multisystem disease of unknown etiology that is characterised by epithelioid cell granulomatous lesions affecting various organs, mainly the lungs. In general, sarcoidosis is asymptomatic, but some cases result in severe complications and organ failure. So far, no accurate and validated modelling for clinical and pathohistological manifestations of sarcoidosis is suggested. Moreover, knowledge about disease-specific diagnostic markers for sarcoidosis is scarce. For instance, pulmonary granulomatosis is associated with the upregulated production of proinflammatory molecules: TNF-α, IL-6, CXCL1, CCL2, CCL18, CD163, serum angiotensin-converting enzyme (sACE), lysozyme, neopterin, and serum amyloid A (SAA). Quantum dots (QDs) are widely applied for molecular diagnostics of various diseases. QDs are semiconductor nanoparticles of a few nanometres in size, made from ZnS, CdS, ZnSe, etc., with unique physical and chemical properties that are useful for the labelling and detection in biological experiments. QDs can conjugate with various antibodies or oligonucleotides, allowing for high-sensitivity detection of various targets in organs and cells. Our review describes existing experimental models for sarcoidosis (in vitro, in vivo, and in silico), their advantages and restrictions, as well as the physical properties of quantum dots and their potential applications in the molecular diagnostics of sarcoidosis. The most promising experimental models include mice with TSC2 deletion and an in silico multiscale computational model of sarcoidosis (SarcoidSim), developed using transcriptomics and flow cytometry of human sarcoid biopsies. Both models are most efficient to test different candidate drugs for sarcoidosis.
Collapse
Affiliation(s)
- Natalia Linkova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2-4, 191036 Saint Petersburg, Russia
- St. Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, 197110 Saint Petersburg, Russia
| | - Anastasiia Diatlova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2-4, 191036 Saint Petersburg, Russia
| | - Yulia Zinchenko
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2-4, 191036 Saint Petersburg, Russia
| | - Anastasiia Kornilova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2-4, 191036 Saint Petersburg, Russia
| | - Petr Snetkov
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2-4, 191036 Saint Petersburg, Russia
- Chemical Bioengineering Center, ITMO University, Kronverksky Pr, 49A, 197101 Saint Petersburg, Russia
| | - Svetlana Morozkina
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2-4, 191036 Saint Petersburg, Russia
- Chemical Bioengineering Center, ITMO University, Kronverksky Pr, 49A, 197101 Saint Petersburg, Russia
| | - Dmitrii Medvedev
- St. Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, 197110 Saint Petersburg, Russia
| | - Alexandr Krasichkov
- Department of Radio Engineering Systems, Electrotechnical University "LETI", Prof. Popova Street 5F, 197022 Saint Petersburg, Russia
| | - Victoria Polyakova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2-4, 191036 Saint Petersburg, Russia
| | - Piotr Yablonskiy
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2-4, 191036 Saint Petersburg, Russia
- Department of Hospital Surgery of the Faculty of Medicine, St. Petersburg State University, University Embankment, 7-9, 199034 Saint Petersburg, Russia
| |
Collapse
|
2
|
Cocconcelli E, Bernardinello N, Castelli G, Petrarulo S, Bellani S, Saetta M, Spagnolo P, Balestro E. Molecular Mechanism in the Development of Pulmonary Fibrosis in Patients with Sarcoidosis. Int J Mol Sci 2023; 24:10767. [PMID: 37445947 DOI: 10.3390/ijms241310767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Sarcoidosis is a multisystemic disease of unknown etiology characterized by the formation of granulomas in various organs, especially lung and mediastinal hilar lymph nodes. The clinical course and manifestations are unpredictable: spontaneous remission can occur in approximately two thirds of patients; up to 20% of patients have chronic course of the lung disease (called advanced pulmonary sarcoidosis, APS) resulting in progressive loss of lung function, sometimes life-threatening that can lead to respiratory failure and death. The immunopathology mechanism leading from granuloma formation to the fibrosis in APS still remains elusive. Recent studies have provided new insights into the genetic factors and immune components involved in the clinical manifestation of the disease. In this review we aim to summarize the clinical-prognostic characteristics and molecular pathways which are believed to be associated with the development of APS.
Collapse
Affiliation(s)
- Elisabetta Cocconcelli
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Nicol Bernardinello
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Gioele Castelli
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Simone Petrarulo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Serena Bellani
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Marina Saetta
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Elisabetta Balestro
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| |
Collapse
|
3
|
Wu JH, Imadojemu S, Caplan AS. The Evolving Landscape of Cutaneous Sarcoidosis: Pathogenic Insight, Clinical Challenges, and New Frontiers in Therapy. Am J Clin Dermatol 2022; 23:499-514. [PMID: 35583850 DOI: 10.1007/s40257-022-00693-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Sarcoidosis is a multisystem disorder of unknown etiology characterized by accumulation of granulomas in affected tissue. Cutaneous manifestations are among the most common extrapulmonary manifestations in sarcoidosis and can lead to disfiguring disease requiring chronic therapy. In many patients, skin disease may be the first recognized manifestation of sarcoidosis, necessitating a thorough evaluation for systemic involvement. Although the precise etiology of sarcoidosis and the pathogenic mechanisms leading to granuloma formation, persistence, or resolution remain unclear, recent research has led to significant advances in our understanding of this disease. This article reviews recent advances in epidemiology, sarcoidosis clinical assessment with a focus on the dermatologist's role, disease pathogenesis, and new therapies in use and under investigation for cutaneous and systemic sarcoidosis.
Collapse
Affiliation(s)
- Julie H Wu
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, 240 East 38th Street, 11th Floor, New York, NY, 10016, USA
| | - Sotonye Imadojemu
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Avrom S Caplan
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, 240 East 38th Street, 11th Floor, New York, NY, 10016, USA.
- New York University Sarcoidosis Program, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Autophagy and Mitophagy-Related Pathways at the Crossroads of Genetic Pathways Involved in Familial Sarcoidosis and Host-Pathogen Interactions Induced by Coronaviruses. Cells 2021; 10:cells10081995. [PMID: 34440765 PMCID: PMC8393644 DOI: 10.3390/cells10081995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Sarcoidosis is a multisystem disease characterized by the development and accumulation of granulomas, the hallmark of an inflammatory process induced by environmental and/or infectious and or genetic factors. This auto-inflammatory disease mainly affects the lungs, the gateway to environmental aggressions and viral infections. We have shown previously that genetic predisposition to sarcoidosis occurring in familial cases is related to a large spectrum of pathogenic variants with, however, a clustering around mTOR (mammalian Target Of Rapamycin)-related pathways and autophagy regulation. The context of the COVID-19 pandemic led us to evaluate whether such genetic defects may increase the risk of a severe course of SARS-CoV2 infection in patients with sarcoidosis. We extended a whole exome screening to 13 families predisposed to sarcoidosis and crossed the genes sharing mutations with the list of genes involved in the SARS-CoV2 host-pathogen protein-protein interactome. A similar analysis protocol was applied to a series of 100 healthy individuals. Using ENRICH.R, a comprehensive gene set enrichment web server, we identified the functional pathways represented in the set of genes carrying deleterious mutations and confirmed the overrepresentation of autophagy- and mitophagy-related functions in familial cases of sarcoidosis. The same protocol was applied to the set of genes common to sarcoidosis and the SARS-CoV2-host interactome and found a significant enrichment of genes related to mitochondrial factors involved in autophagy, mitophagy, and RIG-I-like (Retinoic Acid Inducible Gene 1) Receptor antiviral response signaling. From these results, we discuss the hypothesis according to which sarcoidosis is a model for studying genetic abnormalities associated with host response to viral infections as a consequence of defects in autophagy and mitophagy processes.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Epidemiological and clinical observations as well as familial clustering support the existence of a genetic predisposition to sarcoidosis. In this article, we review the most recent findings in genetics of sarcoidosis and discuss how the identification of risk alleles may help advancing our understanding of disease etiology and development. RECENT FINDINGS Genetic studies of sarcoidosis phenotypes have identified novel and ancestry-specific associations. Gene-environment interaction studies highlighted the importance of integrating genetic information when assessing the relationship between sarcoidosis and environmental exposures. A case-control-family study revealed that the heritability of sarcoidosis is only 49%, suggesting the existence of additional important contributors to disease risk. The application of whole-exome sequencing has identified associations with disease activity and prognosis. Finally, gene expression studies of circulating immune cells have identified shared and unique pathways between sarcoidosis and other granulomatous diseases. SUMMARY Sarcoidosis genetic research has led to the identification of a number of associations with both sarcoidoses per se and disease phenotypes. Newer sequencing technologies are likely to increase the number of genetic variants associated with sarcoidosis. However, studying phenotypically and ethnically homogeneous patient subsets remains critically important regardless of the genetic approach used.
Collapse
|
6
|
Fritz D, Ferwerda B, Brouwer MC, van de Beek D. Whole genome sequencing identifies variants associated with sarcoidosis in a family with a high prevalence of sarcoidosis. Clin Rheumatol 2021; 40:3735-3743. [PMID: 33903979 PMCID: PMC8357727 DOI: 10.1007/s10067-021-05684-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/23/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023]
Abstract
Objective We studied genetic risk factors associated with sarcoidosis within a family with a high prevalence of this disease. Methods We studied 41 members of a family with a high rate of sarcoidosis, including an index patient with treatment-resistant neurosarcoidosis. Whole genome sequencing was performed for six affected family members and variations associated with loss of function were filtered out as candidate genes. Findings were validated by using amplicon sequencing within all 41 family members with DNA available and candidate genes were screened on absence and presence within the sarcoidosis affected and non-affected. Results Family members (n = 61) from 5 generations were available for participation including 13 subjects diagnosed with sarcoidosis (20%). Analyses identified 36 candidate variants within 34 candidate genes. Variations within three of these genes (JAK2, BACH2, and NCF1) previously have been associated with autoimmune diseases. Conclusions We identified 34 genes with a possible role in the etiology of sarcoidosis, including JAK2. Our results may suggest evaluation of JAK inhibitors in treatment-resistant sarcoidosis.
Key Points • JAK2 has a potential role in the etiology of sarcoidosis and is a potential therapeutic target. • We identified 33 additional candidate genes of which BACH2 and NCF1 have been previously associated with autoimmune disease. |
Supplementary Information The online version contains supplementary material available at 10.1007/s10067-021-05684-w.
Collapse
Affiliation(s)
- Daan Fritz
- Department of Neurology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam UMC, P.O. Box 22660, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Bart Ferwerda
- Department of Neurology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam UMC, P.O. Box 22660, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Matthijs C Brouwer
- Department of Neurology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam UMC, P.O. Box 22660, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam UMC, P.O. Box 22660, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Garman L, Montgomery CG, Rivera NV. Recent advances in sarcoidosis genomics: epigenetics, gene expression, and gene by environment (G × E) interaction studies. Curr Opin Pulm Med 2020; 26:544-553. [PMID: 32701681 PMCID: PMC7735660 DOI: 10.1097/mcp.0000000000000719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW We aim to review the most recent findings in genomics of sarcoidosis and highlight the gaps in the field. RECENT FINDINGS Original explorations of sarcoidosis subphenotypes, including cases associated with the World Trade Center and ocular sarcoidosis, have identified novel risk loci. Innovative gene--environment interaction studies utilizing modern analytical techniques have discovered risk loci associated with smoking and insecticide exposure. The application of whole-exome sequencing has identified genetic variants associated with persistent sarcoidosis and rare functional variations. A single epigenomics study has provided background knowledge of DNA methylation mechanisms in comparison with gene expression data. The application of machine-learning techniques has suggested new drug repositioning for the treatment of sarcoidosis. Several gene expression studies have identified prominent inflammatory pathways enriched in the affected tissue. SUMMARY Certainly, sarcoidosis research has recently advanced in the exploration of disease subphenotypes, utilizing novel analytical techniques, and including measures of clinical variation. Nevertheless, large-scale and diverse cohorts investigated with advanced sequencing methods, such as whole-genome and single-cell RNA sequencing, epigenomics, and meta-analysis coupled with cutting-edge analytic approaches, when employed, will broaden and translate genomics findings into clinical applications, and ultimately open venues for personalized medicine.
Collapse
Affiliation(s)
- Lori Garman
- Department of Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Courtney G. Montgomery
- Department of Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Natalia V. Rivera
- Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Rheumatology Division, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center of Molecular Medicine (CMM), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Calender A, Weichhart T, Valeyre D, Pacheco Y. Current Insights in Genetics of Sarcoidosis: Functional and Clinical Impacts. J Clin Med 2020; 9:E2633. [PMID: 32823753 PMCID: PMC7465171 DOI: 10.3390/jcm9082633] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Sarcoidosis is a complex disease that belongs to the vast group of autoinflammatory disorders, but the etiological mechanisms of which are not known. At the crosstalk of environmental, infectious, and genetic factors, sarcoidosis is a multifactorial disease that requires a multidisciplinary approach for which genetic research, in particular, next generation sequencing (NGS) tools, has made it possible to identify new pathways and propose mechanistic hypotheses. Codified treatments for the disease cannot always respond to the most progressive forms and the identification of new genetic and metabolic tracks is a challenge for the future management of the most severe patients. Here, we review the current knowledge regarding the genes identified by both genome wide association studies (GWAS) and whole exome sequencing (WES), as well the connection of these pathways with the current research on sarcoidosis immune-related disorders.
Collapse
Affiliation(s)
- Alain Calender
- Department of Molecular and Medical genetics, Hospices Civils de Lyon, University Hospital, 69500 Bron, France;
- CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory, University Claude Bernard Lyon 1, 69007 Lyon, France
| | - Thomas Weichhart
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria;
| | - Dominique Valeyre
- INSERM UMR 1272, Department of Pulmonology, Avicenne Hospital, University Sorbonne Paris Nord, Saint Joseph Hospital, AP-HP, 75014 Paris, France;
| | - Yves Pacheco
- Department of Molecular and Medical genetics, Hospices Civils de Lyon, University Hospital, 69500 Bron, France;
- CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory, University Claude Bernard Lyon 1, 69007 Lyon, France
| |
Collapse
|
9
|
Berkowitz ST, Brock AL, Reichstein DA. An amelanotic choroidal melanoma arising in a young man with tattoo-associated sarcoidosis. Am J Ophthalmol Case Rep 2020; 18:100655. [PMID: 32211561 PMCID: PMC7082514 DOI: 10.1016/j.ajoc.2020.100655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose To describe a patient with an amelanotic choroidal melanoma, originally misdiagnosed as a choroidal granuloma, following his systemic diagnosis of tattoo-associated sarcoidosis. Observations The amelanotic choroidal tumor, suspected to be a granuloma, failed initial steroid treatment. Full-thickness chorioretinal biopsy demonstrated histologic presence of uveal melanoma and tumor genetics via GEP analysis demonstrated a PRAME negative, Class 1A lesion. The amelanotic choroidal melanoma was treated successfully with I-125 plaque brachytherapy. Conclusion and importance Despite a systemic diagnosis which predisposes a patient to uveal granuloma, amelanotic choroidal melanomas can still occur and should be considered. The association of uveal melanoma and sarcoidosis remains rare and of unclear significance.
Collapse
|
10
|
Pacheco Y, Lim CX, Weichhart T, Valeyre D, Bentaher A, Calender A. Sarcoidosis and the mTOR, Rac1, and Autophagy Triad. Trends Immunol 2020; 41:286-299. [PMID: 32122794 DOI: 10.1016/j.it.2020.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022]
Abstract
Sarcoidosis is an enigmatic multisystem disease characterized by the development and accumulation of granulomas: a compact collection of macrophages that have differentiated into epithelioid cells and which are associated with T helper (Th)1 and Th17 cells. Although no single causative factor has been shown to underlie sarcoidosis in humans, its etiology has been related to microbial, environmental, and genetic factors. We examine how these factors play a role in sarcoidosis pathogenesis. Specifically, we propose that dysfunction of mTOR, Rac1, and autophagy-related pathways not only hampers pathogen or nonorganic particle clearance but also participates in T cell and macrophage dysfunction, driving granuloma formation. This concept opens new avenues for potentially treating sarcoidosis and may serve as a blueprint for other granulomatous disorders.
Collapse
Affiliation(s)
- Yves Pacheco
- Inflammation and Immunity of the Respiratory Epithelium - EA7426 (PI3) - South Medical University Hospital - Lyon 1 Claude Bernard University, Pierre-Bénite, France
| | - Clarice X Lim
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Dominique Valeyre
- Department of Pulmonology, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), EA-2363, Université Paris 13, Bobigny, France
| | - Abderrazzak Bentaher
- Inflammation and Immunity of the Respiratory Epithelium - EA7426 (PI3) - South Medical University Hospital - Lyon 1 Claude Bernard University, Pierre-Bénite, France
| | - Alain Calender
- Inflammation and Immunity of the Respiratory Epithelium - EA7426 (PI3) - South Medical University Hospital - Lyon 1 Claude Bernard University, Pierre-Bénite, France; Department of Molecular and Medical Genetics, Hospices Civils de Lyon, University Hospital, Bron, France.
| |
Collapse
|
11
|
Arbustini E, Narula N, Giuliani L, Di Toro A. Genetic Basis of Myocarditis: Myth or Reality? MYOCARDITIS 2020. [PMCID: PMC7122345 DOI: 10.1007/978-3-030-35276-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The genetic basis of myocarditis remains an intriguing concept, at least as long as the definition of myocarditis constitutes the definitive presence of myocardial inflammation sufficient to cause the observed ventricular dysfunction in the setting of cardiotropic infections. Autoimmune or immune-mediated myocardial inflammation constitutes a complex area of clinical interest, wherein numerous and not yet fully understood role of hereditary auto-inflammatory diseases can result in inflammation of the pericardium and myocardium. Finally, myocardial involvement in hereditary immunodeficiency diseases, cellular and humoral, is a possible trigger for infections which may complicate the diseases themselves. Whether the role of constitutional genetics can make the patient susceptible to myocardial inflammation remains yet to be explored.
Collapse
|
12
|
Lahtela E, Kankainen M, Sinisalo J, Selroos O, Lokki ML. Exome Sequencing Identifies Susceptibility Loci for Sarcoidosis Prognosis. Front Immunol 2019; 10:2964. [PMID: 31921204 PMCID: PMC6937869 DOI: 10.3389/fimmu.2019.02964] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022] Open
Abstract
Many sarcoidosis-associating immunological genes have been shown to be shared between other immune-mediated diseases. In Finnish sarcoidosis patients, good prognosis subjects more commonly have HLA-DRB1*03:01 and/or HLA-DRB1*04:01-DPB1*04:01 haplotype, but no marker for persistent disease have been found. The objective was to further pinpoint genetic differences between prognosis subgroups in relation to the HLA markers. Whole-exome sequencing was conducted for 72 patients selected based on disease activity (resolved disease, n = 36; persistent disease, n = 36). Both groups were further divided by the HLA markers (one/both markers, n = 18; neither of the markers, n = 18). The Finnish exome data from the Genome Aggregation Database was used as a control population in the WES sample. Statistical analyses included single-variant analysis for common variants and gene level analysis for rare variants. We attempted to replicate associated variants in 181 Finnish sarcoidosis patients and 150 controls. An association was found in chromosome 1p36.21 (AADACL3 and C1orf158), which has recently been associated with sarcoidosis in another WES study. In our study, variations in these genes were associated with resolved disease (AADACL3, p = 0.0001 and p = 0.0003; C1orf158, p = 7.03E-05). Another interesting chromosomal region also peaked, Leucocyte Receptor Complex in 19q13.42, but the association diminished in the replication sample. In conclusion, this WES study supports the previously found association in the region 1p36.21. Furthermore, a novel to sarcoidosis region was found, but additional studies are warranted to verify this association.
Collapse
Affiliation(s)
- Elisa Lahtela
- Transplantation Laboratory, Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.,Medical and Clinical Genetics, Helsinki University Hospital, University of Hesinki, Helsinki, Finland
| | - Juha Sinisalo
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Marja-Liisa Lokki
- Transplantation Laboratory, Department of Pathology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Petrek M. Editorial: Complex Immune Mediated Pulmonary Disease: How Genetic Data Can Influence Clinical Practice. Front Med (Lausanne) 2019; 6:150. [PMID: 31334234 PMCID: PMC6615255 DOI: 10.3389/fmed.2019.00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 11/18/2022] Open
Affiliation(s)
- Martin Petrek
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
- Departments of Immunology and Experimental Medicine, University Hospital Olomouc, Olomouc, Czechia
| |
Collapse
|
14
|
Calender A, Valeyre D, Israel-Biet D, Pacheco Y. Correspondence for "clinical epidemiology of familial sarcoidosis: A systematic literature review". Respir Med 2019; 160:105717. [PMID: 31202573 DOI: 10.1016/j.rmed.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Alain Calender
- Department of Molecular and Medical Genetics, Hospices Civils de Lyon, University Hospital Lyon 1, Bron, France.
| | - Dominique Valeyre
- INSERM U-1272, University Paris 13 and AP-HP, Avicenne Hospital, Bobigny, France
| | | | - Yves Pacheco
- Inflammation and Immunity of the Respiratory Epithelium, Lyon 1 Claude Bernard University, EA-7426 (PI3), Pierre-Bénite, France
| |
Collapse
|
15
|
Calender A, Lim CX, Weichhart T, Buisson A, Besnard V, Rollat-Farnier PA, Bardel C, Roy P, Cottin V, Devouassoux G, Finat A, Pinson S, Lebecque S, Nunes H, Israel-Biet D, Bentaher A, Valeyre D, Pacheco Y. Exome sequencing and pathogenicity-network analysis of five French families implicate mTOR signalling and autophagy in familial sarcoidosis. Eur Respir J 2019; 54:13993003.00430-2019. [PMID: 31023854 DOI: 10.1183/13993003.00430-2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/14/2019] [Indexed: 12/18/2022]
|