1
|
Bernardini C, Mantia DL, Salaroli R, Ventrella D, Elmi A, Zannoni A, Forni M. Isolation of Vascular Wall Mesenchymal Stem Cells from the Thoracic Aorta of Adult Göttingen Minipigs: A New Protocol for the Simultaneous Endothelial Cell Collection. Animals (Basel) 2023; 13:2601. [PMID: 37627392 PMCID: PMC10451532 DOI: 10.3390/ani13162601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Two main classes of perivascular multipotent populations have been described: the microvascular pericytes and the vascular wall mesenchymal stem cells (VW-MSCs). VW-MSCs are isolated from large vessels in many species and they participate in vascular remodeling together with other cellular components such as endothelial cells. Considering that the Göttingen Minipigs are widely used in Europe as a translational model in the field of cardiovascular diseases, the aim of the present research was to isolate VW-MSCs from the adult aorta of Göttingen Minipigs while preserving and also collecting endothelial cells. The results obtained in the present research demonstrated that this new protocol allows us to obtain a pure population of VW-MSCs and endothelial cells. VW-MSCs from Göttingen Minipigs responded fully to the MSC minima international criteria, being positive to CD105, CD90, and CD44 and negative to CD45 and CD34. Moreover, VW-MSCs presented a differentiative potential towards osteogenic, chondrogenic, and adipogenic lineages. Overall, the present protocol, preserving the viability and phenotypic features of the two isolated populations, opens future possibilities of using minipig VW-MSCs and endothelial cells in in vitro vascular remodeling studies.
Collapse
Affiliation(s)
- Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy;
| | - Debora La Mantia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
| | - Roberta Salaroli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
| | - Alberto Elmi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy;
| | - Monica Forni
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy;
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
2
|
Petinati N, Shipounova I, Sats N, Dorofeeva A, Sadovskaya A, Kapranov N, Tkachuk Y, Bondarenko A, Muravskaya M, Kotsky M, Kaplanskaya I, Vasilieva T, Drize N. Multipotent Mesenchymal Stromal Cells from Porcine Bone Marrow, Implanted under the Kidney Capsule, form an Ectopic Focus Containing Bone, Hematopoietic Stromal Microenvironment, and Muscles. Cells 2023; 12:268. [PMID: 36672203 PMCID: PMC9857022 DOI: 10.3390/cells12020268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) are an object of intense investigation due to their therapeutic potential. MSCs have been well studied in vitro, while their fate after implantation in vivo has been poorly analyzed. We studied the properties of MSCs from the bone marrow (BM-MSC) before and after implantation under the renal capsule using a mini pig model. Autologous BM-MSCs were implanted under the kidney capsule. After 2.5 months, ectopic foci containing bones, foci of ectopic hematopoiesis, bone marrow stromal cells and muscle cells formed. Small pieces of the implant were cultivated as a whole. The cells that migrated out from these implants were cultured, cloned, analyzed and were proven to meet the most of criteria for MSCs, therefore, they are designated as MSCs from the implant-IM-MSCs. The IM-MSC population demonstrated high proliferative potential, similar to BM-MSCs. IM-MSC clones did not respond to adipogenic differentiation inductors: 33% of clones did not differentiate, and 67% differentiated toward an osteogenic lineage. The BM-MSCs revealed functional heterogeneity after implantation under the renal capsule. The BM-MSC population consists of mesenchymal precursor cells of various degrees of differentiation, including stem cells. These newly discovered properties of mini pig BM-MSCs reveal new possibilities in terms of their manipulation.
Collapse
Affiliation(s)
- Nataliya Petinati
- Laboratory for Physiology of Hematopoiesis, National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, 125167 Moscow, Russia
| | - Irina Shipounova
- Laboratory for Physiology of Hematopoiesis, National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, 125167 Moscow, Russia
| | - Natalia Sats
- Laboratory for Physiology of Hematopoiesis, National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, 125167 Moscow, Russia
| | - Alena Dorofeeva
- Laboratory for Physiology of Hematopoiesis, National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, 125167 Moscow, Russia
| | - Alexandra Sadovskaya
- Laboratory for Physiology of Hematopoiesis, National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, 125167 Moscow, Russia
- Department of Immunology, Faculty of Biology, Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Nikolay Kapranov
- Laboratory for Physiology of Hematopoiesis, National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, 125167 Moscow, Russia
| | - Yulia Tkachuk
- Bioclinic for Working with Animals, Federal State Budgetary Scientific Institution Izmerov Research Institute of Occupational Health, 105275 Moscow, Russia
| | - Anatoliy Bondarenko
- Bioclinic for Working with Animals, Federal State Budgetary Scientific Institution Izmerov Research Institute of Occupational Health, 105275 Moscow, Russia
| | - Margarita Muravskaya
- Bioclinic for Working with Animals, Federal State Budgetary Scientific Institution Izmerov Research Institute of Occupational Health, 105275 Moscow, Russia
| | - Michail Kotsky
- Bioclinic for Working with Animals, Federal State Budgetary Scientific Institution Izmerov Research Institute of Occupational Health, 105275 Moscow, Russia
| | - Irina Kaplanskaya
- MNIOI Them. P.A. Herzen—Branch of the Federal State Budgetary Institution “NMITs Radiology” of the Ministry of Health of Russia, Department of Pathomorphology, 125284 Moscow, Russia
| | - Tamara Vasilieva
- Department of Cell Biology, Faculty of Biology, Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Nina Drize
- Laboratory for Physiology of Hematopoiesis, National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, 125167 Moscow, Russia
| |
Collapse
|
3
|
Zimmermann CE, Mackens-Kiani L, Acil Y, Terheyden H. Characterization of porcine mesenchymal stromal cells and their proliferative and osteogenic potential in long-term culture. J Stem Cells Regen Med 2022; 17:49-55. [PMID: 35250201 DOI: 10.46582/jsrm.1702008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022]
Abstract
Background: Porcine mesenchymal stromal cells (pMSCs) are considered a valuable research model for bone tissue engineering, which requires adequate amounts of viable cells with sufficient potential for osteogenic differentiation. For isolation and expansion of these cells through long-term culture, appropriate culture conditions are needed. Objective: To study the effect of extended in vitro cultivation on pMSC proliferation and differentiation potential using different osteogenic and adipogenic induction media. Methods: pMSCs were isolated from the bone marrow of adult Göttingen minipigs, cultured, expanded to passage 20 (~160 days) and characterized by their expression of cell surface markers (wCD44, CD45, CD90, SWC9, fibronectin), alkaline phosphatase (ALP), and osteocalcin and their potential for osteogenic and adipogenic differentiation using different induction media. Results: pMSCs retained their capacity for proliferation and osteogenic differentiation, and the number of CD90-positive cells increased significantly over more than 60 population doublings. CD90 expression in uninduced cells correlated strongly with ALP expression following osteogenic induction. Medium enriched with calcium yielded a stronger osteogenic response. Conclusion: The selection of CD90-positive MSCs and adequate levels of calcium seem to enhance the osteogenic phenotype for bone tissue engineering.
Collapse
Affiliation(s)
- Corinna E Zimmermann
- Department of Craniomaxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105 Kiel, Germany.,University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | | | - Yahya Acil
- Department of Craniomaxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105 Kiel, Germany
| | - Hendrik Terheyden
- Department of Craniomaxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105 Kiel, Germany
| |
Collapse
|
4
|
Saeedi M, Nezhad MS, Mehranfar F, Golpour M, Esakandari MA, Rashmeie Z, Ghorbani M, Nasimi F, Hoseinian SN. Biological Aspects and Clinical Applications of Mesenchymal Stem Cells: Key Features You Need to be Aware of. Curr Pharm Biotechnol 2021; 22:200-215. [PMID: 32895040 DOI: 10.2174/1389201021666200907121530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 11/22/2022]
Abstract
Mesenchymal Stem Cells (MSCs), a form of adult stem cells, are known to have a selfrenewing property and the potential to specialize into a multitude of cells and tissues such as adipocytes, cartilage cells, and fibroblasts. MSCs can migrate and home to the desired target zone where inflammation is present. The unique characteristics of MSCs in repairing, differentiation, regeneration, and the high capacity of immune modulation have attracted tremendous attention for exerting them in clinical purposes, as they contribute to the tissue regeneration process and anti-tumor activity. The MSCs-based treatment has demonstrated remarkable applicability towards various diseases such as heart and bone malignancies, and cancer cells. Importantly, genetically engineered MSCs, as a stateof- the-art therapeutic approach, could address some clinical hurdles by systemic secretion of cytokines and other agents with a short half-life and high toxicity. Therefore, understanding the biological aspects and the characteristics of MSCs is an imperative issue of concern. Herein, we provide an overview of the therapeutic application and the biological features of MSCs against different inflammatory diseases and cancer cells. We further shed light on MSCs' physiological interaction, such as migration, homing, and tissue repairing mechanisms in different healthy and inflamed tissues.
Collapse
Affiliation(s)
- Mohammad Saeedi
- Department of Laboratory Science, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Muhammad S Nezhad
- Stem Cells and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mehranfar
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahdieh Golpour
- School of Paramedical Sciences, Semnan University of Medical Sciences, Sorkheh, Semnan, Iran
| | - Mohammad A Esakandari
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Zahra Rashmeie
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Ghorbani
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nasimi
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed N Hoseinian
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
5
|
Aprile P, Kelly DJ. Hydrostatic Pressure Regulates the Volume, Aggregation and Chondrogenic Differentiation of Bone Marrow Derived Stromal Cells. Front Bioeng Biotechnol 2021; 8:619914. [PMID: 33520969 PMCID: PMC7844310 DOI: 10.3389/fbioe.2020.619914] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/15/2020] [Indexed: 01/17/2023] Open
Abstract
The limited ability of articular cartilage to self-repair has motivated the development of tissue engineering strategies that aim to harness the regenerative potential of mesenchymal stem/marrow stromal cells (MSCs). Understanding how environmental factors regulate the phenotype of MSCs will be central to unlocking their regenerative potential. The biophysical environment is known to regulate the phenotype of stem cells, with factors such as substrate stiffness and externally applied mechanical loads known to regulate chondrogenesis of MSCs. In particular, hydrostatic pressure (HP) has been shown to play a key role in the development and maintenance of articular cartilage. Using a collagen-alginate interpenetrating network (IPN) hydrogel as a model system to tune matrix stiffness, this study sought to investigate how HP and substrate stiffness interact to regulate chondrogenesis of MSCs. If applied during early chondrogenesis in soft IPN hydrogels, HP was found to downregulate the expression of ACAN, COL2, CDH2 and COLX, but to increase the expression of the osteogenic factors RUNX2 and COL1. This correlated with a reduction in SMAD 2/3, HDAC4 nuclear localization and the expression of NCAD. It was also associated with a reduction in cell volume, an increase in the average distance between MSCs in the hydrogels and a decrease in their tendency to form aggregates. In contrast, the delayed application of HP to MSCs grown in soft hydrogels was associated with increased cellular volume and aggregation and the maintenance of a chondrogenic phenotype. Together these findings demonstrate how tailoring the stiffness and the timing of HP exposure can be leveraged to regulate chondrogenesis of MSCs and opens alternative avenues for developmentally inspired strategies for cartilage tissue regeneration.
Collapse
Affiliation(s)
- Paola Aprile
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Son YB, Bharti D, Kim SB, Bok EY, Lee SY, Ho HJ, Lee SL, Rho GJ. Hematological patterns and histopathological assessment of Miniature Pigs in the experiments on human mesenchymal stem cell transplantation. Int J Med Sci 2021; 18:1259-1268. [PMID: 33526987 PMCID: PMC7847617 DOI: 10.7150/ijms.53036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/18/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Multipotent and immune privileged properties of mesenchymal stem cells (MSCs) were investigated for the treatment of various clinical diseases. For the years, many researches into the animal studies evaluated human stem cell therapeutic capacity related to the regenerative medicine. However, there were limited reports on immune privileged properties of human MSCs in animal studies. The present study investigated hematological and biochemical parameter and lymphocyte subset in mini-pigs following human MSCs transplantation as a means of validation of reliability that influence the animal test results. Methods: The miniature pigs were transplanted with human MSCs seeded with scaffold. After transplantation, all animals were evaluated by CBC, biochemistry and lymphocyte subset test. After 9 weeks, all pigs were sacrificed and organs were histologically analyzed. Results: CBC test showed that levels of RBC were decreased and reticulocyte, WBC and neutrophil were increased in transient state initially after transplantation, but returned to normal value. The proportion of B lymphocyte and cytotoxic T cell were also initially enhanced within the normal range temporarily. The female and male miniature pigs showed normal ranges for blood chemistry assessments. During the 9 weeks post-operative period, the animals showed a continuous increase in body weight and length. Furthermore, no abnormal findings were observed from the histological analysis of sacrificed pigs. Conclusions: Overall, miniature pigs transplanted with human MSCs seeded with scaffold were found to have physiologically similar results to normal animals. This result might be a reliable indicator of the animal experiments using miniature pigs with human MSCs.
Collapse
Affiliation(s)
- Young-Bum Son
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Saet-Byul Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Eun-Yeong Bok
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang-Yeob Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Han-Jang Ho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
7
|
An JH, Li FP, He P, Chen JS, Cai ZG, Liu SR, Yue CJ, Liu YL, Hou R. Characteristics of Mesenchymal Stem Cells Isolated from the Bone Marrow of Red Pandas. ZOOLOGY 2020; 140:125775. [PMID: 32251890 DOI: 10.1016/j.zool.2020.125775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/08/2023]
Abstract
Mesenchymal stem cells (MSC) have strong therapeutic potential due to their capacity for self-renewal and multilineage differentiation. MSCs can also be useful in preserving the current genetic diversity of endangered wildlife. To date, MSCs from various species have been studied, but only a few species of endangered wild animals have been reported. Adult bone marrow (BM) is a rich source of mesenchymal stem cells. The aim of this study was to isolate and characterize MSCs derived from the BM of red pandas. Red panda BM-MSCs isolated from five individuals were fibroblast-like cells, similar to other species. Cultured BM-MSCs with normal karyotype were negative for the hematopoietic line marker CD34 and the endothelial cell marker CD31 but were positive for MSC markers, including CD44, CD105 and CD90. RT-PCR and western blot analysis showed self-renewal and pluripotency genes, including Oct4, Sox2 and Klf4, were also expressed in red panda BM-MSCs. Finally, red panda BM-MSCs had the potential for differentiation into osteogenic, adipogenic and neuron-like cells by using a combination of previously reported protocols for other species. We have therefore demonstrated that cells harvested from red panda bone marrow are capable of extensive in vitro multiplication and multilineage differentiation, which is an essential step toward their use in the preservation of red pandas biological diversity and future studies on MSC applications in endangered species.
Collapse
Affiliation(s)
- Jun-Hui An
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Fei-Ping Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Ping He
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Jia-Song Chen
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Zhi-Gang Cai
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Song-Rui Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Chan-Juan Yue
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Yu-Liang Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China.
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China.
| |
Collapse
|
8
|
Ringe J, Hemmati-Sadeghi S, Fröhlich K, Engels A, Reiter K, Dehne T, Sittinger M. CCL25-Supplemented Hyaluronic Acid Attenuates Cartilage Degeneration in a Guinea Pig Model of Knee Osteoarthritis. J Orthop Res 2019; 37:1723-1729. [PMID: 30977553 DOI: 10.1002/jor.24312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 02/04/2023]
Abstract
There is evidence that the application of mesenchymal stromal cells (MSCs) counteracts osteoarthritis (OA) progression. However, the prospect of extracting and expanding these cells might be limited. The aim of this study was to investigate whether hyaluronic acid (HA) supplemented with MSC-recruiting chemokine C-C motif ligand 25 (CCL25) can influence the natural course of spontaneous OA in the guinea pig. CCL25 concentration in synovial fluid (SF) was quantified with enzyme-linked immunosorbent assay. Boyden chamber cell migration assay was used to test CCL25-mediated migration of guinea pig MSC. Forty-nine 11-month-old male guinea pigs were divided into seven groups. The main treatments consisted of five intra-articular injections of HA in pure form and in combination with three doses of CCL25 (63, 693, and 6,993 pg) given at a weekly interval. The severity of cartilage damage was assessed by using a modified Mankin score. The measured average physiological concentration of CCL25 in SF of animals is 85 ± 39 pg/ml. MSC showed a 3.2-fold increase in cell migration at 1,000 nM CCL25 in vitro demonstrating the biological migratory activity of CCL25 on these cells. In vivo, treatment with HA alone did not reduce OA progression. Similarly, OA scores were not found significantly reduced after treatment with 63 pg CCL25 + HA. However, when compared to pure HA, treatment with 693 pg CCL25 + HA and 6,993 pg CCL25 + HA significantly reduced the OA score from 10.1 to 7.4 (-28%) and 8.4 (-20%), respectively. These data suggest that intra-articular injections of HA supplemented with CCL25 attenuates OA. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1723-1729, 2019.
Collapse
Affiliation(s)
- Jochen Ringe
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charitéplatz 1, 10117, Berlin, Germany
| | - Shabnam Hemmati-Sadeghi
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charitéplatz 1, 10117, Berlin, Germany
| | - Kristin Fröhlich
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charitéplatz 1, 10117, Berlin, Germany
| | - Andreas Engels
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charitéplatz 1, 10117, Berlin, Germany
| | - Katja Reiter
- Julius Wolff Institute and Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Föhrer Straße 15, 13353, Berlin, Germany
| | - Tilo Dehne
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charitéplatz 1, 10117, Berlin, Germany
| | - Michael Sittinger
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
9
|
Bernardini C, Bertocchi M, Zannoni A, Salaroli R, Tubon I, Dothel G, Fernandez M, Bacci ML, Calzà L, Forni M. Constitutive and LPS-stimulated secretome of porcine Vascular Wall-Mesenchymal Stem Cells exerts effects on in vitro endothelial angiogenesis. BMC Vet Res 2019; 15:123. [PMID: 31029157 PMCID: PMC6487069 DOI: 10.1186/s12917-019-1873-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
Background MSCs secretome is under investigation as an alternative to whole-cell-based therapies, since it is enriched of bioactive molecules: growth factors, cytokines and chemokines. Taking into account the translational value of the pig model, the leading aim of the present paper was to characterize the secretome of porcine Vascular Wall–Mesenchymal Stem Cells (pVW-MSCs) and its change in presence of LPS stimulation. Moreover, considering the importance of angiogenesis in regenerative mechanisms, we analysed the effect of pVW-MSCs secretome on in vitro angiogenesis. Results Our results demonstrated that conditioned medium from unstimulated pVW-MSCs contained high levels of IL-8, GM-CSF, IFN-γ and other immunomodulatory proteins: IL-6 IL-18 IL-4 IL-2 IL-10. LPS modulates pVW-MSCs gene expression and secretome composition, in particular a significant increase of IL-6 and IL-8 was observed; conversely, the amount of GM-CSF, IFN-γ, IL-2, IL-4, IL-10 and IL-18 showed a significant transient decrease with the LPS stimulation. Conditioned medium from unstimulated pVW-MSCs induced in vitro endothelial angiogenesis, which is more evident when the conditioned medium was from LPS stimulated pVW-MSCs. Conclusions The lines of evidence here presented shed a light on possible future application of secretome derived by pVW-MSCs on research studies in translational regenerative medicine.
Collapse
Affiliation(s)
- Chiara Bernardini
- Department of Veterinary Medical Sciences DIMEVET, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy.
| | - Martina Bertocchi
- Department of Veterinary Medical Sciences DIMEVET, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences DIMEVET, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy
| | - Roberta Salaroli
- Department of Veterinary Medical Sciences DIMEVET, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy
| | - Irvin Tubon
- Department of Veterinary Medical Sciences DIMEVET, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy.,Escuela de Enfermeria, Facultad de Ciencias Medicas, Universidad Regional Autónoma de Los Andes UNIANDES, Ambato, EC180150, Ecuador
| | - Giovanni Dothel
- Department of Medical and Surgical Sciences - DIMEC, University of Bologna, Bologna, Italy
| | - Mercedes Fernandez
- Department of Veterinary Medical Sciences DIMEVET, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences DIMEVET, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy
| | - Laura Calzà
- Department of Pharmacy and Biotechnology - FaBiT, University of Bologna, Bologna, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences DIMEVET, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy
| |
Collapse
|
10
|
Fernandes TL, Shimomura K, Asperti A, Pinheiro CCG, Caetano HVA, Oliveira CRGCM, Nakamura N, Hernandez AJ, Bueno DF. Development of a Novel Large Animal Model to Evaluate Human Dental Pulp Stem Cells for Articular Cartilage Treatment. Stem Cell Rev Rep 2018; 14:734-743. [PMID: 29728886 PMCID: PMC6132738 DOI: 10.1007/s12015-018-9820-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose Chondral lesion is a pathology with high prevalence, reaching as much as 63% of general population and 36% among athletes. The ability of human Dental Pulp Stem Cells (DPSCs) to differentiate into chondroblasts in vitro suggests that this stem cell type may be useful for tissue bioengineering. However, we have yet to identify a study of large animal models in which DPSCs were used to repair articular cartilage. Therefore, this study aimed to describe a novel treatment for cartilage lesion with DPSCs on a large animal model. Methods Mesenchymal stem cells (MSC) were obtained from deciduous teeth and characterized by flow cytometry. DPSCs were cultured and added to a collagen type I/III biomaterial composite scaffold. Brazilian miniature pig (BR-1) was used. A 6-mm diameter, full-thickness chondral defect was created in each posterior medial condyle. The defects were covered with scaffold alone or scaffold + DPSCs on the contralateral side. Animals were euthanized 6 weeks post-surgery. Cartilage defects were analyzed macroscopically and histology according to modified O’Driscoll scoring system. Results Flow cytometry confirmed characterization of DPSCs as MSCs. Macroscopic and histological findings suggested that this time period was reasonable for evaluating cartilage repair. To our knowledge, this study provides the first description of an animal model using DPSCs to study the differentiation of hyaline articular cartilage in vivo. Conclusion The animals tolerated the procedure well and did not show clinical or histological rejection of the DPSCs, reinforcing the feasibility of this descriptive miniature pig model for pre-clinical studies.
Collapse
Affiliation(s)
- Tiago Lazzaretti Fernandes
- Institute of Orthopedics and Traumatology, Hospital das Clínicas, School of Medicine, University of São Paulo, 333 Dr. Ovídio Pires de Campos, São Paulo, 05403-010, Brazil. .,Hospital Sírio-Libanês, 115 Rua Dona Adma Jafet, Bela Vista, São Paulo / SP, 01308-050, Brazil.
| | - Kazunori Shimomura
- Department of Orthopedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Andre Asperti
- Institute of Orthopedics and Traumatology, Hospital das Clínicas, School of Medicine, University of São Paulo, 333 Dr. Ovídio Pires de Campos, São Paulo, 05403-010, Brazil
| | | | | | - Claudia Regina G C M Oliveira
- Institute of Orthopedics and Traumatology, Hospital das Clínicas, School of Medicine, University of São Paulo, 333 Dr. Ovídio Pires de Campos, São Paulo, 05403-010, Brazil
| | - Norimasa Nakamura
- Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Arnaldo José Hernandez
- Institute of Orthopedics and Traumatology, Hospital das Clínicas, School of Medicine, University of São Paulo, 333 Dr. Ovídio Pires de Campos, São Paulo, 05403-010, Brazil
| | - Daniela Franco Bueno
- Hospital Sírio-Libanês, 115 Rua Dona Adma Jafet, Bela Vista, São Paulo / SP, 01308-050, Brazil
| |
Collapse
|
11
|
Dose-Dependent Effect of Mesenchymal Stromal Cell Recruiting Chemokine CCL25 on Porcine Tissue-Engineered Healthy and Osteoarthritic Cartilage. Int J Mol Sci 2018; 20:ijms20010052. [PMID: 30583576 PMCID: PMC6337313 DOI: 10.3390/ijms20010052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 01/08/2023] Open
Abstract
Thymus-expressed chemokine (CCL25) is a potent cell attractant for mesenchymal stromal cells, and therefore it is a candidate for in situ cartilage repair approaches focusing on the recruitment of endogenous repair cells. However, the influence of CCL25 on cartilage is unknown. Accordingly, in this study, we investigated the effect of CCL25 on tissue-engineered healthy and osteoarthritic cartilage. Porcine chondrocytes were cultured in a three-dimensional (3D) micromass model that has been proven to mimic key-aspects of human cartilage and osteoarthritic alterations upon stimulation with tumor necrosis factor-α (TNF-α). Micromass cultures were stimulated with CCL25 (0, 0.05, 0.5, 5, 50, 500 nmol/L) alone or in combination with 0.6 nmol/L TNF-α for seven days. Effects were evaluated by life/dead staining, safranin O staining, histomorphometrical analysis of glycosaminoglycans (GAGs), collagen type II (COL2A1) real-time RT-PCR and Porcine Genome Array analysis. 500 nmol/L CCL25 led to a significant reduction of GAGs and COL2A1 expression and induced the expression of matrix metallopeptidases (MMP) 1, MMP3, early growth response protein 1 (EGR1), and superoxide dismutase 2 (SOD2). In concentrations lower than 500 nmol/L, CCL25 seems to be a candidate for in situ cartilage repair therapy approaches.
Collapse
|
12
|
Lee S, Moon S, Oh JY, Seo EH, Kim YH, Jun E, Shim IK, Kim SC. Enhanced insulin production and reprogramming efficiency of mesenchymal stem cells derived from porcine pancreas using suitable induction medium. Xenotransplantation 2018; 26:e12451. [PMID: 30252163 DOI: 10.1111/xen.12451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/23/2018] [Accepted: 06/26/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Genetic reprogramming is a powerful method for altering cell properties and inducing differentiation. However, even if the same gene is reprogrammed, the results vary among cells. Therefore, a better possible strategy involves treating cells with factors that further stimulate differentiation while using stem cells with the same tissue origin. This study aimed to increase induction efficiency and insulin production in reprogrammed cells using a combination of factors that promote cell differentiation. METHODS Porcine pancreatic cells were cultured to obtain mesenchymal stem cells expressing pancreatic cell-specific markers through sequential passages. The characteristics of these cells were identified, and the M3 gene (Pdx1, Ngn3, MafA) was reprogrammed to induce differentiation into insulin-producing cells. Additionally, the differentiation efficiency of insulin-producing cells was compared by treating reprogrammed cells with a differentiation-promoting factor. RESULTS Mesenchymal stem cells isolated from porcine pancreatic tissues expressed exocrine cell markers, including amylase and cytokeratin 18, and most cells continuously expressed the beta cell transcription factors Ngn3 and NeuroD. Reprogramming of the M3 gene resulted in differentiation into insulin-producing cells. Moreover, significantly increased insulin and glucagon expressions were observed in the suitable induction medium, and the characteristic beta cell transcription factors Pdx1, Ngn3, and MafA were expressed at levels as high as those in pancreatic islet cells. CONCLUSIONS Differentiation into insulin-producing cells represents an alternative therapy for insufficient pancreatic islet cells when treating diabetes. Therefore, cells with the characteristics of the target cell should be used to improve differentiation efficiency by creating an environment that promotes reprogramming and differentiation.
Collapse
Affiliation(s)
- Song Lee
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soobin Moon
- Department of Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ju Yun Oh
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Ha Seo
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yang Hee Kim
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eunsung Jun
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In Kyoung Shim
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Song Cheol Kim
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Subbarao RB, Shivakumar SB, Choe YH, Son YB, Lee HJ, Ullah I, Jang SJ, Ock SA, Lee SL, Rho GJ. CD105 + Porcine Endometrial Stromal Mesenchymal Stem Cells Possess Differentiation Potential Toward Cardiomyocyte-Like Cells and Insulin-Producing β Cell-Like Cells In Vitro. Reprod Sci 2018; 26:669-682. [PMID: 29986624 DOI: 10.1177/1933719118786461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Porcine mesenchymal stem cells (MSCs) are similar to human MSCs, hence considered a valuable model for assessing potential for cell therapy. Porcine adipose-derived MSCs (AD-MSCs) and endometrial stromal MSCs (EMSCs) displayed fibroblast-like morphology and were positive for MSC markers CD73, CD90, and CD105 and negative for hematopoietic markers CD34 and CD45. The EMSCs had similar or slightly higher growth rate compared to AD-MSCs, and similar percentage of cells of both EMSCs and AD-MSCs were at G0/G1 and G2/M phases; however, EMSCs had significantly ( P < .05) higher percentage of cells at S phase of cell cycle than AD-MSCs. Transdifferentiation ability to cardiomyocyte-like cells was confirmed in differentiated cells by the expression of lineage-specific marker genes such as DES, ACTA2, cTnT, and ACTC1 by real-time quantitative polymerase chain reaction (RT-qPCR). Furthermore, cardiomyocyte-specific protein markers cTnT and ACTC1 were expressed in completely differentiated cells. Endodermal differentiation capacity of EMSCs to pancreatic β cell-like cells was evident with the changes in morphology and the expression of β-cell-specific marker genes such as PDX1, GLUT2, SST, NKX6.1, PAX4, and NGN3 as analyzed by RT-qPCR. The differentiated cells secreted insulin and C-peptide upon glucose challenge and also they expressed insulin, PDX1, PAX4, NGN3, and GLUT2 at protein level as assessed by immunostaining confirming the successful differentiation to β cell-like cells. Porcine EMSCs possess all the characteristics of MSCs and are suitable model for studying molecular mechanisms of cellular differentiation.
Collapse
Affiliation(s)
- Raghavendra Baregundi Subbarao
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sharath Belame Shivakumar
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Yong-Ho Choe
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Bum Son
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyeon-Jeong Lee
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Imran Ullah
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Si-Jung Jang
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sun-A Ock
- 2 Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Sung-Lim Lee
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea.,3 Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
14
|
Naqvi SM, Gansau J, Buckley CT. Priming and cryopreservation of microencapsulated marrow stromal cells as a strategy for intervertebral disc regeneration. ACTA ACUST UNITED AC 2018; 13:034106. [PMID: 29380742 DOI: 10.1088/1748-605x/aaab7f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A challenge in using stromal cells for intervertebral disc (IVD) regeneration is their limited differentiation capacity in vivo without exogenous growth factor (GF) supplementation. Priming of stromal cells prior to transplantation may offer a feasible strategy to overcome this limitation. Furthermore, the ability to cryopreserve cells could help alleviate logistical issues associated with storage and transport. With these critical translational challenges in mind, we aimed to develop a strategy involving priming and subsequent cryopreservation of microencapsulated bone marrow stromal cells (BMSCs). In phase one, we utilised the electrohydrodynamic atomisation process to fabricate BMSC-encapsulated microcapsules that were primed with TGF-β3 for 14 d after which they were cultured for a further 21 d under basal or GF supplemented media conditions. Results showed that priming induced differentiation of BMSC microcapsules such that they synthesised significant amounts of sGAG (61.9 ± 2.0 μg and 55.3 ± 6.1 μg for low and high cell densities) and collagen (24.4 ± 1.9 μg and 55.3 ± 4.6 μg for low and high cell densities) in continued culture without GF supplementation compared to Unprimed microcapsules. Phase two of this work assessed the extracellular matrix forming capacity of Primed BMSC microcapsules over 21 d after cryopreservation. Notably, primed and cryopreserved BMSCs successfully retained the ability to synthesise both sGAG (24.8 ± 2.7 μg and 75.1 ± 11.6 μg for low and high cell densities) and collagen (26.4 ± 7.8 μg and 93.1 ± 10.2 μg for low and high cell densities) post-cryopreservation. These findings demonstrate the significant potential of priming and cryopreservation approaches for IVD repair and could possibly open new horizons for pre-designed, 'off-the-shelf' injectable therapeutics.
Collapse
Affiliation(s)
- Syeda M Naqvi
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland. School of Engineering, Trinity College Dublin, Ireland
| | | | | |
Collapse
|
15
|
Reed SA, Govoni KE. How mom's diet affects offspring growth and health through modified stem cell function. Anim Front 2017. [DOI: 10.2527/af.2017-0125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Sarah A. Reed
- Department of Animal Science, University of Connecticut, Storrs, CT 06269-4040
| | - Kristen E. Govoni
- Department of Animal Science, University of Connecticut, Storrs, CT 06269-4040
| |
Collapse
|
16
|
Lloyd B, Tee BC, Headley C, Emam H, Mallery S, Sun Z. Similarities and differences between porcine mandibular and limb bone marrow mesenchymal stem cells. Arch Oral Biol 2017; 77:1-11. [PMID: 28135571 DOI: 10.1016/j.archoralbio.2017.01.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Research has shown promise of using bone marrow mesenchymal stem cells (BMSCs) for craniofacial bone regeneration; yet little is known about the differences of BMSCs from limb and craniofacial bones. This study compared pig mandibular and tibia BMSCs for their in vitro proliferation, osteogenic differentiation properties and gene expression. DESIGN Bone marrow was aspirated from the tibia and mandible of 3-4 month-old pigs (n=4), followed by BMSC isolation, culture-expansion and characterization by flow cytometry. Proliferation rates were assessed using population doubling times. Osteogenic differentiation was evaluated by alkaline phosphatase activity. Affymetrix porcine microarray was used to compare gene expressions of tibial and mandibular BMSCs, followed by real-time RT-PCR evaluation of certain genes. RESULTS Our results showed that BMSCs from both locations expressed MSC markers but not hematopoietic markers. The proliferation and osteogenic differentiation potential of mandibular BMSCs were significantly stronger than those of tibial BMSCs. Microarray analysis identified 404 highly abundant genes, out of which 334 genes were matched between the two locations and annotated into the same functional groups including osteogenesis and angiogenesis, while 70 genes were mismatched and annotated into different functional groups. In addition, 48 genes were differentially expressed by at least 1.5-fold difference between the two locations, including higher expression of cranial neural crest-related gene BMP-4 in mandibular BMSCs, which was confirmed by real-time RT-PCR. CONCLUSIONS Altogether, these data indicate that despite strong similarities in gene expression between mandibular and tibial BMSCs, mandibular BMSCs express some genes differently than tibial BMSCs and have a phenotypic profile that may make them advantageous for craniofacial bone regeneration.
Collapse
Affiliation(s)
- Brandon Lloyd
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Boon Ching Tee
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Colwyn Headley
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Hany Emam
- Division of Oral and Maxillofacial Surgery, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Susan Mallery
- Division of Oral and Maxillofacial Pathology and Radiology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Zongyang Sun
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
17
|
Bharti D, Shivakumar SB, Subbarao RB, Rho GJ. Research Advancements in Porcine Derived Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2016. [PMID: 26201864 PMCID: PMC5403966 DOI: 10.2174/1574888x10666150723145911] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the present era of stem cell biology, various animals such as Mouse, Bovine, Rabbit and Porcine have been tested for the efficiency of their mesenchymal stem cells (MSCs) before their actual use for stem cell based application in humans. Among them pigs have many similarities to humans in the form of organ size, physiology and their functioning, therefore they have been considered as a valuable model system for in vitro studies and preclinical assessments. Easy assessability, few ethical issues, successful MSC isolation from different origins like bone marrow, skin, umbilical cord blood, Wharton’s jelly, endometrium, amniotic fluid and peripheral blood make porcine a good model for stem cell therapy. Porcine derived MSCs (pMSCs) have shown greater in vitro differentiation and transdifferention potential towards mesenchymal lineages and specialized lineages such as cardiomyocytes, neurons, hepatocytes and pancreatic beta cells. Immunomodulatory and low immunogenic profiles as shown by autologous and heterologous MSCs proves them safe and appropriate models for xenotransplantation purposes. Furthermore, tissue engineered stem cell constructs can be of immense importance in relation to various osteochondral defects which are difficult to treat otherwise. Using pMSCs successful treatment of various disorders like Parkinson’s disease, cardiac ischemia, hepatic failure, has been reported by many studies. Here, in this review we highlight current research findings in the area of porcine mesenchymal stem cells dealing with their isolation methods, differentiation ability, transplantation applications and their therapeutic potential towards various diseases.
Collapse
Affiliation(s)
| | | | | | - Gyu-Jin Rho
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 900 Gazwa, Jinju 660-701, Republic of Korea.
| |
Collapse
|
18
|
Lee WJ, Park JS, Jang SJ, Lee SC, Lee H, Lee JH, Rho GJ, Lee SL. Isolation and Cellular Phenotyping of Mesenchymal Stem Cells Derived from Synovial Fluid and Bone Marrow of Minipigs. J Vis Exp 2016. [PMID: 27404916 DOI: 10.3791/54077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been established after isolation from various tissue sources, including bone marrow and synovial fluid. Recently, synovial-fluid-derived MSCs were reported to have multi-lineage differentiation potential and immunomodulatory features, which indicates that these cells can be used for tissue engineering and systemic treatments. This study presents a protocol for simple and non-invasive isolation of MSCs derived from the bone marrow and synovial fluid of minipigs to analyze cell surface markers for cell phenotyping and in vitro culturing. Using sexually mature six-month-old minipigs, bone marrow was extracted from the iliac crest bone using a bone marrow extractor, and the synovial fluid was aspirated from the femorotibial joint. Procedures for the collection of samples from both sources were non-invasive. The protocols for effective isolation of MSCs from harvested cell sources and for creating in vitro culture conditions to expand stable MSCs from minipigs and the application of systemic autologous treatments are provided. For cell phenotyping, the cell surface markers of both cells were analyzed using flow cytometry. In the results, the MSCs were isolated from the synovial fluid of the minipigs and showed that synovial-fluid-derived MSCs have a similar morphology and cell phenotype to bone-marrow-derived MSCs. Therefore, non-invasively obtained synovial fluid is a valuable source of MSCs.
Collapse
Affiliation(s)
- Won-Jae Lee
- College of Veterinary Medicine, Gyeongsang National University; PWG Genetics Pte Ltd
| | - Ji-Sung Park
- College of Veterinary Medicine, Gyeongsang National University
| | - Si-Jung Jang
- College of Veterinary Medicine, Gyeongsang National University
| | - Seung-Chan Lee
- College of Veterinary Medicine, Gyeongsang National University
| | - HyeonJeong Lee
- College of Veterinary Medicine, Gyeongsang National University
| | - Jae-Hoon Lee
- College of Veterinary Medicine, Gyeongsang National University
| | - Gyu-Jin Rho
- College of Veterinary Medicine, Gyeongsang National University
| | - Sung-Lim Lee
- College of Veterinary Medicine, Gyeongsang National University;
| |
Collapse
|
19
|
Liebesny PH, Byun S, Hung HH, Pancoast JR, Mroszczyk KA, Young WT, Lee RT, Frisbie DD, Kisiday JD, Grodzinsky AJ. Growth Factor-Mediated Migration of Bone Marrow Progenitor Cells for Accelerated Scaffold Recruitment. Tissue Eng Part A 2016; 22:917-27. [PMID: 27268956 DOI: 10.1089/ten.tea.2015.0524] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tissue engineering approaches using growth factor-functionalized acellular scaffolds to support and guide repair driven by endogenous cells are thought to require a careful balance between cell recruitment and growth factor release kinetics. The objective of this study was to identify a growth factor combination that accelerates progenitor cell migration into self-assembling peptide hydrogels in the context of cartilage defect repair. A novel 3D gel-to-gel migration assay enabled quantification of the chemotactic impact of platelet-derived growth factor-BB (PDGF-BB), heparin-binding insulin-like growth factor-1 (HB-IGF-1), and transforming growth factor-β1 (TGF-β1) on progenitor cells derived from subchondral bovine trabecular bone (bone-marrow progenitor cells, BM-PCs) encapsulated in the peptide hydrogel [KLDL]3. Only the combination of PDGF-BB and TGF-β1 stimulated significant migration of BM-PCs over a 4-day period, measured by confocal microscopy. Both PDGF-BB and TGF-β1 were slowly released from the gel, as measured using their (125)I-labeled forms, and they remained significantly present in the gel at 4 days. In the context of augmenting microfracture surgery for cartilage repair, our strategy of delivering chemotactic and proanabolic growth factors in KLD may provide the necessary local stimulus to help increase defect cellularity, providing more cells to generate repair tissue.
Collapse
Affiliation(s)
- Paul H Liebesny
- 1 Department of Biological Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Sangwon Byun
- 1 Department of Biological Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Han-Hwa Hung
- 1 Department of Biological Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | | | - Keri A Mroszczyk
- 3 Department of Mechanical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Whitney T Young
- 3 Department of Mechanical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Richard T Lee
- 2 Brigham and Women's Hospital , Boston, Massachusetts
| | - David D Frisbie
- 4 Colorado State University , Orthopaedic Research Center, Fort Collins, Colorado
| | - John D Kisiday
- 4 Colorado State University , Orthopaedic Research Center, Fort Collins, Colorado
| | - Alan J Grodzinsky
- 1 Department of Biological Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts.,3 Department of Mechanical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts.,5 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology , Cambridge, Massachusetts
| |
Collapse
|
20
|
An X, Ma K, Zhang Z, Zhao T, Zhang X, Tang B, Li Z. miR-17, miR-21, and miR-143 Enhance Adipogenic Differentiation from Porcine Bone Marrow-Derived Mesenchymal Stem Cells. DNA Cell Biol 2016; 35:410-6. [PMID: 27093346 DOI: 10.1089/dna.2015.3182] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) have multilineage differentiation abilities toward adipocytes and osteoblasts. Recently, numerous studies have focused on the roles of microRNAs (miRNAs) in the process of adipogenic differentiation of human and mouse cells. However, the role of miRNAs in adipogenic differentiation process of porcine BMSCs (pBMSCs) remains unclear. In this study, pBMSCs were induced to differentiate into adipocytes using a chemical approach, and the roles of miR-17, miR-21, and miR-143 in this process were investigated. Our results showed that pBMSCs could be chemically induced to differentiate into adipocytes and that the expression of miR-17, miR-21, and miR-143 increased during differentiation. Then, overexpression of mimics of miR-17, miR-21, and miR-143 increased the number of oil red O-positive cells of adipocyte differentiation. The expression levels of CCAAT/enhancer-binding protein alpha (C/EBPα) mRNA showed increases of 1.8-, 1.5-, and 1.2-fold in the groups expressing mimics of miR-21, miR-17, and miR-143, respectively, at day 20. These results demonstrate that miR-17, miR-21, and miR-143 are involved in and promote the adipogenic differentiation of pBMSCs. This study provides an experimental basis for establishing a stable and efficient adipogenic differentiation model for applications in cell therapy and tissue engineering.
Collapse
Affiliation(s)
- Xinglan An
- 1 College of Animal Science, Jilin University , Changchun, China .,2 State & Local Joint Engineering Laboratory for Animal Models of Human Diseases, Academy of Translational Medicine, First Hospital, Jilin University , Changchun, China
| | - Kuiying Ma
- 1 College of Animal Science, Jilin University , Changchun, China
| | - Zhiren Zhang
- 1 College of Animal Science, Jilin University , Changchun, China
| | - Tianchuang Zhao
- 3 College of Veterinary Medicine, Jilin University , Changchun, China
| | - Xueming Zhang
- 3 College of Veterinary Medicine, Jilin University , Changchun, China
| | - Bo Tang
- 3 College of Veterinary Medicine, Jilin University , Changchun, China
| | - Ziyi Li
- 1 College of Animal Science, Jilin University , Changchun, China .,2 State & Local Joint Engineering Laboratory for Animal Models of Human Diseases, Academy of Translational Medicine, First Hospital, Jilin University , Changchun, China
| |
Collapse
|
21
|
Hwang IS, Bae HK, Cheong HT. Comparison of the characteristics and multipotential and in vivo cartilage formation capabilities between porcine adipose-derived stem cells and porcine skin-derived stem cell-like cells. Am J Vet Res 2016; 76:814-21. [PMID: 26309110 DOI: 10.2460/ajvr.76.9.814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare the characteristics and multipotential and in vivo cartilage formation capabilities of porcine adipose-derived stem cells (pASCs) with those of porcine skin-derived stem cell-like cells (pSSCs). ANIMALS Three 6-month-old female pigs and four 6-week-old female athymic mice. PROCEDURES Adipose and skin tissue specimens were obtained from each pig following slaughter and digested to obtain pASCs and pSSCs. For each cell type, flow cytometry and reverse transcription PCR assays were performed to characterize the expression of cell surface and mesenchymal stem cell markers, and in vitro cell cultures were performed to determine the adipogenic, osteogenic, and chondrogenic capabilities. Each cell type was then implanted into athymic mice to determine the extent of in vivo cartilage formation after 6 weeks. RESULTS The cell surface and mesenchymal stem cell marker expression patterns, multipotential capability, and extent of in vivo cartilage formation did not differ significantly between pASCs and pSSCs. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that pSSCs may be a viable alternative to pASCs as a source of progenitor cells for tissue engineering in regenerative medicine.
Collapse
|
22
|
Lange-Consiglio A, Romaldini A, Correani A, Corradetti B, Esposti P, Cannatà MF, Perrini C, Marini MG, Bizzaro D, Cremonesi F. Does the Bovine Pre-Ovulatory Follicle Harbor Progenitor Stem Cells? Cell Reprogram 2016; 18:116-26. [PMID: 26982278 DOI: 10.1089/cell.2015.0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent studies have revealed the presence of a mesenchymal stem cell (MSC) population in human and in gilt granulosa cells (GCs), thus increasing the interest in identifying the same population in the bovine species. We first isolated GCs by scraping from bovine preovulatory follicles and then tested several different media to define the ideal conditions to select granulosa-derived stem cells. Although expressing MSC-associated markers, none of the media tested proven to be efficient in selecting MSC-like cells that were able to differentiate into mesodermic or ectodermic lineages. We performed another experimental approach exposing cells to a chemical stress, such as lowering of pH, as a system to select a more plastic population. Following the treatment, granulosa-specific granulose markers [follicle-stimulating hormone receptor (FSHR), follistatin (FST), and leukemia inhibitory factor receptor (LIFR)] were lost in bovine GCs, whereas an increase in multi- (CD29, CD44, CD73) and pluripotent (Oct-4 and c-Myc) genes was noticed. The stress allowed up-regulation of tumor necrosis factor-α and interleukin-1β expression and the dedifferentiation of GCs, which was demonstrated by differentiation studies. Indeed, pH-treated cells were able to differentiate into the mesodermic and ectodermic lineages, thus suggesting that the chemical stress allows for the selection of cells that are more prone to adjust and respond to the environmental changes.
Collapse
Affiliation(s)
- Anna Lange-Consiglio
- 1 Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano , Lodi, Italy
| | - Alessio Romaldini
- 2 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | - Alessio Correani
- 2 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | - Bruna Corradetti
- 2 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | - Paola Esposti
- 1 Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano , Lodi, Italy
| | - Maria Francesca Cannatà
- 2 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | - Claudia Perrini
- 1 Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano , Lodi, Italy
| | - Maria Giovanna Marini
- 2 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | - Davide Bizzaro
- 2 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | - Fausto Cremonesi
- 1 Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano , Lodi, Italy .,3 Department of Veterinary Science for Animal Health, Production and Food Safety, Università degli Studi di Milano , Milan, Italy
| |
Collapse
|
23
|
Growth factor directed chondrogenic differentiation of porcine bone marrow-derived progenitor cells. J Craniofac Surg 2015; 24:1026-30. [PMID: 23714939 DOI: 10.1097/scs.0b013e31827ff323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Despite advances in surgical technique, reconstruction of a mandibular condyle still causes significant donor-site morbidity. The purpose of this study was to compare the effect of 3 different growth factors and define optimal cell culture conditions for bone marrow-derived progenitor cells to differentiate into chondrocytes for mandibular condyle reconstruction. METHODS Porcine bone marrow-derived progenitor cells (pBMPCs) were cultured as a pellet for 2, 3, and 4 weeks under the following conditions: group 1, TGF-β3 + standard medium; group 2, TGF-β3 + BMP-2 + standard medium; group 3, TGF-β3 + IGF-1 + standard medium; and group 4, TGF-β3 + BMP-2 + IGF-1 + standard medium. Chondrogenic differentiation was evaluated using 3 lineage differentiation markers. RESULTS The mean type II collagen positive area increased over weeks 2, 3, and 4 in group 4 compared to all the other groups (ANOVA; P = 0.005). At week 4, there was significantly greater type II collagen production in group 4 compared to all the other groups (ANOVA; P = 0.003). The medium in group 4 produces the greatest amount of cartilage when compared to groups 1, 2, and 3, and that 4 weeks produces the greatest amount of type II collagen. CONCLUSIONS The results of this study indicate that the most efficacious medium for chondrogenic differentiation of pBMPCs was group 4 medium and the most type II collagen was produced at 4 weeks.
Collapse
|
24
|
Lin C, Shen M, Chen W, Li X, Luo D, Cai J, Yang Y. Isolation and purification of rabbit mesenchymal stem cells using an optimized protocol. In Vitro Cell Dev Biol Anim 2015. [PMID: 26202303 DOI: 10.1007/s11626-015-9933-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mesenchymal stem cells were first isolated and grown in vitro by Friedenstein over 40 yr ago; however, their isolation remains challenging as they lack unique markers for identification and are present in very small quantities in mesenchymal tissues and bone marrow. Using whole marrow samples, common methods for mesenchymal stem cell isolation are the adhesion method and density gradient fractionation. The whole marrow sample adhesion method still results in the nonspecific isolation of mononuclear cells, and activation and/or potential loss of target cells. Density gradient fractionation methods are complicated, and may result in contamination with toxic substances that affect cell viability. In the present study, we developed an optimized protocol for the isolation and purification of mesenchymal stem cells based on the principles of hypotonic lysis and natural sedimentation.
Collapse
Affiliation(s)
- Chunbo Lin
- Guangxi Orthopedics Traumatology Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Maorong Shen
- Guangxi Orthopedics Traumatology Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Weiping Chen
- Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiaofeng Li
- Guangxi Orthopedics Traumatology Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Daoming Luo
- Guangxi Orthopedics Traumatology Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jinhong Cai
- Guangxi Orthopedics Traumatology Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yuan Yang
- Guangxi Orthopedics Traumatology Hospital, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
25
|
Comparative studies on proliferation, molecular markers and differentiation potential of mesenchymal stem cells from various tissues (adipose, bone marrow, ear skin, abdominal skin, and lung) and maintenance of multipotency during serial passages in miniature pig. Res Vet Sci 2015; 100:115-24. [DOI: 10.1016/j.rvsc.2015.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 02/11/2015] [Accepted: 03/01/2015] [Indexed: 12/16/2022]
|
26
|
Subbarao RB, Ullah I, Kim EJ, Jang SJ, Lee WJ, Jeon RH, Kang D, Lee SL, Park BW, Rho GJ. Characterization and evaluation of neuronal trans-differentiation with electrophysiological properties of mesenchymal stem cells isolated from porcine endometrium. Int J Mol Sci 2015; 16:10934-51. [PMID: 26006231 PMCID: PMC4463684 DOI: 10.3390/ijms160510934] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/11/2015] [Indexed: 12/31/2022] Open
Abstract
Endometrial stromal cells (EMSCs) obtained from porcine uterus (n = 6) were positive for mesenchymal stem cell markers (CD29, CD44 and CD90), and negative for epithelial marker CD9 and hematopoietic markers CD34, CD45 analyzed by flow cytometry. Further the cells were positive for expression of mesenchymal markers, CD105, CD140b, and CD144 by PCR. Pluripotent markers OCT4, SOX2, and NANOG were positively expressed in EMSCs analyzed by Western blotting and PCR. Further, differentiation into adipocytes and osteocytes was confirmed by cytochemical staining and lineage specific gene expression by quantitative realtime-PCR. Adipocyte (FABP, LPL, AP2) and osteocyte specific genes (ON, BG, RUNX2) in differentiated EMSCs showed significant (p < 0.05) increase in expression compared to undifferentiated control cells. Neurogenic transdifferentiation of EMSCs exhibited distinctive dendritic morphology with axon projections and neuronal specific genes, NFM, NGF, MBP, NES, B3T and MAP2 and proteins, B3T, NFM, NGF, and TRKA were positively expressed in neuronal differentiated cells. Functional analysis of neuronal differentiated EMSCs displayed voltage-dependence and kinetics for transient outward K+ currents (Ito), at holding potential of -80 mV, Na+ currents and during current clamp, neuronal differentiated EMSCs was more negative than that of control EMSCs. Porcine EMSCs is a suitable model for studying molecular mechanism of transdifferentiation, assessment of electrophysiological properties and their efficiency during in vivo transplantation.
Collapse
Affiliation(s)
- Raghavendra Baregundi Subbarao
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Imran Ullah
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Eun-Jin Kim
- Department of Physiology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea.
| | - Si-Jung Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Won-Jae Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Ryoung Hoon Jeon
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Dawon Kang
- Department of Physiology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea.
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, Institute of Health Science, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea.
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
27
|
Wa Q, Gao M, Dai X, Yu T, Zhou Z, Xu D, Zou X. Induction of chondrogenic differentiation of mouse embryonic mesenchymal stem cells through an in vitro pellet model. Cell Biol Int 2015; 39:657-65. [PMID: 25985822 DOI: 10.1002/cbin.10436] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/09/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Qingde Wa
- Department of Orthopedic Surgery; The First Affiliated Hospital; Sun Yat-sen University; Zhongshan 2nd Road Guangzhou 510080 China
| | - Manman Gao
- Department of Orthopedic Surgery; The First Affiliated Hospital; Sun Yat-sen University; Zhongshan 2nd Road Guangzhou 510080 China
| | - Xuejun Dai
- Department of Orthopedic Surgery; The First Affiliated Hospital; Sun Yat-sen University; Zhongshan 2nd Road Guangzhou 510080 China
| | - Ting Yu
- Department of Orthopedic Surgery; The First Affiliated Hospital; Sun Yat-sen University; Zhongshan 2nd Road Guangzhou 510080 China
| | - Zhiyu Zhou
- Department of Orthopedic Surgery; The First Affiliated Hospital; Sun Yat-sen University; Zhongshan 2nd Road Guangzhou 510080 China
| | - Dongliang Xu
- Department of Orthopedic Surgery; The First Affiliated Hospital; Sun Yat-sen University; Zhongshan 2nd Road Guangzhou 510080 China
| | - Xuenong Zou
- Department of Orthopedic Surgery; The First Affiliated Hospital; Sun Yat-sen University; Zhongshan 2nd Road Guangzhou 510080 China
| |
Collapse
|
28
|
Tissue-engineered bone with 3-dimensionally printed β-tricalcium phosphate and polycaprolactone scaffolds and early implantation: an in vivo pilot study in a porcine mandible model. J Oral Maxillofac Surg 2015; 73:1016.e1-1016.e11. [PMID: 25883004 DOI: 10.1016/j.joms.2015.01.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/25/2015] [Accepted: 01/26/2015] [Indexed: 11/22/2022]
Abstract
PURPOSE Deep bone penetration into implanted scaffolds remains a challenge in tissue engineering. The purpose of this study was to evaluate bone penetration depth within 3-dimensionally (3D) printed β-tricalcium phosphate (β-TCP) and polycaprolactone (PCL) scaffolds, seeded with porcine bone marrow progenitor cells (pBMPCs), and implanted early in vivo. MATERIALS AND METHODS Scaffolds were 3D printed with 50% β-TCP and 50% PCL. The pBMPCs were harvested, isolated, expanded, and differentiated into osteoblasts. Cells were seeded into the scaffolds and constructs were incubated in a rotational oxygen-permeable bioreactor system for 14 days. Six 2- × 2-cm defects were created in each mandible (N = 2 minipigs). In total, 6 constructs were placed within defects and 6 defects were used as controls (unseeded scaffolds, n = 3; empty defects, n = 3). Eight weeks after surgery, specimens were harvested and analyzed by hematoxylin and eosin (H&E), 4',6-diamidino-2-phenylindole (DAPI), and CD31 staining. Analysis included cell counts, bone penetration, and angiogenesis at the center of the specimens. RESULTS All specimens (N = 12) showed bone formation similar to native bone at the periphery. Of 6 constructs, 4 exhibited bone formation in the center. Histomorphometric analysis of the H&E-stained sections showed an average of 22.1% of bone in the center of the constructs group compared with 1.87% in the unseeded scaffolds (P < .05). The 2 remaining constructs, which did not display areas of mature bone in the center, showed massive cell penetration depth by DAPI staining, with an average of 2,109 cells/0.57 mm(2) in the center compared with 1,114 cells/0.57 mm(2) in the controls (P < .05). CD31 expression was greater in the center of the constructs compared with the unseeded scaffolds (P < .05). CONCLUSION 3D printed β-TCP and PCL scaffolds seeded with pBMPCs and implanted early into porcine mandibular defects display good bone penetration depth. Further study with a larger sample and larger bone defects should be performed before human applications.
Collapse
|
29
|
Chullikana A, Majumdar AS, Gottipamula S, Krishnamurthy S, Kumar AS, Prakash VS, Gupta PK. Randomized, double-blind, phase I/II study of intravenous allogeneic mesenchymal stromal cells in acute myocardial infarction. Cytotherapy 2014; 17:250-61. [PMID: 25484310 DOI: 10.1016/j.jcyt.2014.10.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 10/12/2014] [Accepted: 10/14/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS Cell therapy is promising as an exploratory cardiovascular therapy. We have recently developed an investigational new drug named Stempeucel (bone marrow-derived allogeneic mesenchymal stromal cells) for patients with acute myocardial infarction (AMI) with ST-segment elevation. A phase I/II randomized, double-blind, single-dose study was conducted to assess the safety and efficacy of intravenous administration of Stempeucel versus placebo (multiple electrolytes injection). METHODS Twenty patients who had undergone percutaneous coronary intervention for AMI were randomly assigned (1:1) to receive intravenous Stempeucel or placebo and were followed for 2 years. RESULTS The number of treatment-emergent adverse events observed were 18 and 21 in the Stempeucel and placebo groups, respectively. None of the adverse events were related to Stempeucel according to the investigators and independent data safety monitoring board. There was no serious adverse event in the Stempeucel group and there were three serious adverse events in the placebo group, of which one had a fatal outcome. Ejection fraction determined by use of echocardiography showed improvement in both Stempeucel (43.06% to 47.80%) and placebo (43.44% to 45.33%) groups at 6 months (P = 0.26). Perfusion scores measured by use of single-photon emission tomography and infarct volume measured by use of magnetic resonance imaging showed no significant differences between the two groups at 6 months. CONCLUSIONS This study showed that Stempeucel was safe and well tolerated when administered intravenously in AMI patients 2 days after percutaneous coronary intervention. The optimal dose and route of administration needs further evaluation in larger clinical trials (http://clinicaltrials.gov/show/NCT00883727).
Collapse
Affiliation(s)
- Anoop Chullikana
- Stempeutics Research Pvt Ltd, Bangalore, India, and Stempeutics Research Manipal, India
| | - Anish Sen Majumdar
- Stempeutics Research Pvt Ltd, Bangalore, India, and Stempeutics Research Manipal, India
| | - Sanjay Gottipamula
- Stempeutics Research Pvt Ltd, Bangalore, India, and Stempeutics Research Manipal, India
| | - Sagar Krishnamurthy
- Stempeutics Research Pvt Ltd, Bangalore, India, and Stempeutics Research Manipal, India
| | | | | | | |
Collapse
|
30
|
Li Y, Stahl CH. Dietary calcium deficiency and excess both impact bone development and mesenchymal stem cell lineage priming in neonatal piglets. J Nutr 2014; 144:1935-42. [PMID: 25320190 DOI: 10.3945/jn.114.194787] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Optimizing calcium nutrition to maximize bone accretion during growth to prevent fragility fractures later in life has spurred greater interest in calcium nutrition in neonates. OBJECTIVE The aim of this study was to determine the effect of dietary calcium, from deficiency through excess, on bone growth, and the in vivo and in vitro behavior of mesenchymal stem cells (MSCs) in neonatal pigs. METHODS Twenty-four male and female piglets (24 ± 6 h old) were fed either a calcium-deficient [Ca-D; 0.6% Ca on a dry matter (DM) basis], a calcium-adequate diet (Ca-A; 0.9% Ca on a DM basis), or a calcium-excessive diet (Ca-E; 1.3% Ca on a DM basis) for 14 d to assess the impact of dietary calcium on calcium homeostasis and on the behavior of MSCs. RESULTS Growth rate was not affected by the Ca-E diet, although bone ash content was 16% higher (P < 0.05) and urinary calcium excretion was 5-fold higher, when normalized to creatinine, compared with the Ca-A group at trial completion. Serum parathyroid hormone (PTH) concentrations were elevated (P < 0.05) in Ca-D piglets in comparison with other groups at both 7 and 14 d. In vivo proliferation of MSCs was 30% higher (P < 0.05) in Ca-E piglets than the other groups. MSCs from both Ca-D- and Ca-E-fed piglets had greater adipogenic potential based on increased gene expression (P < 0.05) of peroxisome proliferator-activated receptor γ (Pparg) and adipocyte fatty acid-binding protein (Ap2) than MSCs from Ca-A piglets. Interestingly, only MSCs from Ca-E-fed piglets had greater (P < 0.05) gene expression of lipoprotein lipase (Lpl) during adipocytic differentiation than those from Ca-A piglets. To assess alterations in lineage allocation and priming, the most and least osteogenic (O+ and O-, respectively) and adipogenic (A+ and A-, respectively) colonies from each MSC isolation were selected on the basis of functional staining. The O+ colonies from Ca-D piglets expressed lower (P < 0.05) levels of osteocalcin (OC) mRNA than did those from other groups, whereas the O- colonies from Ca-E piglets expressed higher (P < 0.05) levels of mRNA of Pparg, Ap2, and Lpl than did those from other groups. CONCLUSIONS Neonatal calcium deficiency appears to reduce the osteogenic priming of MSCs while enlarging a subpopulation of potentially adipogenic cells, and excess dietary calcium appears to allow greater multipotency of MSCs. These programming alterations of MSCs could have long-term consequences for bone health.
Collapse
Affiliation(s)
- Yihang Li
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC
| | - Chad H Stahl
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC
| |
Collapse
|
31
|
van der Bel R, Blokhuis TJ. Increased osteogenic capacity of Reamer/Irrigator/Aspirator derived mesenchymal stem cells. Injury 2014; 45:2060-4. [PMID: 25458067 DOI: 10.1016/j.injury.2014.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/05/2014] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Donor-site morbidity, complications and availability remain concerns in autologous bone grafting today. The Reamer/Irrigator/Aspirator system (RIA) provides an alternative method to overcome these problems. According to literature, RIA graft possesses a higher osteogenic potency. This study compares iliac crest and RIA graft performance by determining their in vitro osteogenic capacity in a porcine model. METHODS Osteogenic capacity and cell content was determined in RIA and iliac crest bone grafts harvested from six female domestic white pigs. Cells initially washed off, and cells harvested with collagenase were analysed separately and in combination. Alkaline phosphatase expression (ALP) and cell numbers were evaluated after 7 and 14 days of culture. Matrix mineralisation was quantified after 14 days. RESULTS Cell cultures showed a significant increase of matrix mineralisation by RIA-derived cells compared to iliac crest bone graft (p = 0.0313). The yield of collagenase derived cells was increased in the RIA group and a synergy between washed off and collagenase derived cells was observed. Cell proliferation was similar in both groups. DISCUSSION The osteogenic differentiation capacity of cell populations isolated from the RIA derived bone graft surpasses that of iliac crest derived cells. It is proposed that the observed effect can be attributed to the origin of the cells and to the specific action of the RIA system. This study provides further evidence indicating that RIA bone graft provides superior osteogenic properties compared to iliac crest bone graft.
Collapse
|
32
|
Stramandinoli-Zanicotti RT, Carvalho AL, Rebelatto CLK, Sassi LM, Torres MF, Senegaglia AC, Boldrinileite LM, Correa-Dominguez A, Kuligovsky C, Brofman PRS. Brazilian minipig as a large-animal model for basic research and stem cell-based tissue engineering. Characterization and in vitro differentiation of bone marrow-derived mesenchymal stem cells. J Appl Oral Sci 2014; 22:218-27. [PMID: 25025563 PMCID: PMC4072273 DOI: 10.1590/1678-775720130526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 01/20/2014] [Indexed: 01/22/2023] Open
Abstract
Stem cell-based regenerative medicine is one of the most intensively researched
medical issues. Pre-clinical studies in a large-animal model, especially in swine or
miniature pigs, are highly relevant to human applications. Mesenchymal stem cells
(MSCs) have been isolated and expanded from different sources.
Collapse
Affiliation(s)
| | - André Lopes Carvalho
- Department of Oncology, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | - Laurindo Moacir Sassi
- Service of Oral and Maxillofacial Surgery, Erasto Gaertner Hospital, Curitiba, PR, Brazil
| | - Maria Fernanda Torres
- Laboratory of Experimental Surgery, Positivo University/Department of Anatomy, Federal University of Paraná (UFPR), Curitiba, PR, Brazil., Curitiba, PR, Brazil
| | | | | | | | - Crisciele Kuligovsky
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Curitiba, PR, Brazil
| | | |
Collapse
|
33
|
Jeong JY, Suresh S, Park MN, Jang M, Park S, Gobianand K, You S, Yeon SH, Lee HJ. Effects of capsaicin on adipogenic differentiation in bovine bone marrow mesenchymal stem cell. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1783-93. [PMID: 25358373 PMCID: PMC4213691 DOI: 10.5713/ajas.2014.14720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 09/22/2014] [Accepted: 09/29/2014] [Indexed: 01/23/2023]
Abstract
Capsaicin is a major constituent of hot chili peppers that influences lipid metabolism in animals. In this study, we explored the effects of capsaicin on adipogenic differentiation of bovine bone marrow mesenchymal stem cells (BMSCs) in a dose- and time-dependent manner. The BMSCs were treated with various concentrations of capsaicin (0, 0.1, 1, 5, and 10 μM) for 2, 4, and 6 days. Capsaicin suppressed fat deposition significantly during adipogenic differentiation. Peroxisome proliferator-activated receptor gamma, cytosine-cytosine-adenosine-adenosine-thymidine/enhancer binding protein alpha, fatty acid binding protein 4, and stearoyl-CoA desaturase expression decreased after capsaicin treatment. We showed that the number of apoptotic cells increased in dose- and time-dependent manners. Furthermore, we found that capsaicin increased the expression levels of apoptotic genes, such as B-cell lymphoma 2-associated X protein and caspase 3. Overall, capsaicin inhibits fat deposition by triggering apoptosis.
Collapse
Affiliation(s)
- Jin Young Jeong
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Suwon 441-706, Korea
| | - Sekar Suresh
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Suwon 441-706, Korea
| | - Mi Na Park
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Suwon 441-706, Korea
| | - Mi Jang
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Suwon 441-706, Korea
| | - Sungkwon Park
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Suwon 441-706, Korea
| | - Kuppannan Gobianand
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Suwon 441-706, Korea
| | - Seungkwon You
- The Laboratory of Cell Growth and Function Regulation, Division of Bioscience and Technology, College of Life and Environmental Sciences, Korea University, Seoul 136-701, Korea
| | - Sung-Heom Yeon
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Suwon 441-706, Korea
| | - Hyun-Jeong Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Suwon 441-706, Korea
| |
Collapse
|
34
|
Gonçalves NN, Ambrósio CE, Piedrahita JA. Stem Cells and Regenerative Medicine in Domestic and Companion Animals: A Multispecies Perspective. Reprod Domest Anim 2014; 49 Suppl 4:2-10. [DOI: 10.1111/rda.12392] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 07/14/2014] [Indexed: 12/18/2022]
Affiliation(s)
- NN Gonçalves
- Department of Veterinary Medicine; Faculty of Animal Science and Food Engineering; FZEA/USP; Pirassununga Sao Paulo Brazil
- Department of Surgery; Faculty of Veterinary Medicine and Animal Science; FMVZ/USP; Sao Paulo Brazil
| | - CE Ambrósio
- Department of Veterinary Medicine; Faculty of Animal Science and Food Engineering; FZEA/USP; Pirassununga Sao Paulo Brazil
- Department of Surgery; Faculty of Veterinary Medicine and Animal Science; FMVZ/USP; Sao Paulo Brazil
| | - JA Piedrahita
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine; North Carolina State University; Raleigh NC USA
- Center for Comparative Medicine and Translational Research; North Carolina State University; Raleigh NC USA
| |
Collapse
|
35
|
An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. J Orthop Translat 2014; 3:26-33. [PMID: 30035037 PMCID: PMC5982388 DOI: 10.1016/j.jot.2014.07.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) from bone marrow are main cell source for tissue repair and engineering, and vehicles of cell-based gene therapy. Unlike other species, mouse bone marrow derived MSCs (BM-MSCs) are difficult to harvest and grow due to the low MSCs yield. We report here a standardised, reliable, and easy-to-perform protocol for isolation and culture of mouse BM-MSCs. There are five main features of this protocol. (1) After flushing bone marrow out of the marrow cavity, we cultured the cells with fat mass without filtering and washing them. Our method is simply keeping the MSCs in their initial niche with minimal disturbance. (2) Our culture medium is not supplemented with any additional growth factor. (3) Our method does not need to separate cells using flow cytometry or immunomagnetic sorting techniques. (4) Our method has been carefully tested in several mouse strains and the results are reproducible. (5) We have optimised this protocol, and list detailed potential problems and trouble-shooting tricks. Using our protocol, the isolated mouse BM-MSCs were strongly positive for CD44 and CD90, negative CD45 and CD31, and exhibited tri-lineage differentiation potentials. Compared with the commonly used protocol, our protocol had higher success rate of establishing the mouse BM-MSCs in culture. Our protocol may be a simple, reliable, and alternative method for culturing MSCs from mouse bone marrow tissues.
Collapse
|
36
|
Screven R, Kenyon E, Myers MJ, Yancy HF, Skasko M, Boxer L, Bigley EC, Borjesson DL, Zhu M. Immunophenotype and gene expression profile of mesenchymal stem cells derived from canine adipose tissue and bone marrow. Vet Immunol Immunopathol 2014; 161:21-31. [PMID: 25026887 DOI: 10.1016/j.vetimm.2014.06.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 01/08/2023]
Abstract
Veterinary adult stem cell therapy is an emerging area of basic and clinical research. Like their human counterparts, veterinary mesenchymal stem cells (MSCs) offer many potential therapeutic benefits. The characterization of canine-derived MSCs, however, is poorly defined compared to human MSCs. Furthermore, little consensus exists regarding the expression of canine MSC cell surface markers. To address this issue, this study investigated characteristics of cultured canine MSCs derived from both adipose tissue and bone marrow. The canine MSCs were obtained from donors of various breeds and ages. A panel of cell surface markers for canine MSCs was selected based on current human and canine literature and the availability of canine-reactive antibodies. Using flow cytometry, canine MSCs were defined to be CD90(+)CD44(+)MHC I(+)CD14(-)CD29(-)CD34(-)MHC II(-). Canine MSCs were further characterized using real-time RT-PCR as CD105(+)CD73(+)CD14(+)CD29(+)MHC II(+)CD45(-) at the mRNA level. Among these markers, canine MSCs differed from canine peripheral blood mononuclear cells (PBMCs) by the absence of CD45 expression at the mRNA level. A novel high-throughput canine-specific PCR array was developed and used to identify changes in the gene expression profiles of canine MSCs. Genes including PTPRC, TNF, β2M, TGFβ1, and PDGFRβ, were identified as unique to canine MSCs as compared to canine PBMCs. Our findings will facilitate characterization of canine MSCs for use in research and clinical trials. Moreover, the high-throughput PCR array is a novel tool for characterizing canine MSCs isolated from different tissues and potentially from different laboratories.
Collapse
Affiliation(s)
- Rudell Screven
- Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD 20708, USA
| | - Elizabeth Kenyon
- Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD 20708, USA
| | - Michael J Myers
- Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD 20708, USA
| | - Haile F Yancy
- Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD 20708, USA
| | - Mark Skasko
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, U.S. Food and Drug Administration, 7500 Standish Place, Rockville, MD 20855, USA
| | - Lynne Boxer
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, U.S. Food and Drug Administration, 7500 Standish Place, Rockville, MD 20855, USA
| | - Elmer C Bigley
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA
| | - Dori L Borjesson
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Min Zhu
- Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD 20708, USA.
| |
Collapse
|
37
|
Ribitsch I, Burk J, Delling U, Geißler C, Gittel C, Jülke H, Brehm W. Basic science and clinical application of stem cells in veterinary medicine. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 123:219-63. [PMID: 20309674 DOI: 10.1007/10_2010_66] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Stem cells play an important role in veterinary medicine in different ways. Currently several stem cell therapies for animal patients are being developed and some, like the treatment of equine tendinopathies with mesenchymal stem cells (MSCs), have already successfully entered the market. Moreover, animal models are widely used to study the properties and potential of stem cells for possible future applications in human medicine. Therefore, in the young and emerging field of stem cell research, human and veterinary medicine are intrinsically tied to one another. Many of the pioneering innovations in the field of stem cell research are achieved by cooperating teams of human and veterinary medical scientists.Embryonic stem (ES) cell research, for instance, is mainly performed in animals. Key feature of ES cells is their potential to contribute to any tissue type of the body (Reed and Johnson, J Cell Physiol 215:329-336, 2008). ES cells are capable of self-renewal and thus have the inherent potential for exceptionally prolonged culture (up to 1-2 years). So far, ES cells have been recovered and maintained from non-human primate, mouse (Fortier, Vet Surg 34:415-423, 2005) and horse blastocysts (Guest and Allen, Stem Cells Dev 16:789-796, 2007). In addition, bovine ES cells have been grown in primary culture and there are several reports of ES cells derived from mink, rat, rabbit, chicken and pigs (Fortier, Vet Surg 34:415-423, 2005). However, clinical applications of ES cells are not possible yet, due to their in vivo teratogenic degeneration. The potential to form a teratoma consisting of tissues from all three germ lines even serves as a definitive in vivo test for ES cells.Stem cells obtained from any postnatal organism are defined as adult stem cells. Adult haematopoietic and MSCs, which can easily be recovered from extra embryonic or adult tissues, possess a more limited plasticity than their embryonic counterparts (Reed and Johnson, J Cell Physiol 215:329-336, 2008). It is believed that these stem cells serve as cell source to maintain tissue and organ mass during normal cell turnover in adult individuals. Therefore, the focus of attention in veterinary science is currently drawn to adult stem cells and their potential in regenerative medicine. Also experience gained from the treatment of animal patients provides valuable information for human medicine and serves as precursor to future stem cell use in human medicine.Compared to human medicine, haematopoietic stem cells only play a minor role in veterinary medicine because medical conditions requiring myeloablative chemotherapy followed by haematopoietic stem cell induced recovery of the immune system are relatively rare and usually not being treated for monetary as well as animal welfare reasons.In contrast, regenerative medicine utilising MSCs for the treatment of acute injuries as well as chronic disorders is gradually turning into clinical routine. Therefore, MSCs from either extra embryonic or adult tissues are in the focus of attention in veterinary medicine and research. Hence the purpose of this chapter is to offer an overview on basic science and clinical application of MSCs in veterinary medicine.
Collapse
Affiliation(s)
- I Ribitsch
- Translational Centre for Regenerative Medicine, Leipzig, Germany,
| | | | | | | | | | | | | |
Collapse
|
38
|
The osteogenesis of bone marrow stem cells on mPEG-PCL-mPEG/hydroxyapatite composite scaffold via solid freeform fabrication. BIOMED RESEARCH INTERNATIONAL 2014; 2014:321549. [PMID: 24868523 PMCID: PMC4020560 DOI: 10.1155/2014/321549] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/08/2014] [Indexed: 11/17/2022]
Abstract
The study described a novel bone tissue scaffold fabricated by computer-aided, air pressure-aided deposition system to control the macro- and microstructure precisely. The porcine bone marrow stem cells (PBMSCs) seeded on either mPEG-PCL-mPEG (PCL) or mPEG-PCL-mPEG/hydroxyapatite (PCL/HA) composite scaffold were cultured under osteogenic medium to test the ability of osteogenesis in vitro. The experimental outcomes indicated that both scaffolds possessed adequate pore size, porosity, and hydrophilicity for the attachment and proliferation of PBMSCs and the PBMSCs expressed upregulated genes of osteogensis and angiogenesis in similar manner on both scaffolds. The major differences between these two types of the scaffolds were the addition of HA leading to higher hardness of PCL/HA scaffold, cell proliferation, and VEGF gene expression in PCL/HA scaffold. However, the in vivo bone forming efficacy between PBMSCs seeded PCL and PCL/HA scaffold was different from the in vitro results. The outcome indicated that the PCL/HA scaffold which had bone-mimetic environment due to the addition of HA resulted in better bone regeneration and mechanical strength than those of PCL scaffold. Therefore, providing a bone-mimetic scaffold is another crucial factor for bone tissue engineering in addition to the biocompatibility, 3D architecture with high porosity, and interpored connection.
Collapse
|
39
|
Zhang W, Zhang F, Shi H, Tan R, Han S, Ye G, Pan S, Sun F, Liu X. Comparisons of rabbit bone marrow mesenchymal stem cell isolation and culture methods in vitro. PLoS One 2014; 9:e88794. [PMID: 24558428 PMCID: PMC3928292 DOI: 10.1371/journal.pone.0088794] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/10/2014] [Indexed: 12/30/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have great potential in tissue engineering and clinical therapy, and various methods for isolation and cultivation of BMSCs have been reported. However, the best techniques are still uncertain. Therefore, we sought the most suitable among the four most common methods for BMSC separation from rabbits. BMSCs were obtained from untreated whole bone marrow (BM) adherent cultures, 3 volumes of red blood cells (RBC) lysed with ammonium chloride, 6 volumes of RBC lysed with ammonium chloride, and Ficoll density gradient centrifugation. Then, isolated BMSCs were evaluated with respect to primary cell yield, number of CFU-F colonies, proliferative capacity, cell phenotype, and chondrogenic differentiation potential. Our data show that BMSCs were successfully isolated by all four methods, and each method was similar with regard to cell morphology, phenotype, and differentiation potential. However, BMSCs from untreated whole BM adherent cultures had greater primary cell yields, larger colonies, and the shortest primary culture time (P<0.05). Moreover, the 4th generation of cultured cells had the strongest proliferative activity, the fastest growth rate and the most numerous cells compared with other cell passage generations (P<0.05). In conclusion, untreated whole BM adherent cultures are best for rabbit BMSC isolation and the 4th generation of cells has the strongest proliferation capacity.
Collapse
Affiliation(s)
- Weidong Zhang
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Fangbiao Zhang
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Hongcan Shi
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- * E-mail:
| | - Rongbang Tan
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Shi Han
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Gang Ye
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Shu Pan
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Fei Sun
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Xingchen Liu
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
40
|
Singh S, Deka D, Mulinti R, Sood NK, Agrawal RK, Verma R. Isolation, Culture, In-Vitro Differentiation and Characterization of Canine Adult Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s40011-014-0309-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
41
|
Liu Z, Wang W, Gao J, Zhou H, Zhang Y. Isolation, culture, and induced multiple differentiation of Mongolian sheep bone marrow-derived mesenchymal stem cells. In Vitro Cell Dev Biol Anim 2014; 50:464-74. [PMID: 24399254 DOI: 10.1007/s11626-013-9725-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 12/10/2013] [Indexed: 01/12/2023]
Abstract
The aim of this paper was to explore the optimal method of isolating, purifying, and proliferating Mongolian sheep bone marrow-derived mesenchymal stem cells (BMSCs) and their multiple differentiation potentialities. Bone marrow (BM) was punctured from ∼1-year-old sheep, and BMSCs were harvested through gradient centrifuge and adherent cultures. Analysis of the growth of the passage 1, 5, and 10 cultures revealed an S-shaped growth curve with a population doubling time of 31.2 h. Karyotyping indicated that the chromosome number in the Mongolian sheep was 2n = 54, comprising 26 pairs of autosomes and one pair of sex chromosomes (XY). RT-PCR demonstrated that OCT4, SOX2, and Nanog genes at passage 3 were positively expressed. The P3 BMSCs were cultured in vitro under inductive environments and induced into adipocytes, osteoblasts, chondrocytes, neural cells, and cardiomyocytes. Their differentiation properties were confirmed by histological staining, such as oil red, Alizarin red, hematoxylin-eosin, toluidine blue, and periodic acid schiff. RT-PCR showed that the specific genes to be induced were all expressed. This proves that the isolated cells are indeed the BMSCs and also provides valuable materials for somatic cell cloning and transgenic research.
Collapse
Affiliation(s)
- Zongzheng Liu
- College of Life Sciences, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia Autonomous Region, 010018, China,
| | | | | | | | | |
Collapse
|
42
|
Rutigliano L, Corradetti B, Valentini L, Bizzaro D, Meucci A, Cremonesi F, Lange-Consiglio A. Molecular characterization and in vitro differentiation of feline progenitor-like amniotic epithelial cells. Stem Cell Res Ther 2013; 4:133. [PMID: 24405576 PMCID: PMC3854755 DOI: 10.1186/scrt344] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 10/25/2013] [Indexed: 12/21/2022] Open
Abstract
Introduction While amniotic mesenchymal cells have been isolated and characterized in different species, amniotic epithelial cells (AECs) have been found only in humans and horses and are recently considered valid candidates in regenerative medicine. The aim of this work is to obtain and characterize, for the first time in the feline species, presumptive stem cells from the epithelial portion of the amnion (AECs) to be used for clinical applications. Methods In our study, we molecularly characterized and induced in vitro differentiation of feline AECs, obtained after enzymatic digestion of amnion. Results AECs displayed a polygonal morphology and the mean doubling time value was 1.94 ± 0.04 days demonstrating the high proliferating capacity of these cells. By RT-PCR, AECs expressed pluripotent (Oct4, Nanog) and some mesenchymal markers (CD166, CD44) suggesting that an epithelial-mesenchymal transition may occur in these cells that lack the hematopoietic marker CD34. Cells also showed the expression of embryonic marker SSEA-4, but not SSEA-3, as demonstrated by immunocytochemistry and flow cytometry. Moreover, the possibility to use feline AECs in cell therapies resides in their low immunogenicity, due to the absence of MHC-II antigen expression. After induction, AECs differentiated into the mesodermic and ectodermic lineages, demonstrating high plasticity. Conclusions In conclusion, feline AECs appear to be a readily obtainable, highly proliferative, multipotent and non-immunogenic cell line from a source that may represent a good model system for stem cell biology and be useful in allogenic cell-based therapies in order to treat tissue lesions, especially with loss of substance.
Collapse
|
43
|
Bone Tissue Engineering with Adipose-Derived Stem Cells in Bioactive Composites of Laser-Sintered Porous Polycaprolactone Scaffolds and Platelet-Rich Plasma. MATERIALS 2013; 6:4911-4929. [PMID: 28788367 PMCID: PMC5452768 DOI: 10.3390/ma6114911] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/09/2013] [Accepted: 10/18/2013] [Indexed: 02/06/2023]
Abstract
Three-dimensional porous polycaprolactone (PCL) scaffolds with consistent inter-pore channels, 83% porosity and 300–400 μm pore size were fabricated via selective laser sintering. The PCL scaffold was combined with platelet-rich plasma (PRP) to form a bioactive composite and studied for potential application in bone tissue engineering using porcine adipose-derived stem cells (PASCs). The PCL/PRP/PASCs construct showed enhanced cell seeding efficiency and synergistically increased the differentiation capability of PASCs in osteogenic medium toward the osteoblast lineage, judging from elevated alkaline phosphatase activity and up-regulated osteogenic genes expression. For in vivo study, a 3 cm × 3 cm mandible defect was created in pigs and reconstructed by implanting acellular PCL scaffolds or PCL/PRP/PASCs constructs. Both groups showed new bone formation, however, the new bone volume was 5.1 times higher for PCL/PRP/PASCs 6 months post-operation. The bone density was less and loose in the acellular PCL group and the Young’s modulus was only 29% of normal bone. In contrast, continued and compact bone formation was found in PCL/PRP/PASCs and the Young’s modulus was 81% that of normal bone. Masson’s trichrome stain, immunohistochemical analysis of osteocalcin and collagen type I also confirmed new bone formation.
Collapse
|
44
|
Ferrari C, Olmos E, Balandras F, Tran N, Chevalot I, Guedon E, Marc A. Investigation of growth conditions for the expansion of porcine mesenchymal stem cells on microcarriers in stirred cultures. Appl Biochem Biotechnol 2013; 172:1004-17. [PMID: 24142358 DOI: 10.1007/s12010-013-0586-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/03/2013] [Indexed: 12/17/2022]
Abstract
The extensive use of mesenchymal stem cells (MCS) in tissue engineering and cell therapy increases the necessity to improve their expansion. Among these, porcine MCS are valuable models for tissue engineering and are classically expanded in static T-flasks. In this work, different processes of stirred cultures were evaluated and compared. First, the effect of glucose, glutamine, antioxidant, and growth factors concentrations on porcine MSC expansion were analyzed in a suitable medium by performing kinetic studies. Results showed that a lower glucose concentration (5.5 mM) enabled to increase maximal cell concentration by 40 % compared with a higher one (25 mM), while addition of 2 to 6 mM of glutamine increased maximal cell concentration by more than 25 % compared with no glutamine supplementation. Moreover, supplementation with 1 μM thioctic acid increased maximal cell concentration by 40 % compared with no supplementation. Using this adapted medium, microcarriers cultures were performed and compared with T-flasks expansion. Porcine MSC were shown to be able to proliferate on the five types of microcarriers tested. Moreover, cultures on Cytodex 1, Cytopore 2, and Cultispher G exhibited a MSC growth rate more than 40 % higher compared with expansion in T-flasks, while MSC metabolism was similar.
Collapse
Affiliation(s)
- Caroline Ferrari
- Laboratoire Réactions et Génie des Procédés, CNRS UMR 7274, Université de Lorraine, 2 avenue de la forêt de Haye, TSA 40602, 54518, Vandœuvre-lès-Nancy Cedex, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Calloni R, Viegas GS, Türck P, Bonatto D, Pegas Henriques JA. Mesenchymal stromal cells from unconventional model organisms. Cytotherapy 2013; 16:3-16. [PMID: 24113426 DOI: 10.1016/j.jcyt.2013.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 12/23/2022]
Abstract
Mesenchymal stromal cells (MSCs) are multipotent, plastic, adherent cells able to differentiate into osteoblasts, chondroblasts and adipocytes. MSCs can be isolated from many different body compartments of adult and fetal individuals. The most commonly studied MSCs are isolated from humans, mice and rats. However, studies are also being conducted with the use of MSCs that originate from different model organisms, such as cats, dogs, guinea pigs, ducks, chickens, buffalo, cattle, sheep, goats, horses, rabbits and pigs. MSCs derived from unconventional model organisms all present classic fibroblast-like morphology, the expression of MSC-associated cell surface markers such as CD44, CD73, CD90 and CD105 and the absence of CD34 and CD45. Moreover, these MSCs have the ability to differentiate into osteoblasts, chondroblasts and adipocytes. The MSCs isolated from unconventional model organisms are being studied for their potential to heal different tissue defects and injuries and for the development of scaffold compositions that improve the proliferation and differentiation of MSCs for tissue engineering.
Collapse
Affiliation(s)
- Raquel Calloni
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Gabrihel Stumpf Viegas
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Patrick Türck
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Diego Bonatto
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - João Antonio Pegas Henriques
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| |
Collapse
|
46
|
Opiela J, Samiec M, Bochenek M, Lipiński D, Romanek J, Wilczek P. DNA Aneuploidy in Porcine Bone Marrow–Derived Mesenchymal Stem Cells Undergoing Osteogenic and AdipogenicIn VitroDifferentiation. Cell Reprogram 2013; 15:425-34. [DOI: 10.1089/cell.2012.0099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Jolanta Opiela
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
| | - Marcin Samiec
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
| | - Michał Bochenek
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
| | - Daniel Lipiński
- Poznań University of Life Sciences, Department of Biochemistry and Biotechnology, 60-632 Poznan, Poland
| | - Joanna Romanek
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
| | - Piotr Wilczek
- Foundation of Cardiac Surgery Development, 41-800 Zabrze, Poland
| |
Collapse
|
47
|
Lu T, Huang Y, Wang H, Ma Y, Guan W. Multi-lineage potential research of bone marrow-derived stromal cells (BMSCs) from cattle. Appl Biochem Biotechnol 2013; 172:21-35. [PMID: 24043451 DOI: 10.1007/s12010-013-0458-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/22/2013] [Indexed: 12/15/2022]
Abstract
Bovine bone marrow-derived mesenchymal stem cells (bBMSCs) were isolated from the bone marrow of a 4-6-month-old fetal bovine and then characterized by immunofluorescence and reverse transcriptase polymerase chain reaction. We found that primary bBMSCs could be expanded for 46 passages; the total culture time in vitro was 125 days. The results of surface antigen detection showed that bBMSCs expressed CD29, CD44, and CD73 but did not express endothelial cells and hematopoietic cells-specific marker CD31, CD34, and CD45. The cells from four passages (passages 3, 9, 15, and 25) were successfully induced to differentiate into osteoblasts, adipocytes, hepatic, and islet-like cells. The results indicate the potential for multi-lineage differentiation of bBMSCs that may represent an ideal candidate for cellular transplantation therapy.
Collapse
Affiliation(s)
- Taofeng Lu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | | | | | | | | |
Collapse
|
48
|
Sun Z, Tee BC, Kennedy KS, Kennedy PM, Kim DG, Mallery SR, Fields HW. Scaffold-based delivery of autologous mesenchymal stem cells for mandibular distraction osteogenesis: preliminary studies in a porcine model. PLoS One 2013; 8:e74672. [PMID: 24040314 PMCID: PMC3764039 DOI: 10.1371/journal.pone.0074672] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/02/2013] [Indexed: 01/12/2023] Open
Abstract
Purpose Bone regeneration through distraction osteogenesis (DO) is promising but remarkably slow. To accelerate it, autologous mesenchymal stem cells have been directly injected to the distraction site in a few recent studies. Compared to direct injection, a scaffold-based method can provide earlier cell delivery with potentially better controlled cell distribution and retention. This pilot project investigated a scaffold-based cell-delivery approach in a porcine mandibular DO model. Materials and Methods Eleven adolescent domestic pigs were used for two major sets of studies. The in-vitro set established methodologies to: aspirate bone marrow from the tibia; isolate, characterize and expand bone marrow-derived mesenchymal stem cells (BM-MSCs); enhance BM-MSC osteogenic differentiation using FGF-2; and confirm cell integration with a gelatin-based Gelfoam scaffold. The in-vivo set transplanted autologous stem cells into the mandibular distraction sites using Gelfoam scaffolds; completed a standard DO-course and assessed bone regeneration by macroscopic, radiographic and histological methods. Repeated-measure ANOVAs and t-tests were used for statistical analyses. Results From aspirated bone marrow, multi-potent, heterogeneous BM-MSCs purified from hematopoietic stem cell contamination were obtained. FGF-2 significantly enhanced pig BM-MSC osteogenic differentiation and proliferation, with 5 ng/ml determined as the optimal dosage. Pig BM-MSCs integrated readily with Gelfoam and maintained viability and proliferative ability. After integration with Gelfoam scaffolds, 2.4–5.8×107 autologous BM-MSCs (undifferentiated or differentiated) were transplanted to each experimental DO site. Among 8 evaluable DO sites included in the final analyses, the experimental DO sites demonstrated less interfragmentary mobility, more advanced gap obliteration, higher mineral content and faster mineral apposition than the control sites, and all transplanted scaffolds were completely degraded. Conclusion It is technically feasible and biologically sound to deliver autologous BM-MSCs to the distraction site immediately after osteotomy using a Gelfoam scaffold to enhance mandibular DO.
Collapse
Affiliation(s)
- Zongyang Sun
- Division of Orthodontics, College of Dentistry, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| | - Boon Ching Tee
- Division of Orthodontics, College of Dentistry, Ohio State University, Columbus, Ohio, United States of America
| | - Kelly S. Kennedy
- Division of Oral and Maxillofacial Surgery, College of Dentistry, Ohio State University, Columbus, Ohio, United States of America
| | - Patrick M. Kennedy
- Division of Oral and Maxillofacial Surgery, College of Dentistry, Ohio State University, Columbus, Ohio, United States of America
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, Ohio State University, Columbus, Ohio, United States of America
| | - Susan R. Mallery
- Division of Oral Pathology and Radiology, College of Dentistry, Ohio State University, Columbus, Ohio, United States of America
| | - Henry W. Fields
- Division of Orthodontics, College of Dentistry, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
49
|
Liu Y, Liu Y, Yie S, Lan J, Pi J, Zhang Z, Huang H, Cai Z, Zhang M, Cai K, Wang H, Hou R. Characteristics of Mesenchymal Stem Cells Isolated from Bone Marrow of Giant Panda. Stem Cells Dev 2013; 22:2394-401. [DOI: 10.1089/scd.2013.0102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Yuliang Liu
- Chengdu Research Base of Giant Panda Breeding, Chengdu, People's Republic of China
| | - Yang Liu
- College of Animal Science & Technology, Sichuan Agricultural University, Ya'an, People's Republic of China
| | - Shangmian Yie
- Chengdu Research Base of Giant Panda Breeding, Chengdu, People's Republic of China
| | - Jingchao Lan
- Chengdu Research Base of Giant Panda Breeding, Chengdu, People's Republic of China
| | - Jinkui Pi
- Chengdu Research Base of Giant Panda Breeding, Chengdu, People's Republic of China
| | - Zhihe Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, People's Republic of China
| | - He Huang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, People's Republic of China
| | - Zhigang Cai
- Chengdu Research Base of Giant Panda Breeding, Chengdu, People's Republic of China
| | - Ming Zhang
- College of Animal Science & Technology, Sichuan Agricultural University, Ya'an, People's Republic of China
| | - Kailai Cai
- Chengdu Research Base of Giant Panda Breeding, Chengdu, People's Republic of China
| | - Hairui Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, People's Republic of China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu, People's Republic of China
| |
Collapse
|
50
|
Cortes Y, Ojeda M, Araya D, Dueñas F, Fernández MS, Peralta OA. Isolation and multilineage differentiation of bone marrow mesenchymal stem cells from abattoir-derived bovine fetuses. BMC Vet Res 2013; 9:133. [PMID: 23826829 PMCID: PMC3751243 DOI: 10.1186/1746-6148-9-133] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/28/2013] [Indexed: 01/22/2023] Open
Abstract
Background Mesenchymal stem cells (MSC) are multipotent progenitor cells localized in the stromal compartment of the bone marrow (BM). The potential of MSC for mesenchymal differentiation has been well documented in different animal models predominantly on rodents. However, information regarding bovine MSC (bMSC) is limited, and the differentiation potential of bMSC derived from fetal BM remains unknown. In the present study we sought to isolate bMSC from abattoir-derived fetal BM and to characterize the multipotent and differentiation potential under osteogenic, chondrogenic and adipogenic conditions by quantitative and qualitative analyses. Results Plastic-adherent bMSC isolated from fetal BM maintained a fibroblast-like morphology under monolayer culture conditions. These cells expressed high levels of MSC surface markers (CD73, CD90, and CD105) and low levels of hematopoietic surface markers (CD34 and CD45). Culture of bMSC under osteogenic conditions during a 27-day period induced up-regulation of the osteocalcin (OC) gene expression and alkaline phosphatase (ALPL) activity, and promoted mineralization of the matrix. Increasing supplementation levels of ascorbic acid to culture media enhanced osteogenic differentiation of bMSC; whereas, reduction of FBS supplementation compromised osteogenesis. bMSC increased expression of cartilage-specific genes aggrecan (ACAN), collagen 2A1 (COL2A1) and SRY (sex-determining region Y) box 9 (SOX9) at Day 21 of chondrogenic differentiation. Treatment of bMSC with adipogenic factors increased levels of fatty acid-binding protein 2 (AP2) mRNA and accumulation of lipid vacuoles after 18 days of culture. NANOG mRNA levels in differentiating bMSC were not affected during adipogenic culture; however, osteogenic and chondrogenic conditions induced higher and lower levels, respectively. Conclusions Our analyses revealed the potential multilineage differentiation of bMSC isolated from abattoir-derived fetal BM. NANOG mRNA pattern in differentiating bMSC varied according to differentiation culture conditions. The osteogenic differentiation of bMSC was affected by ascorbic acid and FBS concentrations in culture media. The simplicity of isolation and the differentiation potential suggest that bMSC from abattoir-derived fetal BM are appropriate candidate for investigating MSC biology and for eventual applications for regenerative therapy.
Collapse
|