1
|
Cui X, Li X, Zheng H, Su Y, Zhang S, Li M, Hao X, Zhang S, Hu Z, Xia Z, Shi C, Xu Y, Mao C. Human midbrain organoids: a powerful tool for advanced Parkinson's disease modeling and therapy exploration. NPJ Parkinsons Dis 2024; 10:189. [PMID: 39428415 PMCID: PMC11491477 DOI: 10.1038/s41531-024-00799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked by the loss of dopaminergic neurons in the substantia nigra. Despite progress, the pathogenesis remains unclear. Human midbrain organoids (hMLOs) have emerged as a promising model for studying PD, drug screening, and potential treatments. This review discusses the development of hMLOs, their application in PD research, and current challenges in organoid construction, highlighting possible optimization strategies.
Collapse
Affiliation(s)
- Xin Cui
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xinwei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuyu Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Neuro-Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zongping Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Clinical Systems Biology Laboratories, Zhengzhou University, Zhengzhou, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Alimohammadi S, Mohaddes G, Keyhanmanesh R, Athari SZ, Azizifar N, Farajdokht F. Intranasal AdipoRon mitigates motor and cognitive deficits in hemiparkinsonian rats through neuroprotective mechanisms against oxidative stress and synaptic dysfunction. Neuropharmacology 2024; 262:110180. [PMID: 39393589 DOI: 10.1016/j.neuropharm.2024.110180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
While motor symptoms are the most well-known manifestation of Parkinson's disease (PD), patients may also suffer from non-motor signs like cognitive impairments. The adiponectin receptor agonist AdipoRon (Adipo) has shown neuroprotective effects in preclinical studies. The objective of this study was to determine the potential benefits of chronic intranasal treatment of Adipo on motor function and cognitive performance in a hemiparkinsonian rat model caused by injecting 6-hydroxydopamine (6-OHDA) into the left forebrain bundle. After one week, PD rats were given either a vehicle or one of three dosages of Adipo (0.1, 1, and 10 μg) or levodopa (10 mg/kg orally) daily for 21 days. Recognition and spatial memory were determined using the novel object recognition test (NORT) and the Barnes maze test, respectively. The hippocampal tissues of the animals were harvested to examine oxidative stress status as well as the protein expressions of brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD-95). In hemiparkinsonian rats, motor impairments, recognition memory, and spatial memory were all improved by chronic intranasal Adipo at 1 and 10 μg. Furthermore, we found that unilateral 6-OHDA injection elevated hippocampal oxidative stress (ROS) while concurrently reducing total antioxidant capacity (TAC), BDNF, PSD-95, and antioxidant enzymes (SOD, GPx). However, Adipo 10 μg significantly reduced these biochemical alterations in the hippocampus of 6-OHDA-lesioned rats. Chronic intranasal Adipo ameliorated spatial and recognition memory deterioration in hemiparkinsonian rats, presumably by increasing hippocampal synaptic protein levels, reducing oxidative stress, and increasing BDNF.
Collapse
Affiliation(s)
- Soraya Alimohammadi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Department of Biomedical Education, California Health Sciences University, College of Osteopathic Medicine, Clovis, CA, USA
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Zanyar Athari
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Azizifar
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Lal R, Singh A, Watts S, Chopra K. Experimental models of Parkinson's disease: Challenges and Opportunities. Eur J Pharmacol 2024; 980:176819. [PMID: 39029778 DOI: 10.1016/j.ejphar.2024.176819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder occurs due to the degradation of dopaminergic neurons present in the substantia nigra pars compacta (SNpc). Millions of people are affected by this devastating disorder globally, and the frequency of the condition increases with the increase in the elderly population. A significant amount of progress has been made in acquiring more knowledge about the etiology and the pathogenesis of PD over the past decades. Animal models have been regarded to be a vital tool for the exploration of complex molecular mechanisms involved in PD. Various animals used as models for disease monitoring include vertebrates (zebrafish, rats, mice, guinea pigs, rabbits and monkeys) and invertebrate models (Drosophila, Caenorhabditis elegans). The animal models most relevant for study of PD are neurotoxin induction-based models (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-Hydroxydopamine (6-OHDA) and agricultural pesticides (rotenone, paraquat), pharmacological models (reserpine or haloperidol treated rats), genetic models (α-synuclein, Leucine-rich repeat kinase 2 (LRRK2), DJ-1, PINK-1 and Parkin). Several non-mammalian genetic models such as zebrafish, Drosophila and Caenorhabditis elegance have also gained popularity in recent years due to easy genetic manipulation, presence of genes homologous to human PD, and rapid screening of novel therapeutic molecules. In addition, in vitro models (SH-SY5Y, PC12, Lund human mesencephalic (LUHMES) cells, Human induced pluripotent stem cell (iPSC), Neural organoids, organ-on-chip) are also currently in trend providing edge in investigating molecular mechanisms involved in PD as they are derived from PD patients. In this review, we explain the current situation and merits and demerits of the various animal models.
Collapse
Affiliation(s)
- Roshan Lal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Aditi Singh
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, Punjab, 140306, India.
| | - Shivam Watts
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
4
|
Sophronea T, Agrawal S, Kumari N, Mishra J, Walecha V, Luthra PM. A 2AR antagonists triggered the AMPK/m-TOR autophagic pathway to reverse the calcium-dependent cell damage in 6-OHDA induced model of PD. Neurochem Int 2024; 178:105793. [PMID: 38880232 DOI: 10.1016/j.neuint.2024.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Calcium dyshomeostasis, oxidative stress, autophagy and apoptosis are the pathogenesis of selective dopaminergic neuronal loss in Parkinson's disease (PD). Earlier, we reported that A2A R modulates IP3-dependent intracellular Ca2+ signalling via PKA. Moreover, A2A R antagonist has been reported to reduce oxidative stress and apoptosis in PD models, however intracellular Ca2+ ([Ca2+]i) dependent autophagy regulation in the 6-OHDA model of PD has not been explored. In the present study, we investigated the A2A R antagonists mediated neuroprotective effects in 6-OHDA-induced primary midbrain neuronal (PMN) cells and unilateral lesioned rat model of PD. 6-OHDA-induced oxidative stress (ROS and superoxide) and [Ca2+]i was measured using Fluo4AM, DCFDA and DHE dye respectively. Furthermore, autophagy was assessed by Western blot of p-m-TOR/mTOR, p-AMPK/AMPK, LC3I/II, Beclin and β-actin. Apoptosis was measured by Annexin V-APC-PI detection and Western blot of Bcl2, Bax, caspase3 and β-actin. Dopamine levels were measured by Dopamine ELISA kit and Western blot of tyrosine hydroxylase. Our results suggest that 6-OHDA-induced PMN cell death occurred due to the interruption of [Ca2+]i homeostasis, accompanied by activation of autophagy and apoptosis. A2A R antagonists prevented 6-OHDA-induced neuronal cell death by decreasing [Ca2+]i overload and oxidative stress. In addition, we found that A2A R antagonists upregulated mTOR phosphorylation and downregulated AMPK phosphorylation thereby reducing autophagy and apoptosis both in 6-OHDA induced PMN cells and 6-OHDA unilateral lesioned rat model. In conclusion, A2A R antagonists alleviated 6-OHDA toxicity by modulating [Ca2+]i signalling to inhibit autophagy mediated by the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Tuithung Sophronea
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Saurabh Agrawal
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Namrata Kumari
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Jyoti Mishra
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Vaishali Walecha
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Pratibha Mehta Luthra
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
5
|
Alves ADDF, Dias FCR, Cadena PG, Silva-Jr VA. Use of phytocanabinoids in animal models of Parkinson's disease: Systematic review. Neurotoxicology 2024; 105:34-44. [PMID: 39182852 DOI: 10.1016/j.neuro.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/29/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
This systematic review was carried out with the aim of evaluating the use of medicinal Cannabis for the treatment of Parkinson's disease in experimental models. Furthermore, we sought to understand the main intracellular mechanisms capable of promoting the effects of phytocannabinoids on motor disorders, neurodegeneration, neuroinflammation and oxidative stress. The experimental models were developed in mice, rats and marmosets. There was a predominance of using only males in relation to females; in three studies, the authors evaluated treatments in males and females. Drugs were used as inducers of Parkinson's disease: 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), lipopolysaccharide (LPS), and rotenone. Substances capable of promoting catalepsy in animals were also used: haloperidol, L-nitro-N-arginine (L-NOARG), WIN55,212-2, and reserpine. The inducing agent was injected stereotaxically or intraperitoneally. The most commonly used treatments were cannabidiol (CBD), Delta-9-tetrahydrocannabinol (Δ-9 THC) and Delta-9-tetrahydrocannabivarin (Δ-9 THCV), administered intraperitoneally, orally, subcutaneously and intramuscularly. The use of phytocannabinoids improved locomotor activity and involuntary movement and reduced catalepsy. There was an improvement in the evaluation of dopaminergic neurons, while in relation to dopamine content, the treatment had no effect. Inflammation, microglial/astrocyte activation and oxidative stress were reduced after treatment with phytocannabinoids, the same was observed in the results of tests for allodynia and hyperalgesia.
Collapse
Affiliation(s)
| | - Fernanda Carolina Ribeiro Dias
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Brazil; Cellular Interactions Laboratory, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | | | | |
Collapse
|
6
|
Roth RH, Ding JB. Cortico-basal ganglia plasticity in motor learning. Neuron 2024; 112:2486-2502. [PMID: 39002543 PMCID: PMC11309896 DOI: 10.1016/j.neuron.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/15/2024]
Abstract
One key function of the brain is to control our body's movements, allowing us to interact with the world around us. Yet, many motor behaviors are not innate but require learning through repeated practice. Among the brain's motor regions, the cortico-basal ganglia circuit is particularly crucial for acquiring and executing motor skills, and neuronal activity in these regions is directly linked to movement parameters. Cell-type-specific adaptations of activity patterns and synaptic connectivity support the learning of new motor skills. Functionally, neuronal activity sequences become structured and associated with learned movements. On the synaptic level, specific connections become potentiated during learning through mechanisms such as long-term synaptic plasticity and dendritic spine dynamics, which are thought to mediate functional circuit plasticity. These synaptic and circuit adaptations within the cortico-basal ganglia circuitry are thus critical for motor skill acquisition, and disruptions in this plasticity can contribute to movement disorders.
Collapse
Affiliation(s)
- Richard H Roth
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Lau K, Kotzur R, Richter F. Blood-brain barrier alterations and their impact on Parkinson's disease pathogenesis and therapy. Transl Neurodegener 2024; 13:37. [PMID: 39075566 PMCID: PMC11285262 DOI: 10.1186/s40035-024-00430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024] Open
Abstract
There is increasing evidence for blood-brain barrier (BBB) alterations in Parkinson's disease (PD), the second most common neurodegenerative disorder with rapidly rising prevalence. Altered tight junction and transporter protein levels, accumulation of α-synuclein and increase in inflammatory processes lead to extravasation of blood molecules and vessel degeneration. This could result in a self-perpetuating pathophysiology of inflammation and BBB alteration, which contribute to neurodegeneration. Toxin exposure or α-synuclein over-expression in animal models has been shown to initiate similar pathologies, providing a platform to study underlying mechanisms and therapeutic interventions. Here we provide a comprehensive review of the current knowledge on BBB alterations in PD patients and how rodent models that replicate some of these changes can be used to study disease mechanisms. Specific challenges in assessing the BBB in patients and in healthy controls are discussed. Finally, a potential role of BBB alterations in disease pathogenesis and possible implications for therapy are explored. The interference of BBB alterations with current and novel therapeutic strategies requires more attention. Brain region-specific BBB alterations could also open up novel opportunities to target specifically vulnerable neuronal subpopulations.
Collapse
Affiliation(s)
- Kristina Lau
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Rebecca Kotzur
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
8
|
Sasaki T, Islam J, Hara K, Nochi T, Tanemura K. Male mice are susceptible to brain dysfunction induced by early-life acephate exposure. Front Neurosci 2024; 18:1404009. [PMID: 39050668 PMCID: PMC11266133 DOI: 10.3389/fnins.2024.1404009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Background Acephate is a widely used organophosphate insecticide. Exposure to endocrine-disrupting chemicals, such as acephate, can interfere with neurodevelopment in childhood, increasing the risk of higher brain dysfunction later in life. Furthermore, brain dysfunction may be related to chemical exposure-related disturbances in the gut microbiota. However, the effects of early acephate exposure on the brains of adult males and females as well as on the adult gut environment remain poorly understood. Methods This study investigated the effects of perinatal acephate exposure on the central nervous system and gut microbiota of mice, including sex differences and environmentally relevant concentrations. C57BL/6 N pups were exposed to acephate (0, 0.3, 10, and 300 ppm) via the dam in their drinking water from embryonic day (E) 11.5 to postnatal day 14. We examined its effects on the central nervous system of adult males and females. Results In the male treatment group, impairments in learning and memory were detected. Immunohistochemical analysis revealed a decrease in SOX2-, NeuN-, DCX-, and GFAP-positive cells in the hippocampal dentate gyrus in males compared to the control group, whereas GFAP-positive cells were fewer in females. In addition, gut microbiota diversity was reduced in both sexes in the experimental group. Conclusion Our study demonstrates that the effects of early-life exposure to acephate are more pronounced in males than in females and can lead to a lasting impact on adult behavior, even at low doses, and that the gut microbiota may reflect the brain environment.
Collapse
Affiliation(s)
- Takahiro Sasaki
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Jahidul Islam
- Laboratory of Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Kenshiro Hara
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Tomonori Nochi
- Laboratory of Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
| |
Collapse
|
9
|
Xiang Y, Naik S, Zhao L, Shi J, Ke H. Emerging phosphodiesterase inhibitors for treatment of neurodegenerative diseases. Med Res Rev 2024; 44:1404-1445. [PMID: 38279990 DOI: 10.1002/med.22017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
Neurodegenerative diseases (NDs) cause progressive loss of neuron structure and ultimately lead to neuronal cell death. Since the available drugs show only limited symptomatic relief, NDs are currently considered as incurable. This review will illustrate the principal roles of the signaling systems of cyclic adenosine and guanosine 3',5'-monophosphates (cAMP and cGMP) in the neuronal functions, and summarize expression/activity changes of the associated enzymes in the ND patients, including cyclases, protein kinases, and phosphodiesterases (PDEs). As the sole enzymes hydrolyzing cAMP and cGMP, PDEs are logical targets for modification of neurodegeneration. We will focus on PDE inhibitors and their potentials as disease-modifying therapeutics for the treatment of Alzheimer's disease, Parkinson's disease, and Huntington's disease. For the overlapped but distinct contributions of cAMP and cGMP to NDs, we hypothesize that dual PDE inhibitors, which simultaneously regulate both cAMP and cGMP signaling pathways, may have complementary and synergistic effects on modifying neurodegeneration and thus represent a new direction on the discovery of ND drugs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Swapna Naik
- Department of Pharmacology, Yale Cancer Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Liyun Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Abdel-Kawy MA, Aboulhoda BE, Michel CG, Sedeek MS, Kirollos FN, Masoud MA. Ameliorating effect of Citrus trifoliata L. fruits extract on motor incoordination, neurodegeneration and oxidative stress in Parkinson's disease model. Nutr Neurosci 2024; 27:770-782. [PMID: 37658797 DOI: 10.1080/1028415x.2023.2253026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
BACKGROUND Citrus trifoliate fruit (also known as Trifoliate orange) is one of the commercially-cultivated Citrus genus of plants belonging to the Rutaceae family. It has been traditionally-utilized in treatment of neurodegenerative disorders. However, the scientific evidence verifying this utilization needs further elucidation. AIM OF THE STUDY Characterization of the bioactive constituents of C. trifoliata L. fruits extract and evaluating its effect on Parkinson's disease (PD) model. MATERIAL AND METHODS Rats were classified into 5 groups; control, PD, PD-treated by L-dopa/Carpidopa and PD-treated by oral Citrus trifoliata L. fruits extract (50 and 100 mg/kg). Deterioration in brain functions was evaluated through an in vivo open field, grid and catalepsy tests. The study also assessed the striatal neurotransmitters, oxidative stress markers and histopathological changes. RESULTS Citrus trifoliata L. fruit extract has revealed motor improvement comparable to L-dopa and carbidopa. It has also effectively-improved oxidative stress via reduction of striatal malondialdehyde & nitric oxide along with replenishment of the striatal glutathione and superoxide dismutase. The extract caused significant reduction of the striatal myeloperoxidase activity and restoration of dopamine, γ-amino butyric acid (GABA), and acetylcholinesterase. This effect was further confirmed by amelioration of neuronal apoptosis, microgliosis and peri-neuronal vacuolation. Metabolite profiling revealed 40 constituents, with flavonoids representing the main identified class. CONCLUSION The neuro-protective effect of Citrus trifoliata extract was achieved through the antioxidant and anti-inflammatory activities of its flavonoids, particularly hesperidin and naringin. This neuro-protective effect was evident at the behavioral, histological and neurotransmitter levels.
Collapse
Affiliation(s)
| | - Basma Emad Aboulhoda
- Anatomy and Embryology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Camilia G Michel
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed S Sedeek
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Farid N Kirollos
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Marwa A Masoud
- Pharmacology Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
11
|
Huang W, Zhang T, Li X, Gong L, Zhang Y, Luan C, Shan Q, Gu X, Zhao L. Intranasal Administration of Umbilical Cord Mesenchymal Stem Cell Exosomes Alleviates Parkinson's Disease. Neuroscience 2024; 549:1-12. [PMID: 38705349 DOI: 10.1016/j.neuroscience.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
Parkinson's disease (PD) is a common and complex neurodegenerative disease. This disease is typically characterized by the formation of Lewy bodies in multiple brain regions and dopaminergic neuronal loss in the substantia nigra pars compacta, resulting in non-motor symptoms (e.g., olfactory deficits) and motor dysfunction in the late stages. There is yet no effective cure for Parkinson's disease. Considering the neuroprotective effects of exosomes, we investigated whether intranasal administration of umbilical cord mesenchymal stem cell exosomes could improve behavioral functions in PD mice. First, exosomes were endocytosed by the cells in vitro and in vivo, indicating that exosomes can cross the blood-brain barrier. Second, we found that both motor and non-motor functions of the PD models were effectively improved during intranasal exosomes treatment. Finally, the activity of olfactory bulb neurons was improved and the loss of dopaminergic neurons in the substantia nigra pars compacta was reversed. Moreover, exosomes attenuated microglia and astrocyte activation, leading to a low level of inflammation in the brain. In conclusion, our study provided a new reference for the clinical application of exosomes in the treatment of PD.
Collapse
Affiliation(s)
- Weixiao Huang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 21000, China
| | - Tao Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 21000, China
| | - Xiaodi Li
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 21000, China
| | - Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 22600, China
| | - Yu Zhang
- Jiangsu Province Hospital of Chinese Medicine, Nanjing 210000, China
| | - Chengcheng Luan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300000, China
| | - Qi Shan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300000, China
| | - Xiaosong Gu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 21000, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 22600, China.
| | - Lili Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 22600, China.
| |
Collapse
|
12
|
Wu Z, Ren Z, Gao R, Sun K, Sun F, Liu T, Zheng S, Wang W, Zhang G. Impact of subthalamic nucleus deep brain stimulation at different frequencies on neurogenesis in a rat model of Parkinson's disease. Heliyon 2024; 10:e30730. [PMID: 38784548 PMCID: PMC11112288 DOI: 10.1016/j.heliyon.2024.e30730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Neurogenesis, play a vital role in neuronal plasticity of adult mammalian brains, and its dysregulation is present in the pathophysiology of Parkinson's disease (PD). While subthalamic nucleus deep brain stimulation (STN-DBS) at various frequencies has been proven effective in alleviating PD symptoms, its influence on neurogenesis remains unclear. This study aimed to investigate the effects of 1-week electrical stimulation at frequencies of 60Hz, 130Hz, and 180Hz on neurogenesis in the subventricular zone (SVZ) of PD rats. A hemiparkinsonian rat model was established using 6-hydroxydopamine and categorized into six groups: control, PD, sham stimulation, 60Hz stimulation, 130Hz stimulation, and 180Hz stimulation. Motor function was assessed using the open field test and rotarod test after one week of STN-DBS at different frequencies. Tyrosine hydroxylase (TH) expression in brain tissue was analyzed via Western blot and immunohistochemistry. Immunofluorescence analysis was conducted to evaluate the expression of BrdU/Sox2, BrdU/GFAP, Ki67/GFAP, and BrdU/DCX in bilateral SVZ and the rostral migratory stream (RMS). Our findings revealed that high-frequency STN-DBS improved motor function. Specifically, stimulation at 130Hz increased dopaminergic neuron survival in the PD rat model, while significantly enhancing the proliferation of neural stem cells (NSCs) and neuroblasts in bilateral SVZ. Moreover, this stimulation effectively facilitated the generation of new NSCs in the ipsilateral RMS and triggered the emergence of fresh neuroblasts in bilateral RMS, with notable presence within the lesioned striatum. Conversely, electrical stimulation at 60Hz and 180Hz did not exhibit comparable effects. The observed promotion of neurogenesis in PD rats following STN-DBS provides valuable insights into the mechanistic basis of this therapeutic approach for PD.
Collapse
Affiliation(s)
- Zheng Wu
- Department of Functional Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
- Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China
| | - Zhiwei Ren
- Department of Functional Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
- Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China
| | - Runshi Gao
- Department of Functional Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
- Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China
| | - Ke Sun
- Functional Neurosurgery Department, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Fangling Sun
- Department of Experimental Animal Laboratory, Xuan-Wu Hospital of Capital Medical University, Beijing, China
| | - Tingting Liu
- Department of Experimental Animal Laboratory, Xuan-Wu Hospital of Capital Medical University, Beijing, China
| | - Songyang Zheng
- Department of Experimental Animal Laboratory, Xuan-Wu Hospital of Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Experimental Animal Laboratory, Xuan-Wu Hospital of Capital Medical University, Beijing, China
| | - Guojun Zhang
- Functional Neurosurgery Department, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
13
|
Caldero-Escudero E, Romero-Sanz S, De la Fuente S. Using C. elegans as a model for neurodegenerative diseases: Methodology and evaluation. Methods Cell Biol 2024; 188:1-34. [PMID: 38880519 DOI: 10.1016/bs.mcb.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Caenorhabditis elegans is a nematode that has been used as an animal model for almost 50years. It has primitive and simple tissues and organs, making it an ideal model for studying neurological pathways involved in neurodegenerative diseases like Alzheimer's disease (AD) and Parkinson's disease (PD). C. elegans has conserved neurological pathways and is able to mimic human diseases, providing valuable insights into the human disease phenotype. This methodological review presents current approaches to generate neurodegenerative-like models of AD and PD in C. elegans, and evaluates the experiments commonly used to validate the diseases. These experimental approaches include assessing survival, fertility, mobility, electropharyngeogram assays, confocal mitochondrial imaging, RNA extraction for qRT-PCR or RT-PCR, and rate of defecation. This review also summarizes the current knowledge acquired on AD and PD using the aforementioned experimental approaches. Additionally, gaps in knowledge and future directions for research are also discussed in the review.
Collapse
|
14
|
Reel JM, Abbadi J, Cox MA. T cells at the interface of neuroimmune communication. J Allergy Clin Immunol 2024; 153:894-903. [PMID: 37952833 PMCID: PMC10999355 DOI: 10.1016/j.jaci.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
The immune system protects the host from infection and works to heal damaged tissue after infection or injury. There is increasing evidence that the immune system and the nervous system work in concert to achieve these goals. The sensory nervous system senses injury, infection, and inflammation, which results in a direct pain signal. Direct activation of peripheral sensory nerves can drive an inflammatory response in the skin. Immune cells express receptors for numerous transmitters released from sensory and autonomic nerves, which allows the nervous system to communicate directly with the immune system. This communication is bidirectional because immune cells can also produce neurotransmitters. Both innate and adaptive immune cells respond to neuronal signaling, but T cells appear to be at the helm of neuroimmune communication.
Collapse
Affiliation(s)
- Jessica M Reel
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Jumana Abbadi
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Maureen A Cox
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Okla.
| |
Collapse
|
15
|
Yi L, Ma H, Yang X, Zheng Q, Zhong J, Ye S, Li X, Chen D, Li H, Li C. Cotransplantation of NSCs and ethyl stearate promotes synaptic plasticity in PD rats by Drd1/ERK/AP-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117292. [PMID: 37806537 DOI: 10.1016/j.jep.2023.117292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine views kidney shortage as a significant contributor to the aetiology of Parkinson's disease (PD), a neurodegenerative condition that is closely linked to aging. In clinical, patients with Parkinson's disease are often treated with Testudinis Carapax et Plastrum (Plastrum Testudinis, PT), a traditional Chinese medication that tonifies the kidney. Previous research has demonstrated that ethyl stearate (PubChem CID: 8122), an active component of Plastrum Testudinis Extracted with ethyl acetate (PTE), may encourage neural stem cells (NSCs) development into dopaminergic (DAergic) neurons. However, the effectiveness and mechanism of cotransplantation of ethyl stearate and NSCs in treating PD model rats still require further investigation. AIM OF THE STUDY PD is a neurodegenerative condition marked by the loss and degradation of dopaminergic neurons in the substantia nigra of the midbrain. Synaptic damage is also a critical pathology in PD. Because of their self-renewal, minimal immunogenicity, and capacity to differentiate into dopaminergic (DAergic) neurons, NSCs are a prospective treatment option for Parkinson's disease cell transplantation therapy. However, encouraging transplanted NSCs to differentiate into dopaminergic neurons and enhancing synaptic plasticity in vivo remains a significant challenge in improving the efficacy of NSCs transplantation for PD. This investigation seeks to examine the efficacy of cotransplantation of NSCs and ethyl stearate in PD model rats and its mechanism related to synaptic plasticity. MATERIALS AND METHODS On 6-hydroxydopamine-induced PD model rats, we performed NSCs transplantation therapy and cotransplantation therapy involving ethyl stearate and NSCs. Rotating behavior induced by apomorphine (APO) and pole climbing tests were used to evaluate behavioral changes. Using a variety of methods, including Western blotting (WB), immunofluorescence analysis, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction (qRT-PCR), we examined the function and potential molecular mechanisms of ethyl stearate in combined NSCs transplantation therapy. RESULTS In the rat PD model, cotransplantation of ethyl stearate with NSCs dramatically reduced motor dysfunction, restored TH protein levels, and boosted dopamine levels in the striatum, according to our findings. Furthermore, the expression levels of SYN1 and PSD95, markers of synaptic plasticity, and BDNF, closely related to synaptic plasticity, were significantly increased. Cotransplantation with ethyl stearate and NSCs also increased the expression levels of Dopamine Receptor D1 (Drd1), an important receptor in the dopamine neural circuit, accompanied by an increase in MMP9 levels, ERK1/2 phosphorylation levels, and c-fos protein levels. CONCLUSIONS According to the results of our investigation, cotransplantation of ethyl stearate and NSCs significantly improves the condition of PD model rats. We found that cotransplantation of ethyl stearate and NSCs may promote the expression of MMP9 by regulating the Drd1-ERK-AP-1 pathway, thus improving synaptic plasticity after NSCs transplantation. These findings provide new experimental support for the treatment of PD with the kidney tonifying Chinese medicine Plastrum Testudinis and suggest a potential therapeutic strategy for PD based on cotransplantation therapy.
Collapse
Affiliation(s)
- Lan Yi
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China; Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China; Guangzhou Huaxia Vocational College, Guangzhou, Guangdong Province, 510935, PR China
| | - Haisheng Ma
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China; Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Xiaoxiao Yang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China; Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Qi Zheng
- School of Information Science and Technology, Guangdong University of Foreign Studies, Guangzhou, Guangdong Province, 510006, PR China
| | - Jun Zhong
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China; Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Sen Ye
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China; Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Xican Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Dongfeng Chen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Hui Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China.
| | - Caixia Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China; Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China.
| |
Collapse
|
16
|
Regoni M, Valtorta F, Sassone J. Dopaminergic neuronal death via necroptosis in Parkinson's disease: A review of the literature. Eur J Neurosci 2024; 59:1079-1098. [PMID: 37667848 DOI: 10.1111/ejn.16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive dysfunction and loss of dopaminergic neurons of the substantia nigra pars compacta (SNc). Several pathways of programmed cell death are likely to play a role in dopaminergic neuron death, such as apoptosis, necrosis, pyroptosis and ferroptosis, as well as cell death associated with proteasomal and mitochondrial dysfunction. A better understanding of the molecular mechanisms underlying dopaminergic neuron death could inform the design of drugs that promote neuron survival. Necroptosis is a recently characterized regulated cell death mechanism that exhibits morphological features common to both apoptosis and necrosis. It requires activation of an intracellular pathway involving receptor-interacting protein 1 kinase (RIP1 kinase, RIPK1), receptor-interacting protein 3 kinase (RIP3 kinase, RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL). The potential involvement of this programmed cell death pathway in the pathogenesis of PD has been studied by analysing biomarkers for necroptosis, such as the levels and oligomerization of phosphorylated RIPK3 (pRIPK3) and phosphorylated MLKL (pMLKL), in several PD preclinical models and in PD human tissue. Although there is evidence that other types of cell death also have a role in DA neuron death, most studies support the hypothesis that this cell death mechanism is activated in PD tissues. Drugs that prevent or reduce necroptosis may provide neuroprotection for PD. In this review, we summarize the findings from these studies. We also discuss how manipulating necroptosis might open a novel therapeutic approach to reduce neuronal degeneration in PD.
Collapse
Affiliation(s)
- Maria Regoni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Flavia Valtorta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Jenny Sassone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
17
|
Prescott TJ, Montes González FM, Gurney K, Humphries MD, Redgrave P. Simulated Dopamine Modulation of a Neurorobotic Model of the Basal Ganglia. Biomimetics (Basel) 2024; 9:139. [PMID: 38534824 DOI: 10.3390/biomimetics9030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
The vertebrate basal ganglia play an important role in action selection-the resolution of conflicts between alternative motor programs. The effective operation of basal ganglia circuitry is also known to rely on appropriate levels of the neurotransmitter dopamine. We investigated reducing or increasing the tonic level of simulated dopamine in a prior model of the basal ganglia integrated into a robot control architecture engaged in a foraging task inspired by animal behaviour. The main findings were that progressive reductions in the levels of simulated dopamine caused slowed behaviour and, at low levels, an inability to initiate movement. These states were partially relieved by increased salience levels (stronger sensory/motivational input). Conversely, increased simulated dopamine caused distortion of the robot's motor acts through partially expressed motor activity relating to losing actions. This could also lead to an increased frequency of behaviour switching. Levels of simulated dopamine that were either significantly lower or higher than baseline could cause a loss of behavioural integration, sometimes leaving the robot in a 'behavioral trap'. That some analogous traits are observed in animals and humans affected by dopamine dysregulation suggests that robotic models could prove useful in understanding the role of dopamine neurotransmission in basal ganglia function and dysfunction.
Collapse
Affiliation(s)
- Tony J Prescott
- Department of Computer Science, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Kevin Gurney
- Department of Psychology, University of Sheffield, Sheffield S10 2TN, UK
| | - Mark D Humphries
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, UK
| | - Peter Redgrave
- Department of Psychology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
18
|
Silva RH, Lopes-Silva LB, Cunha DG, Becegato M, Ribeiro AM, Santos JR. Animal Approaches to Studying Risk Factors for Parkinson's Disease: A Narrative Review. Brain Sci 2024; 14:156. [PMID: 38391730 PMCID: PMC10887213 DOI: 10.3390/brainsci14020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Despite recent efforts to search for biomarkers for the pre-symptomatic diagnosis of Parkinson's disease (PD), the presence of risk factors, prodromal signs, and family history still support the classification of individuals at risk for this disease. Human epidemiological studies are useful in this search but fail to provide causality. The study of well-known risk factors for PD in animal models can help elucidate mechanisms related to the disease's etiology and contribute to future prevention or treatment approaches. This narrative review aims to discuss animal studies that investigated four of the main risk factors and/or prodromal signs related to PD: advanced age, male sex, sleep alterations, and depression. Different databases were used to search the studies, which were included based on their relevance to the topic. Although still in a reduced number, such studies are of great relevance in the search for evidence that leads to a possible early diagnosis and improvements in methods of prevention and treatment.
Collapse
Affiliation(s)
- R H Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - L B Lopes-Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - D G Cunha
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - M Becegato
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - A M Ribeiro
- Laboratory of Neuroscience and Bioprospecting of Natural Products, Department of Biosciences, Universidade Federal de São Paulo, Santos 11015-020, SP, Brazil
| | - J R Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana 49500-000, SE, Brazil
| |
Collapse
|
19
|
Kitta T, Ogawa T, Kuno S, Kakizaki H, Yoshimura N. Review: Lower urinary tract dysfunction in animal models of Parkinson's disease (PD): Translational aspects for the treatment of PD patients with overactive bladder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 174:211-230. [PMID: 38341230 DOI: 10.1016/bs.irn.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Although the loss of dopaminergic neurons in the substantia nigra and consequent motor symptoms are the hallmarks of Parkinson's disease (PD), several non-motor symptoms may appear prior to these typical motor symptoms. While a variety of non-motor symptoms have emerged as the primary predictor of PD patients' quality of life, even though motor symptoms are undoubtedly distressing. According to a study, the prevalence of lower urinary tract symptoms (LUTS) varies between 27% and 64%, suggesting that PD-related lower urinary tract dysfunction may be affected by the disease stage, the presence of concomitant conditions affecting the lower urinary tract, and other autonomic dysfunctions. Animal models can serve as a platform for research into the causes of PD-related dysfunction and the evaluation of cutting-edge therapeutic approaches although the majority of animal research have been directed toward motor symptoms of PD. At present, the cause of lower urinary tract dysfunction in PD has not been fully clarified although the increasing evidence showing the multiple mechanisms underlying PD-related LUTS has emerged. In this chapter we summarize the findings of basic research in the studies of the lower urinary tract dysfunction using with different animal PD models and we try to shed light on the translational aspects for the development of future treatment modalities in PD patients with LUTS.
Collapse
Affiliation(s)
- Takeya Kitta
- Department of Renal and Urologic Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Teruyuki Ogawa
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Sadako Kuno
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hidehiro Kakizaki
- Department of Renal and Urologic Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
20
|
Chauhan P, Pandey P, Khan F, Maqsood R. Insights on the Correlation between Mitochondrial Dysfunction and the Progression of Parkinson's Disease. Endocr Metab Immune Disord Drug Targets 2024; 24:1007-1014. [PMID: 37867265 DOI: 10.2174/0118715303249690231006114308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 10/24/2023]
Abstract
The aetiology of a progressive neuronal Parkinson's disease has been discussed in several studies. However, due to the multiple risk factors involved in its development, such as environmental toxicity, parental inheritance, misfolding of protein, ageing, generation of reactive oxygen species, degradation of dopaminergic neurons, formation of neurotoxins, mitochondria dysfunction, and genetic mutations, its mechanism of involvement is still discernible. Therefore, this study aimed to review the processes or systems that are crucially implicated in the conversion of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) into its lethal form, which directly blockades the performance of mitochondria, leading to the formation of oxidative stress in the dopaminergic neurons of substantia nigra pars compacta (SNpc) and resulting in the progression of an incurable Parkinson's disease. This review also comprises an overview of the mutated genes that are frequently associated with mitochondrial dysfunction and the progression of Parkinson's disease. Altogether, this review would help future researchers to develop an efficient therapeutic approach for the management of Parkinson's disease via identifying potent prognostic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Prashant Chauhan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Noida, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Noida, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Noida, India
| | - Ramish Maqsood
- Department of Biotechnology, Noida Institute of Engineering and Technology, Noida, India
| |
Collapse
|
21
|
Vincent SM, Madani M, Dikeman D, Golden K, Crocker N, Jackson C, Wimmer SP, Dover M, Tucker A, Ghiani CA, Colwell CS, LeBaron TW, Tarnava A, Paul KN. Hydrogen-rich water improves sleep consolidation and enhances forebrain neuronal activation in mice. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 5:zpad057. [PMID: 38264142 PMCID: PMC10803172 DOI: 10.1093/sleepadvances/zpad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/14/2023] [Indexed: 01/25/2024]
Abstract
Study Objectives Sleep loss contributes to various health issues and impairs neurological function. Molecular hydrogen has recently gained popularity as a nontoxic ergogenic and health promoter. The effect of molecular hydrogen on sleep and sleep-related neural systems remains unexplored. This study investigates the impact of hydrogen-rich water (HRW) on sleep behavior and neuronal activation in sleep-deprived mice. Methods Adult C57BL/6J mice were implanted with electroencephalography (EEG) and electromyography (EMG) recording electrodes and given HRW (0.7-1.4 mM) or regular water for 7 days ad libitum. Sleep-wake cycles were recorded under baseline conditions and after acute sleep loss. Neuronal activation in sleep- and wake-related regions was assessed using cFos immunostaining. Results HRW increased sleep consolidation in undisturbed mice and increased non-rapid-eye movement and rapid-eye-movement sleep amount in sleep-deprived mice. HRW also decreased the average amount of time for mice to fall asleep after light onset. Neuronal activation in the lateral septum, medial septum, ventrolateral preoptic area, and median preoptic area was significantly altered in all mice treated with HRW. Conclusions HRW improves sleep consolidation and increases neuronal activation in sleep-related brain regions. It may serve as a simple, effective treatment to improve recovery after sleep loss.
Collapse
Affiliation(s)
- Scott M Vincent
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Melika Madani
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Dante Dikeman
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Kyle Golden
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Naomi Crocker
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Cameron Jackson
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Sam P Wimmer
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Mary Dover
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Alexis Tucker
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Cristina A Ghiani
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tyler W LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT, USA
- Molecular Hydrogen Institute, Enoch, UT, USA
| | - Alex Tarnava
- Natural Wellness Now Health Products Inc, Maple ridge, BC, Canada
| | - Ketema N Paul
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
22
|
Morton KS, Hartman JH, Heffernan N, Ryde IT, Kenny-Ganzert IW, Meng L, Sherwood DR, Meyer JN. Chronic high-sugar diet in adulthood protects Caenorhabditis elegans from 6-OHDA-induced dopaminergic neurodegeneration. BMC Biol 2023; 21:252. [PMID: 37950228 PMCID: PMC10636816 DOI: 10.1186/s12915-023-01733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Diets high in saturated fat and sugar, termed "Western diets," have been associated with several negative health outcomes, including increased risk for neurodegenerative disease. Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and is characterized by the progressive death of dopaminergic neurons in the brain. We build upon previous work characterizing the impact of high-sugar diets in Caenorhabditis elegans to mechanistically evaluate the relationship between high-sugar diets and dopaminergic neurodegeneration. RESULTS Adult high-glucose and high-fructose diets, or exposure from day 1 to 5 of adulthood, led to increased lipid content, shorter lifespan, and decreased reproduction. However, in contrast to previous reports, we found that adult chronic high-glucose and high-fructose diets did not induce dopaminergic neurodegeneration alone and were protective from 6-hydroxydopamine (6-OHDA) induced degeneration. Neither sugar altered baseline electron transport chain function and both increased vulnerability to organism-wide ATP depletion when the electron transport chain was inhibited, arguing against energetic rescue as a basis for neuroprotection. The induction of oxidative stress by 6-OHDA is hypothesized to contribute to its pathology, and high-sugar diets prevented this increase in the soma of the dopaminergic neurons. However, we did not find increased expression of antioxidant enzymes or glutathione levels. Instead, we found evidence suggesting downregulation of the dopamine reuptake transporter dat-1 that could result in decreased 6-OHDA uptake. CONCLUSIONS Our work uncovers a neuroprotective role for high-sugar diets, despite concomitant decreases in lifespan and reproduction. Our results support the broader finding that ATP depletion alone is insufficient to induce dopaminergic neurodegeneration, whereas increased neuronal oxidative stress may drive degeneration. Finally, our work highlights the importance of evaluating lifestyle by toxicant interactions.
Collapse
Affiliation(s)
| | - Jessica H Hartman
- Nicholas School of Environment, Duke University, Durham, USA
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, USA
| | | | - Ian T Ryde
- Nicholas School of Environment, Duke University, Durham, USA
| | | | - Lingfeng Meng
- Nicholas School of Environment, Duke University, Durham, USA
| | | | - Joel N Meyer
- Nicholas School of Environment, Duke University, Durham, USA.
| |
Collapse
|
23
|
Pradhan SH, Liu JY, Sayes CM. Evaluating Manganese, Zinc, and Copper Metal Toxicity on SH-SY5Y Cells in Establishing an Idiopathic Parkinson's Disease Model. Int J Mol Sci 2023; 24:16129. [PMID: 38003318 PMCID: PMC10671677 DOI: 10.3390/ijms242216129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition marked by loss of motor coordination and cognitive impairment. According to global estimates, the worldwide prevalence of PD will likely exceed 12 million cases by 2040. PD is primarily associated with genetic factors, while clinically, cases are attributed to idiopathic factors such as environmental or occupational exposure. The heavy metals linked to PD and other neurodegenerative disorders include copper, manganese, and zinc. Chronic exposure to metals induces elevated oxidative stress and disrupts homeostasis, resulting in neuronal death. These metals are suggested to induce idiopathic PD in the literature. This study measures the effects of lethal concentration at 10% cell death (LC10) and lethal concentration at 50% cell death (LC50) concentrations of copper, manganese, and zinc chlorides on SH-SY5Y cells via markers for dopamine, reactive oxygen species (ROS) generation, DNA damage, and mitochondrial dysfunction after a 24 h exposure. These measurements were compared to a known neurotoxin to induce PD, 100 µM 6-hydroxydopamine (6-ODHA). Between the three metal chlorides, zinc was statistically different in all parameters from all other treatments and induced significant dopaminergic loss, DNA damage, and mitochondrial dysfunction. The LC50 of manganese and copper had the most similar response to 6-ODHA in all parameters, while LC10 of manganese and copper responded most like untreated cells. This study suggests that these metal chlorides respond differently from 6-ODHA and each other, suggesting that idiopathic PD utilizes a different mechanism from the classic PD model.
Collapse
Affiliation(s)
| | | | - Christie M. Sayes
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; (S.H.P.)
| |
Collapse
|
24
|
Wu Y, Angelov B, Deng Y, Fujino T, Hossain MS, Drechsler M, Angelova A. Sustained CREB phosphorylation by lipid-peptide liquid crystalline nanoassemblies. Commun Chem 2023; 6:241. [PMID: 37932487 PMCID: PMC10628290 DOI: 10.1038/s42004-023-01043-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
Cyclic-AMP-response element-binding protein (CREB) is a leucine zipper class transcription factor that is activated through phosphorylation. Ample CREB phosphorylation is required for neurotrophin expression, which is of key importance for preventing and regenerating neurological disorders, including the sequelae of long COVID syndrome. Here we created lipid-peptide nanoassemblies with different liquid crystalline structural organizations (cubosomes, hexosomes, and vesicles) as innovative nanomedicine delivery systems of bioactive PUFA-plasmalogens (vinyl ether phospholipids with polyunsaturated fatty acid chains) and a neurotrophic pituitary adenylate cyclase-activating polypeptide (PACAP). Considering that plasmalogen deficiency is a potentially causative factor for neurodegeneration, we examined the impact of nanoassemblies type and incubation time in an in vitro Parkinson's disease (PD) model as critical parameters for the induction of CREB phosphorylation. The determined kinetic changes in CREB, AKT, and ERK-protein phosphorylation reveal that non-lamellar PUFA-plasmalogen-loaded liquid crystalline lipid nanoparticles significantly prolong CREB activation in the neurodegeneration model, an effect unattainable with free drugs, and this effect can be further enhanced by the cell-penetrating peptide PACAP. Understanding the sustained CREB activation response to neurotrophic nanoassemblies might lead to more efficient use of nanomedicines in neuroregeneration.
Collapse
Affiliation(s)
- Yu Wu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400, Orsay, France
| | - Borislav Angelov
- Extreme Light Infrastructure ERIC, CZ-25241, Dolni Brezany, Czech Republic.
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, No.1, Jinlian Road, Longwan District, Wenzhou, Zhejiang, 325001, China
| | - Takehiko Fujino
- Institute of Rheological Functions of Food, 2241-1 Kubara, Hisayama-cho, Kasuya-gun, Fukuoka, 811-2501, Japan
| | - Md Shamim Hossain
- Institute of Rheological Functions of Food, 2241-1 Kubara, Hisayama-cho, Kasuya-gun, Fukuoka, 811-2501, Japan
| | - Markus Drechsler
- Keylab "Electron and Optical Microscopy", Bavarian Polymerinstitute (BPI), University of Bayreuth, Universitätsstrasse 30, D-95440, Bayreuth, Germany
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400, Orsay, France.
| |
Collapse
|
25
|
Wang M, Li T, Gao R, Zhang Y, Han Y. Identifying the potential genes in alpha synuclein driving ferroptosis of Parkinson's disease. Sci Rep 2023; 13:16893. [PMID: 37803093 PMCID: PMC10558439 DOI: 10.1038/s41598-023-44124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease with aggregation of α-synuclein (α-syn) in substantia nigra (SN). The association between the α-syn and ferroptosis in PD remains unclear. GSE49036 was obtained from the Gene Expression Omnibus (GEO) database and intersected with ferroptosis genes. Bioinformatics analysis was used to identify the potential differentially expressed genes (DEGs) included the development of Gene set enrichment analysis (GSEA), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) network. We screened 8 key genes were modulated and crosslinked by 238 miRNAs. Additionally, 5 hub genes were predicted and 38 lncRNAs targeting 3 key miRNAs were revealed. Finally, 3 hub genes (PIK3CA, BRD4, ATM) and the key lncRNA (NEAT1) were verified in neurotoxic PD models. The in vitro experiments showed that PIK3CA and ATM were significantly upregulated or the BRD4 was downregulated in the rotenone treatment and they could be rescued by the specific ferroptosis inhibitor, liproxstatin-1. The expression of the key lncRNA NEAT1 were consistent with the hub genes in same models. This study identified the proposed NEAT1-PIK3CA/ATM ceRNA network may be a specific biomarker in α-syn driving ferroptosis as well as to predict clinical outcomes and therapeutic targets in PD patients.
Collapse
Affiliation(s)
- Min Wang
- Department of Neurology, Shanxi Cardiovascular Hospital/Cardiovascular Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Taole Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rong Gao
- Department of Neurology, Shanxi Cardiovascular Hospital/Cardiovascular Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yu Zhang
- Hunan Key Laboratory of Pharmacogenetics, Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanqing Han
- Department of Neurology, Shanxi Cardiovascular Hospital/Cardiovascular Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
26
|
Chen Y, Wang X, Xiao B, Luo Z, Long H. Mechanisms and Functions of Activity-Regulated Cytoskeleton-Associated Protein in Synaptic Plasticity. Mol Neurobiol 2023; 60:5738-5754. [PMID: 37338805 DOI: 10.1007/s12035-023-03442-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) is one of the most important regulators of cognitive functions in the brain regions. As a hub protein, Arc plays different roles in modulating synaptic plasticity. Arc supports the maintenance of long-term potentiation (LTP) by regulating actin cytoskeletal dynamics, while it guides the endocytosis of AMPAR in long-term depression (LTD). Moreover, Arc can self-assemble into capsids, leading to a new way of communicating among neurons. The transcription and translation of the immediate early gene Arc are rigorous procedures guided by numerous factors, and RNA polymerase II (Pol II) is considered to regulate the precise timing dynamics of gene expression. Since astrocytes can secrete brain-derived neurotrophic factor (BDNF) and L-lactate, their unique roles in Arc expression are emphasized. Here, we review the entire process of Arc expression and summarize the factors that can affect Arc expression and function, including noncoding RNAs, transcription factors, and posttranscriptional regulations. We also attempt to review the functional states and mechanisms of Arc in modulating synaptic plasticity. Furthermore, we discuss the recent progress in understanding the roles of Arc in the occurrence of major neurological disorders and provide new thoughts for future research on Arc.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Xiaohu Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China, 410008.
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China, 410008.
| |
Collapse
|
27
|
Jurcau A, Andronie-Cioara FL, Nistor-Cseppento DC, Pascalau N, Rus M, Vasca E, Jurcau MC. The Involvement of Neuroinflammation in the Onset and Progression of Parkinson's Disease. Int J Mol Sci 2023; 24:14582. [PMID: 37834030 PMCID: PMC10573049 DOI: 10.3390/ijms241914582] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Parkinson's disease is a neurodegenerative disease exhibiting the fastest growth in incidence in recent years. As with most neurodegenerative diseases, the pathophysiology is incompletely elucidated, but compelling evidence implicates inflammation, both in the central nervous system and in the periphery, in the initiation and progression of the disease, although it is not yet clear what triggers this inflammatory response and where it begins. Gut dysbiosis seems to be a likely candidate for the initiation of the systemic inflammation. The therapies in current use provide only symptomatic relief, but do not interfere with the disease progression. Nonetheless, animal models have shown promising results with therapies that target various vicious neuroinflammatory cascades. Translating these therapeutic strategies into clinical trials is still in its infancy, and a series of issues, such as the exact timing, identifying biomarkers able to identify Parkinson's disease in early and pre-symptomatic stages, or the proper indications of genetic testing in the population at large, will need to be settled in future guidelines.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Delia Carmen Nistor-Cseppento
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Nicoleta Pascalau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Elisabeta Vasca
- Department of Oral Rehabilitation, Faculty of Medicine “Vasile Goldis” Arad, 310025 Arad, Romania
| | | |
Collapse
|
28
|
Morton KS, Hartman JS, Heffernan N, Ryde I, Kenny-Ganzert IW, Meng L, Sherwood DR, Meyer JN. Chronic high-sugar diet in adulthood protects Caenorhabditis elegans from 6-OHDA induced dopaminergic neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542737. [PMID: 37398434 PMCID: PMC10312447 DOI: 10.1101/2023.05.29.542737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
BACKGROUND Diets high in saturated fat and sugar, termed western diets, have been associated with several negative health outcomes, including increased risk for neurodegenerative disease. Parkinson s Disease (PD) is the second most prevalent neurodegenerative disease and is characterized by the progressive death of dopaminergic neurons in the brain. We build upon previous work characterizing the impact of high sugar diets in Caenorhabditis elegans to mechanistically evaluate the relationship between high sugar diets and dopaminergic neurodegeneration. RESULTS Non-developmental high glucose and fructose diets led to increased lipid content and shorter lifespan and decreased reproduction. However, in contrast to previous reports, we found that non-developmental chronic high-glucose and high-fructose diets did not induce dopaminergic neurodegeneration alone and were protective from 6-hydroxydopamine (6-OHDA) induced degeneration. Neither sugar altered baseline electron transport chain function, and both increased vulnerability to organism-wide ATP depletion when the electron transport chain was inhibited, arguing against energetic rescue as a basis for neuroprotection. The induction of oxidative stress by 6-OHDA is hypothesized to contribute to its pathology, and high sugar diets prevented this increase in the soma of the dopaminergic neurons. However, we did not find increased expression of antioxidant enzymes or glutathione levels. Instead, we found evidence suggesting alterations to dopamine transmission that could result in decreased 6-OHDA uptake. CONCLUSION Our work uncovers a neuroprotective role for high sugar diets, despite concomitant decreases in lifespan and reproduction. Our results support the broader finding that ATP depletion alone is insufficient to induce dopaminergic neurodegeneration, whereas increased neuronal oxidative stress may drive degeneration. Finally, our work highlights the importance of evaluating lifestyle by toxicant interactions.
Collapse
|
29
|
Li Q, Li S, Fang J, Yang C, Zhao X, Wang Q, Zhou W, Zheng W. Artemisinin Confers Neuroprotection against 6-OHDA-Induced Neuronal Injury In Vitro and In Vivo through Activation of the ERK1/2 Pathway. Molecules 2023; 28:5527. [PMID: 37513399 PMCID: PMC10385954 DOI: 10.3390/molecules28145527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Parkinson's disease (PD) is an age-related, progressive neurodegenerative disease characterized by the gradual and massive loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). We have recently reported that artemisinin, an FDA-approved first-line antimalarial drug, possesses a neuroprotective effect. However, the effects and underlying mechanisms of artemisinin on Parkinson's disease remain to be elucidated. In this study, we investigated the neuroprotective effects of artemisinin on 6-OHDA and MPP+ in neuronal cells and animal models, as well as the underlying mechanisms. Our results showed that artemisinin significantly attenuated the loss of cell viability, LDH release, elevated levels of reactive oxygen species (ROS), the collapse of the mitochondria trans-membrane potential and cell apoptosis in PC12 cells. Western blot results showed that artemisinin stimulated the phosphorylation of ERK1/2, its upstream signaling proteins c-Raf and MEK and its downstream target CREB in PC12 cells in a time- and concentration-dependent manner. In addition, the protective effect of artemisinin was significantly reduced when the ERK pathway was blocked using the ERK pathway inhibitor PD98059 or when the expression of ERK was knocked down using sgRNA. These results indicate the essential role of ERK in the protective effect of artemisinin. Similar results were obtained in SH-SY5Y cells and primary cultured neurons treated with 6-OHDA, as well as in cellular models of MPP+ injury. More interestingly, artemisinin attenuated PD-like behavior deficit in mice injected with 6-OHDA evaluated by behavioral tests including swimming test, pole-test, open field exploration and rotarod tests. Moreover, artemisinin also stimulated the phosphorylation of ERK1/2, inhibited apoptosis, and rescued dopaminergic neurons in SNc of these animals. Application of ERK pathway inhibitor PD98059 blocked the protective effect of artemisinin in mice during testing. Taking these results together, it was indicated that artemisinin preserves neuroprotective effects against 6-OHDA and MPP+ induced injury both in vitro and in vivo by the stimulation of the ERK1/2 signaling pathway. Our findings support the potential therapeutic effect of artemisinin in the prevention and treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Qin Li
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Room 3057, Building E12, Taipa, Macau SAR 999078, China
- School of pharmacy, Hangzhou Medical College, Hangzhou 310059, China
| | - Shuai Li
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Room 3057, Building E12, Taipa, Macau SAR 999078, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Jiankang Fang
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Room 3057, Building E12, Taipa, Macau SAR 999078, China
| | - Chao Yang
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Room 3057, Building E12, Taipa, Macau SAR 999078, China
| | - Xia Zhao
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Room 3057, Building E12, Taipa, Macau SAR 999078, China
- School of pharmacy, Hangzhou Medical College, Hangzhou 310059, China
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
| | - Wenshu Zhou
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Room 3057, Building E12, Taipa, Macau SAR 999078, China
| | - Wenhua Zheng
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Room 3057, Building E12, Taipa, Macau SAR 999078, China
| |
Collapse
|
30
|
Dovonou A, Bolduc C, Soto Linan V, Gora C, Peralta Iii MR, Lévesque M. Animal models of Parkinson's disease: bridging the gap between disease hallmarks and research questions. Transl Neurodegener 2023; 12:36. [PMID: 37468944 PMCID: PMC10354932 DOI: 10.1186/s40035-023-00368-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms. More than 200 years after its first clinical description, PD remains a serious affliction that affects a growing proportion of the population. Prevailing treatments only alleviate symptoms; there is still neither a cure that targets the neurodegenerative processes nor therapies that modify the course of the disease. Over the past decades, several animal models have been developed to study PD. Although no model precisely recapitulates the pathology, they still provide valuable information that contributes to our understanding of the disease and the limitations of our treatment options. This review comprehensively summarizes the different animal models available for Parkinson's research, with a focus on those induced by drugs, neurotoxins, pesticides, genetic alterations, α-synuclein inoculation, and viral vector injections. We highlight their characteristics and ability to reproduce PD-like phenotypes. It is essential to realize that the strengths and weaknesses of each model and the induction technique at our disposal are determined by the research question being asked. Our review, therefore, seeks to better aid researchers by ensuring a concrete discernment of classical and novel animal models in PD research.
Collapse
Affiliation(s)
- Axelle Dovonou
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Cyril Bolduc
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Victoria Soto Linan
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Charles Gora
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Modesto R Peralta Iii
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Martin Lévesque
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
31
|
Zeljkovic Jovanovic M, Stanojevic J, Stevanovic I, Stekic A, Bolland SJ, Jasnic N, Ninkovic M, Zaric Kontic M, Ilic TV, Rodger J, Nedeljkovic N, Dragic M. Intermittent Theta Burst Stimulation Improves Motor and Behavioral Dysfunction through Modulation of NMDA Receptor Subunit Composition in Experimental Model of Parkinson's Disease. Cells 2023; 12:1525. [PMID: 37296646 PMCID: PMC10252812 DOI: 10.3390/cells12111525] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by the progressive degeneration of the dopaminergic system, leading to a variety of motor and nonmotor symptoms. The currently available symptomatic therapy loses efficacy over time, indicating the need for new therapeutic approaches. Repetitive transcranial magnetic stimulation (rTMS) has emerged as one of the potential candidates for PD therapy. Intermittent theta burst stimulation (iTBS), an excitatory protocol of rTMS, has been shown to be beneficial in several animal models of neurodegeneration, including PD. The aim of this study was to investigate the effects of prolonged iTBS on motor performance and behavior and the possible association with changes in the NMDAR subunit composition in the 6-hydroxydopamine (6-OHDA)-induced experimental model of PD. Two-month-old male Wistar rats were divided into four groups: controls, 6-OHDA rats, 6-OHDA + iTBS protocol (two times/day/three weeks) and the sham group. The therapeutic effect of iTBS was evaluated by examining motor coordination, balance, spontaneous forelimb use, exploratory behavior, anxiety-like, depressive/anhedonic-like behavior and short-term memory, histopathological changes and changes at the molecular level. We demonstrated the positive effects of iTBS at both motor and behavioral levels. In addition, the beneficial effects were reflected in reduced degeneration of dopaminergic neurons and a subsequent increase in the level of DA in the caudoputamen. Finally, iTBS altered protein expression and NMDAR subunit composition, suggesting a sustained effect. Applied early in the disease course, the iTBS protocol may be a promising candidate for early-stage PD therapy, affecting motor and nonmotor deficits.
Collapse
Affiliation(s)
- Milica Zeljkovic Jovanovic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Stanojevic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia
| | - Ivana Stevanovic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Andjela Stekic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Samuel J. Bolland
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Nebojsa Jasnic
- Department for Comparative Physiology and Ecophysiology, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Ninkovic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Marina Zaric Kontic
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Tihomir V. Ilic
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
32
|
Khan E, Hasan I, Haque ME. Parkinson's Disease: Exploring Different Animal Model Systems. Int J Mol Sci 2023; 24:ijms24109088. [PMID: 37240432 DOI: 10.3390/ijms24109088] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Disease modeling in non-human subjects is an essential part of any clinical research. To gain proper understanding of the etiology and pathophysiology of any disease, experimental models are required to replicate the disease process. Due to the huge diversity in pathophysiology and prognosis in different diseases, animal modeling is customized and specific accordingly. As in other neurodegenerative diseases, Parkinson's disease is a progressive disorder coupled with varying forms of physical and mental disabilities. The pathological hallmarks of Parkinson's disease are associated with the accumulation of misfolded protein called α-synuclein as Lewy body, and degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) area affecting the patient's motor activity. Extensive research has already been conducted regarding animal modeling of Parkinson's diseases. These include animal systems with induction of Parkinson's, either pharmacologically or via genetic manipulation. In this review, we will be summarizing and discussing some of the commonly employed Parkinson's disease animal model systems and their applications and limitations.
Collapse
Affiliation(s)
- Engila Khan
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ikramul Hasan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - M Emdadul Haque
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
33
|
Briñez-Gallego P, da Costa Silva DG, Cordeiro MF, Horn AP, Hort MA. Experimental models of chemically induced Parkinson's disease in zebrafish at the embryonic larval stage: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:201-237. [PMID: 36859813 DOI: 10.1080/10937404.2023.2182390] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra that results in a decrease in dopamine levels, resulting in motor-type disturbances. Different vertebrate models, such as rodents and fish, have been used to study PD. In recent decades, Danio rerio (zebrafish) has emerged as a potential model for the investigation of neurodegenerative diseases due to its homology to the nervous system of humans. In this context, this systematic review aimed to identify publications that reported the utilization of neurotoxins as an experimental model of parkinsonism in zebrafish embryos and larvae. Ultimately, 56 articles were identified by searching three databases (PubMed, Web of Science, and Google Scholar). Seventeen studies using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 4 1-methyl-4-phenylpyridinium (MPP+), 24 6-hydroxydopamine (6-OHDA), 6 paraquat/diquat, 2 rotenone, and 6 articles using other types of unusual neurotoxins to induce PD were selected. Neurobehavioral function, such as motor activity, dopaminergic neuron markers, oxidative stress biomarkers, and other relevant parameters in the zebrafish embryo-larval model were examined. In summary, this review provides information to help researchers determine which chemical model is suitable to study experimental parkinsonism, according to the effects induced by neurotoxins in zebrafish embryos and larvae.
Collapse
Affiliation(s)
- Paola Briñez-Gallego
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Dennis Guilherme da Costa Silva
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Marcos Freitas Cordeiro
- Programa de Pós-graduação em Biociências e Saúde, Universidade do Oeste de Santa Catarina - UNOESC, Joaçaba, SC, Brasil
| | - Ana Paula Horn
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Mariana Appel Hort
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| |
Collapse
|
34
|
Prasertsuksri P, Kraokaew P, Pranweerapaiboon K, Sobhon P, Chaithirayanon K. Neuroprotection of Andrographolide against Neurotoxin MPP +-Induced Apoptosis in SH-SY5Y Cells via Activating Mitophagy, Autophagy, and Antioxidant Activities. Int J Mol Sci 2023; 24:ijms24108528. [PMID: 37239873 DOI: 10.3390/ijms24108528] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) is associated with dopaminergic neuron loss and alpha-synuclein aggregation caused by ROS overproduction, leading to mitochondrial dysfunction and autophagy impairment. Recently, andrographolide (Andro) has been extensively studied for various pharmacological properties, such as anti-diabetic, anti-cancer, anti-inflammatory, and anti-atherosclerosis. However, its potential neuroprotective effects on neurotoxin MPP+-induced SH-SY5Y cells, a cellular PD model, remain uninvestigated. In this study, we hypothesized that Andro has neuroprotective effects against MPP+-induced apoptosis, which may be mediated through the clearance of dysfunctional mitochondria by mitophagy and ROS by antioxidant activities. Herein, Andro pretreatment could attenuate MPP+-induced neuronal cell death that was reflected by reducing mitochondrial membrane potential (MMP) depolarization, alpha-synuclein, and pro-apoptotic proteins expressions. Concomitantly, Andro attenuated MPP+-induced oxidative stress through mitophagy, as indicated by increasing colocalization of MitoTracker Red with LC3, upregulations of the PINK1-Parkin pathway, and autophagy-related proteins. On the contrary, Andro-activated autophagy was compromised when pretreated with 3-MA. Furthermore, Andro activated the Nrf2/KEAP1 pathway, leading to increasing genes encoding antioxidant enzymes and activities. This study elucidated that Andro exhibited significant neuroprotective effects against MPP+-induced SH-SY5Y cell death in vitro by enhancing mitophagy and clearance of alpha-synuclein through autophagy, as well as increasing antioxidant capacity. Our results provide evidence that Andro could be considered a potential supplement for PD prevention.
Collapse
Affiliation(s)
| | - Pichnaree Kraokaew
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kanta Pranweerapaiboon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | |
Collapse
|
35
|
Peña-Díaz S, García-Pardo J, Ventura S. Development of Small Molecules Targeting α-Synuclein Aggregation: A Promising Strategy to Treat Parkinson's Disease. Pharmaceutics 2023; 15:839. [PMID: 36986700 PMCID: PMC10059018 DOI: 10.3390/pharmaceutics15030839] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Parkinson's disease, the second most common neurodegenerative disorder worldwide, is characterized by the accumulation of protein deposits in the dopaminergic neurons. These deposits are primarily composed of aggregated forms of α-Synuclein (α-Syn). Despite the extensive research on this disease, only symptomatic treatments are currently available. However, in recent years, several compounds, mainly of an aromatic character, targeting α-Syn self-assembly and amyloid formation have been identified. These compounds, discovered by different approaches, are chemically diverse and exhibit a plethora of mechanisms of action. This work aims to provide a historical overview of the physiopathology and molecular aspects associated with Parkinson's disease and the current trends in small compound development to target α-Syn aggregation. Although these molecules are still under development, they constitute an important step toward discovering effective anti-aggregational therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Javier García-Pardo
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
36
|
Dong-Chen X, Yong C, Yang X, Chen-Yu S, Li-Hua P. Signaling pathways in Parkinson's disease: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:73. [PMID: 36810524 PMCID: PMC9944326 DOI: 10.1038/s41392-023-01353-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, and its treatment remains a big challenge. The pathogenesis of PD may be related to environmental and genetic factors, and exposure to toxins and gene mutations may be the beginning of brain lesions. The identified mechanisms of PD include α-synuclein aggregation, oxidative stress, ferroptosis, mitochondrial dysfunction, neuroinflammation, and gut dysbiosis. The interactions among these molecular mechanisms complicate the pathogenesis of PD and pose great challenges to drug development. At the same time, the diagnosis and detection of PD are also one of obstacles to the treatment of PD due to its long latency and complex mechanism. Most conventional therapeutic interventions for PD possess limited effects and have serious side effects, heightening the need to develop novel treatments for this disease. In this review, we systematically summarized the pathogenesis, especially the molecular mechanisms of PD, the classical research models, clinical diagnostic criteria, and the reported drug therapy strategies, as well as the newly reported drug candidates in clinical trials. We also shed light on the components derived from medicinal plants that are newly identified for their effects in PD treatment, with the expectation to provide the summary and outlook for developing the next generation of drugs and preparations for PD therapy.
Collapse
Affiliation(s)
- Xu Dong-Chen
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - Chen Yong
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - Xu Yang
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - ShenTu Chen-Yu
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - Peng Li-Hua
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China. .,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P. R. China.
| |
Collapse
|
37
|
Xu J, Chen TY, Tai CH, Hsu SH. Bioactive self-healing hydrogel based on tannic acid modified gold nano-crosslinker as an injectable brain implant for treating Parkinson's disease. Biomater Res 2023; 27:8. [PMID: 36755333 PMCID: PMC9909866 DOI: 10.1186/s40824-023-00347-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is one of the most common long-term neurodegenerative diseases. Current treatments for PD are mostly based on surgery and medication because of the limitation and challenges in selecting proper biomaterials. In this study, an injectable bioactive hydrogel based on novel tannic acid crosslinker was developed to treat PD. METHODS The oxidized tannic acid modified gold nano-crosslinker was synthesized and used to effectively crosslink chitosan for preparation of the bioactive self-healing hydrogel. The crosslinking density, conductivity, self-healing ability, and injectability of the hydrogel were characterized. Abilities of the hydrogel to promote the proliferation and differentiation of neural stem cells (NSCs) were assessed in vitro. Anti-inflammatory property was analyzed on J774A.1 macrophages. The hydrogel was injected in the PD rat model for evaluation of the motor function recovery, electrophysiological performance improvement, and histological repair. RESULTS The hydrogel exhibited self-healing property and 34G (~ 80 μm) needle injectability. NSCs grown in the hydrogel displayed long-term proliferation and differentiation toward neurons in vitro. Besides, the hydrogel owned strong anti-inflammatory and antioxidative capabilities to rescue inflamed NSCs (~ 90%). Brain injection of the bioactive hydrogel recovered the motor function of PD rats. Electrophysiological measurements showed evident alleviation of irregular discharge of nerve cells in the subthalamic nucleus of PD rats administered with the hydrogel. Histological examination confirmed that the hydrogel alone significantly increased the density of tyrosine hydroxylase positive neurons and fibers as well as reduced inflammation, with a high efficacy similar to drug-loaded hydrogel. CONCLUSION The new bioactive hydrogel serves as an effective brain injectable implant to treat PD and a promising biomaterial for developing novel strategies to treat brain diseases.
Collapse
Affiliation(s)
- Junpeng Xu
- grid.19188.390000 0004 0546 0241Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617 Taiwan, Republic of China
| | - Tsai-Yu Chen
- grid.19188.390000 0004 0546 0241Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617 Taiwan, Republic of China
| | - Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, No.7, Zhongshan South Road, Zhongzheng District, Taipei, 100225, Taiwan, Republic of China.
| | - Shan-hui Hsu
- grid.19188.390000 0004 0546 0241Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617 Taiwan, Republic of China ,grid.59784.370000000406229172Institute of Cellular and System Medicine, National Health Research Institutes, No. 35 Keyan Road, Miaoli, 35053 Taiwan, Republic of China
| |
Collapse
|
38
|
Abrishamdar M, Farbood Y, Sarkaki A, Rashno M, Badavi M. Evaluation of betulinic acid effects on pain, memory, anxiety, catalepsy, and oxidative stress in animal model of Parkinson's disease. Metab Brain Dis 2023; 38:467-482. [PMID: 35708868 DOI: 10.1007/s11011-022-00962-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/11/2022] [Indexed: 01/25/2023]
Abstract
Parkinson's disease (PD) is known for motor impairments. Betulinic acid (BA) is a natural compound with antioxidant activity. The present study addresses the question of whether BA affects motor and non-motor dysfunctions and molecular changes in the rat model of PD. The right medial forebrain bundle was lesioned by injection of 6-hydroxydopamine in Male Wistar rats (10-12 weeks old, 270-320 g). Animals were divided into Sham, PD, 3 treated groups with BA (0.5, 5, and 10 mg/kg, IP), and a positive control group received L-dopa (20 mg/kg, P.O) for 7 days. rigidity, anxiety, analgesia, and memory were assessed by bar test, open-field, elevated plus-maze (EPM), tail-flick, and shuttle box. Additionally, the malondialdehyde (MDA), Superoxide dismutase (SOD), glutathione peroxidase (GPx) activity, Brain-derived neurotrophic factor (BDNF) and Interleukin 10 (IL10) levels in the whole brain were measured. BA significantly reversed the 6-hydroxydopamine-induced motor and memory complication in the bar test and shuttle box. It modified anxiety-like behavior neither in open-field nor in EPM. It only decreased the time spent in open arms. Moreover, no significant changes were found in the tail-flick between treatment and sham groups. On the other hand, the level of MDA & IL10 were decreased, while the activity of GPx levels of SOD & BDNF in the rats' brains was increased. Our results showed that BA as a free radical scavenger can account for a possible promise as a good therapeutic agent for motor and non-motor complications in PD however further studies may be needed.
Collapse
Affiliation(s)
- M Abrishamdar
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Physiology, Medicine Faculty and Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - A Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - M Rashno
- Department of Immunulogy, Cellular and Molecular Research Center, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - M Badavi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
39
|
Li YR, Fan HJ, Sun RR, Jia L, Yang LY, Zhang HF, Jin XM, Xiao BG, Ma CG, Chai Z. Wuzi Yanzong Pill Plays A Neuroprotective Role in Parkinson's Disease Mice via Regulating Unfolded Protein Response Mediated by Endoplasmic Reticulum Stress. Chin J Integr Med 2023; 29:19-27. [PMID: 36369612 DOI: 10.1007/s11655-022-3727-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the protective effects and its possible mechanism of Wuzi Yanzong Pill (WYP) on Parkinson's disease (PD) model mice. METHODS Thirty-six C57BL/6 male mice were randomly assigned to 3 groups including normal, PD, and PD+WYP groups, 12 mice in each group. One week of intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was used to establish the classical PD model in mice. Meanwhile, mice in the PD+WYP group were administrated with 16 g/kg WYP, twice daily by gavage. After 14 days of administration, gait test, open field test and pole test were measured to evaluate the movement function. Tyrosine hydroxylase (TH) neurons in substantia nigra of midbrain and binding immunoglobulin heavy chain protein (GRP78) in striatum and cortex were observed by immunohistochemistry. The levels of TH, GRP78, p-PERK, p-eIF2α, ATF4, p-IRE1α, XBP1, ATF6, CHOP, ASK1, p-JNK, Caspase-12, -9 and -3 in brain were detected by Western blot. RESULTS Compared with the PD group, WYP treatment ameliorated gait balance ability in PD mice (P<0.05). Similarly, WYP increased the total distance and average speed (P<0.05 or P<0.01), reduced rest time and pole time (P<0.05). Moreover, WYP significantly increased TH positive cells (P<0.01). Immunofluorescence showed WYP attenuated the levels of GRP78 in striatum and cortex. Meanwhile, WYP treatment significantly decreased the protein expressions of GRP78, p-PERK, p-eIF2α, ATF4, p-IRE1 α, XBP1, CHOP, Caspase-12 and Caspase-9 (P<0.05 or P<0.01). CONCLUSIONS WYP ameliorated motor symptoms and pathological lesion of PD mice, which may be related to the regulation of unfolded protein response-mediated signaling pathway and inhibiting the endoplasmic reticulum stress-mediated neuronal apoptosis pathway.
Collapse
Affiliation(s)
- Yan-Rong Li
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Hui-Jie Fan
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Rui-Rui Sun
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Lu Jia
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Li-Yang Yang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Hai-Fei Zhang
- Institute of Brain Science Department, Neurology of First Affiliated Hospital, Shanxi Datong University, Datong, Shanxi Province, 037009, China
| | - Xiao-Ming Jin
- Department of Anatomy and Cell Biology, Department of Neurological Surgery, Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200025, China
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.,Institute of Brain Science Department, Neurology of First Affiliated Hospital, Shanxi Datong University, Datong, Shanxi Province, 037009, China
| | - Zhi Chai
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.
| |
Collapse
|
40
|
Gan X, Ren J, Huang T, Wu K, Li S, Duan Y, Wang Z, Si W, Wei J. Pathological α-synuclein accumulation, CSF metabolites changes and brain microstructures in cynomolgus monkeys treated with 6-hydroxydopamine. Neurotoxicology 2023; 94:172-181. [PMID: 36476940 DOI: 10.1016/j.neuro.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The lack of evidence indicating the accumulation of phosphorylated α-synuclein (P-α-syn), a neuropathological hallmark of Parkinson disease (PD), limits the application of 6-OHDA animal models. In cynomolgus monkeys received unilateral 6-hydroxydopamine (6-OHDA) injection, we identified nigrostriatal dysfunction related behavioral defects, such as the increase of PD score, decrease of locomotor activities, and exhibition of typical rotations. We found the dopaminergic neurons were significantly reduced and had fragmented morphology in substantia nigra (SN). Furthermore, insoluble P-α-syn aggregates were observed. The P-α-syn aggregates were extracellular distributed and had typical morphology of inclusion. Immunofluorescence staining showed that the P-α-syn colocalized with ubiquitin (Ub) and p62. We also found there were more actived astrocytes and microglial in SN and striatum, reflecting neuroinflammations increase in nigrostriatal pathway. At last, to determine the long-term consequence of dopamine (DA) neuron loss induced by 6-OHDA injection, the changes of cerebrospinal fluid (CSF) neurotransmitters over time as well as the brain microstructure alternations were examined. The dopamine-related metabolites were decreased after 6-OHDA injection reflecting dopaminergic neuron loss. The levels of γ-aminobutyric acid (GABA) and acetylcholine (Ach) showed an increasing trend but not significant. By diffusion tensor Magnetic Resonance Imaging (MRI) image scans, the fractional anisotropy (FA) value in the ipsilateral SN and caudate was found to reduce, which indicated neural fiber injury. Therefore, these results suggested that α-syn pathology might participate in process of 6-OHDA injuring DA neurons, and may expand the application of 6-OHDA monkeys on investigations into the pathogenesis of PD.
Collapse
Affiliation(s)
- Xue Gan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jiahan Ren
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Tianzhuang Huang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Kunhua Wu
- Department of MRI, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650224, China
| | - Shulin Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yanchao Duan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| | - Jingkuan Wei
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| |
Collapse
|
41
|
Le TT, Oudin MJ. Understanding and modeling nerve-cancer interactions. Dis Model Mech 2023; 16:dmm049729. [PMID: 36621886 PMCID: PMC9844229 DOI: 10.1242/dmm.049729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The peripheral nervous system plays an important role in cancer progression. Studies in multiple cancer types have shown that higher intratumoral nerve density is associated with poor outcomes. Peripheral nerves have been shown to directly regulate tumor cell properties, such as growth and metastasis, as well as affect the local environment by modulating angiogenesis and the immune system. In this Review, we discuss the identity of nerves in organs in the periphery where solid tumors grow, the known mechanisms by which nerve density increases in tumors, and the effects these nerves have on cancer progression. We also discuss the strengths and weaknesses of current in vitro and in vivo models used to study nerve-cancer interactions. Increased understanding of the mechanisms by which nerves impact tumor progression and the development of new approaches to study nerve-cancer interactions will facilitate the discovery of novel treatment strategies to treat cancer by targeting nerves.
Collapse
Affiliation(s)
- Thanh T. Le
- Department of Biomedical Engineering, 200 College Avenue, Tufts University, Medford, MA 02155, USA
| | - Madeleine J. Oudin
- Department of Biomedical Engineering, 200 College Avenue, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
42
|
Paccione N, Rahmani M, Barcia E, Negro S. Antiparkinsonian Agents in Investigational Polymeric Micro- and Nano-Systems. Pharmaceutics 2022; 15:pharmaceutics15010013. [PMID: 36678642 PMCID: PMC9866990 DOI: 10.3390/pharmaceutics15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative disease characterized by progressive destruction of dopaminergic tissue in the central nervous system (CNS). To date, there is no cure for the disease, with current pharmacological treatments aimed at controlling the symptoms. Therefore, there is an unmet need for new treatments for PD. In addition to new therapeutic options, there exists the need for improved efficiency of the existing ones, as many agents have difficulties in crossing the blood-brain barrier (BBB) to achieve therapeutic levels in the CNS or exhibit inappropriate pharmacokinetic profiles, thereby limiting their clinical benefits. To overcome these limitations, an interesting approach is the use of drug delivery systems, such as polymeric microparticles (MPs) and nanoparticles (NPs) that allow for the controlled release of the active ingredients targeting to the desired site of action, increasing the bioavailability and efficacy of treatments, as well as reducing the number of administrations and adverse effects. Here we review the polymeric micro- and nano-systems under investigation as potential new therapies for PD.
Collapse
Affiliation(s)
- Nicola Paccione
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Mahdieh Rahmani
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913941741
| | - Emilia Barcia
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Sofía Negro
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|
43
|
Niederberger E, Wilken-Schmitz A, Manderscheid C, Schreiber Y, Gurke R, Tegeder I. Non-Reproducibility of Oral Rotenone as a Model for Parkinson's Disease in Mice. Int J Mol Sci 2022; 23:ijms232012658. [PMID: 36293513 PMCID: PMC9604506 DOI: 10.3390/ijms232012658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Oral rotenone has been proposed as a model for Parkinson’s disease (PD) in mice. To establish the model in our lab and study complex behavior we followed a published treatment regimen. C57BL/6 mice received 30 mg/kg body weight of rotenone once daily via oral administration for 4 and 8 weeks. Motor functions were assessed by RotaRod running. Immunofluorescence studies were used to analyze the morphology of dopaminergic neurons, the expression of alpha-Synuclein (α-Syn), and inflammatory gliosis or infiltration in the substantia nigra. Rotenone-treated mice did not gain body weight during treatment compared with about 4 g in vehicle-treated mice, which was however the only robust manifestation of drug treatment and suggested local gut damage. Rotenone-treated mice had no deficits in motor behavior, no loss or sign of degeneration of dopaminergic neurons, no α-Syn accumulation, and only mild microgliosis, the latter likely an indirect remote effect of rotenone-evoked gut dysbiosis. Searching for explanations for the model failure, we analyzed rotenone plasma concentrations via LC-MS/MS 2 h after administration of the last dose to assess bioavailability. Rotenone was not detectable in plasma at a lower limit of quantification of 2 ng/mL (5 nM), showing that oral rotenone had insufficient bioavailability to achieve sustained systemic drug levels in mice. Hence, oral rotenone caused local gastrointestinal toxicity evident as lack of weight gain but failed to evoke behavioral or biological correlates of PD within 8 weeks.
Collapse
Affiliation(s)
- Ellen Niederberger
- Institute for Clinical Pharmacology, Goethe-University Frankfurt, Theodor Stern-Kai 7, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt, Germany
- Correspondence: ; Tel.: +49-69-6301-7616; Fax: +49-69-6301-7636
| | - Annett Wilken-Schmitz
- Institute for Clinical Pharmacology, Goethe-University Frankfurt, Theodor Stern-Kai 7, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt, Germany
| | - Christine Manderscheid
- Institute for Clinical Pharmacology, Goethe-University Frankfurt, Theodor Stern-Kai 7, 60590 Frankfurt, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor Stern-Kai 7, 60596 Frankfurt, Germany
| | - Robert Gurke
- Institute for Clinical Pharmacology, Goethe-University Frankfurt, Theodor Stern-Kai 7, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor Stern-Kai 7, 60596 Frankfurt, Germany
| | - Irmgard Tegeder
- Institute for Clinical Pharmacology, Goethe-University Frankfurt, Theodor Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
44
|
Asthana J, Shravage BV. Exploring therapeutic potential of mitophagy modulators using Drosophila models of Parkinson’s disease. Front Aging Neurosci 2022; 14:986849. [PMID: 36337696 PMCID: PMC9632658 DOI: 10.3389/fnagi.2022.986849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022] Open
Abstract
Parkinson’s disease (PD) is the second most popular age-associated neurodegenerative disorder after Alzheimer’s disease. The degeneration of dopaminergic neurons, aggregation of α-synuclein (α-syn), and locomotor defects are the main characteristic features of PD. The main cause of a familial form of PD is associated with a mutation in genes such as SNCA, PINK1, Parkin, DJ-1, LRKK2, and others. Recent advances have uncovered the different underlying mechanisms of PD but the treatment of PD is still unknown due to the unavailability of effective therapies and preventive medicines in the current scenario. The pathophysiology and genetics of PD have been strongly associated with mitochondria in disease etiology. Several studies have investigated a complex molecular mechanism governing the identification and clearance of dysfunctional mitochondria from the cell, a mitochondrial quality control mechanism called mitophagy. Reduced mitophagy and mitochondrial impairment are found in both sporadic and familial PD. Pharmacologically modulating mitophagy and accelerating the removal of defective mitochondria are of common interest in developing a therapy for PD. However, despite the extensive understanding of the mitochondrial quality control pathway and its underlying mechanism, the therapeutic potential of targeting mitophagy modulation and its role in PD remains to be explored. Thus, targeting mitophagy using chemical agents and naturally occurring phytochemicals could be an emerging therapeutic strategy in PD prevention and treatment. We discuss the current research on understanding the role of mitophagy modulators in PD using Drosophila melanogaster as a model. We further explore the contribution of Drosophila in the pathophysiology of PD, and discuss comprehensive genetic analysis in flies and pharmacological drug screening to develop potential therapeutic molecules for PD.
Collapse
Affiliation(s)
- Jyotsna Asthana
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| | - Bhupendra V. Shravage
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
- Department of Zoology, Savitribai Phule Pune University, Pune, India
- *Correspondence: Bhupendra V. Shravage,
| |
Collapse
|
45
|
Ma L, Li X, Liu C, Yan W, Ma J, Petersen RB, Peng A, Huang K. Modelling Parkinson's Disease in C. elegans: Strengths and Limitations. Curr Pharm Des 2022; 28:3033-3048. [PMID: 36111767 DOI: 10.2174/1381612828666220915103502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that affects the motor system and progressively worsens with age. Current treatment options for PD mainly target symptoms, due to our limited understanding of the etiology and pathophysiology of PD. A variety of preclinical models have been developed to study different aspects of the disease. The models have been used to elucidate the pathogenesis and for testing new treatments. These models include cell models, non-mammalian models, rodent models, and non-human primate models. Over the past few decades, Caenorhabditis elegans (C. elegans) has been widely adopted as a model system due to its small size, transparent body, short generation time and life cycle, fully sequenced genome, the tractability of genetic manipulation and suitability for large scale screening for disease modifiers. Here, we review studies using C. elegans as a model for PD and highlight the strengths and limitations of the C. elegans model. Various C. elegans PD models, including neurotoxin-induced models and genetic models, are described in detail. Moreover, met.
Collapse
Affiliation(s)
- Liang Ma
- Department of Pharmacy, Wuhan Mental Health Center, Wuhan, China.,Department of Pharmacy, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Xi Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyao Yan
- Department of Pharmacy, Wuhan Fourth Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinlu Ma
- Human Resources Department, Wuhan Mental Health Center, Wuhan, China.,Human Resources Department, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Tongren Hospital of Wuhan University, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Ukgansan Protects Dopaminergic Neurons against MPTP-Induced Neurotoxicity via the Nurr1 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7393557. [PMID: 36193151 PMCID: PMC9526663 DOI: 10.1155/2022/7393557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
Nuclear receptor-related 1 protein (Nurr1) is a nuclear hormone receptor that protects dopaminergic neurons and is a promising therapeutic target for Parkinson’s disease (PD). Parkinson’s disease is a neurodegenerative disorder caused by the destruction of dopaminergic neurons in the substantia nigra pars compacta (SNpc), and the long-term use of conventional dopamine replacement therapies causes many side effects, highlighting the need for new treatments such as complementary and alternative medicine. Ukgansan has been used in East Asia to treat neurological disorders, including neurodegenerative diseases, and has been reported to have strong effects in treating patients with PD. In addition, recent studies have reported that Ukgansan has a neuroprotective potential. However, there are no detailed studies on the mechanism of action of Nurr1. Thus, unlike previous studies, we focused on the Nurr1 pathways. We confirmed neurotoxicity and apoptosis signaling in the differentiated PC12 cells. In addition, to confirm the protective effect of Ukgansan, we conducted behavioral tests (motor coordination and postural balance, and bradykinesia) and tyrosine hydroxylase immunohistochemistry in both the SNpc and striatum. Specifically, this study demonstrated the effect of Ukgansan in protecting dopaminergic neurons and increasing Nurr1 involved in maintaining dopamine levels by activating Nurr1 expression in MPTP-induced PC12 cells and a mouse model of PD. In this mechanism, the loss of dopaminergic neurons and dopamine depletion were suppressed, and motor impairment caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity was improved. These results provide evidence that Ukgansan ameliorates PD’s motor symptoms and progression.
Collapse
|
47
|
Huang M, Bargues-Carot A, Riaz Z, Wickham H, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Impact of Environmental Risk Factors on Mitochondrial Dysfunction, Neuroinflammation, Protein Misfolding, and Oxidative Stress in the Etiopathogenesis of Parkinson's Disease. Int J Mol Sci 2022; 23:10808. [PMID: 36142718 PMCID: PMC9505762 DOI: 10.3390/ijms231810808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
As a prevalent progressive neurodegenerative disorder, Parkinson's disease (PD) is characterized by the neuropathological hallmark of the loss of nigrostriatal dopaminergic (DAergic) innervation and the appearance of Lewy bodies with aggregated α-synuclein. Although several familial forms of PD have been reported to be associated with several gene variants, most cases in nature are sporadic, triggered by a complex interplay of genetic and environmental risk factors. Numerous epidemiological studies during the past two decades have shown positive associations between PD and several environmental factors, including exposure to neurotoxic pesticides/herbicides and heavy metals as well as traumatic brain injury. Other environmental factors that have been implicated as potential risk factors for PD include industrial chemicals, wood pulp mills, farming, well-water consumption, and rural residence. In this review, we summarize the environmental toxicology of PD with the focus on the elaboration of chemical toxicity and the underlying pathogenic mechanisms associated with exposure to several neurotoxic chemicals, specifically 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat (PQ), dichloro-diphenyl-trichloroethane (DDT), dieldrin, manganese (Mn), and vanadium (V). Our overview of the current findings from cellular, animal, and human studies of PD provides information for possible intervention strategies aimed at halting the initiation and exacerbation of environmentally linked PD.
Collapse
Affiliation(s)
- Minhong Huang
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Alejandra Bargues-Carot
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Zainab Riaz
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Hannah Wickham
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Gary Zenitsky
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Huajun Jin
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Vellareddy Anantharam
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Arthi Kanthasamy
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Anumantha G. Kanthasamy
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
48
|
Rhaman MM, Islam MR, Akash S, Mim M, Noor alam M, Nepovimova E, Valis M, Kuca K, Sharma R. Exploring the role of nanomedicines for the therapeutic approach of central nervous system dysfunction: At a glance. Front Cell Dev Biol 2022; 10:989471. [PMID: 36120565 PMCID: PMC9478743 DOI: 10.3389/fcell.2022.989471] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 12/12/2022] Open
Abstract
In recent decades, research scientists, molecular biologists, and pharmacologists have placed a strong emphasis on cutting-edge nanostructured materials technologies to increase medicine delivery to the central nervous system (CNS). The application of nanoscience for the treatment of neurodegenerative diseases (NDs) such as Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), Huntington’s disease (HD), brain cancer, and hemorrhage has the potential to transform care. Multiple studies have indicated that nanomaterials can be used to successfully treat CNS disorders in the case of neurodegeneration. Nanomedicine development for the cure of degenerative and inflammatory diseases of the nervous system is critical. Nanoparticles may act as a drug transporter that can precisely target sick brain sub-regions, boosting therapy success. It is important to develop strategies that can penetrate the blood–brain barrier (BBB) and improve the effectiveness of medications. One of the probable tactics is the use of different nanoscale materials. These nano-based pharmaceuticals offer low toxicity, tailored delivery, high stability, and drug loading capacity. They may also increase therapeutic effectiveness. A few examples of the many different kinds and forms of nanomaterials that have been widely employed to treat neurological diseases include quantum dots, dendrimers, metallic nanoparticles, polymeric nanoparticles, carbon nanotubes, liposomes, and micelles. These unique qualities, including sensitivity, selectivity, and ability to traverse the BBB when employed in nano-sized particles, make these nanoparticles useful for imaging studies and treatment of NDs. Multifunctional nanoparticles carrying pharmacological medications serve two purposes: they improve medication distribution while also enabling cell dynamics imaging and pharmacokinetic study. However, because of the potential for wide-ranging clinical implications, safety concerns persist, limiting any potential for translation. The evidence for using nanotechnology to create drug delivery systems that could pass across the BBB and deliver therapeutic chemicals to CNS was examined in this study.
Collapse
Affiliation(s)
- Md. Mominur Rhaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- *Correspondence: Md. Mominur Rhaman, ; Rohit Sharma,
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mobasharah Mim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Noor alam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- *Correspondence: Md. Mominur Rhaman, ; Rohit Sharma,
| |
Collapse
|
49
|
Imbriani P, Martella G, Bonsi P, Pisani A. Oxidative stress and synaptic dysfunction in rodent models of Parkinson's disease. Neurobiol Dis 2022; 173:105851. [PMID: 36007757 DOI: 10.1016/j.nbd.2022.105851] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022] Open
Abstract
Parkinson's disease (PD) is a multifactorial disorder involving a complex interplay between a variety of genetic and environmental factors. In this scenario, mitochondrial impairment and oxidative stress are widely accepted as crucial neuropathogenic mechanisms, as also evidenced by the identification of PD-associated genes that are directly involved in mitochondrial function. The concept of mitochondrial dysfunction is closely linked to that of synaptic dysfunction. Indeed, compelling evidence supports the role of mitochondria in synaptic transmission and plasticity, although many aspects have not yet been fully elucidated. Here, we will provide a brief overview of the most relevant evidence obtained in different neurotoxin-based and genetic rodent models of PD, focusing on mitochondrial impairment and synaptopathy, an early central event preceding overt nigrostriatal neurodegeneration. The identification of early deficits occurring in PD pathogenesis is crucial in view of the development of potential disease-modifying therapeutic strategies.
Collapse
Affiliation(s)
- Paola Imbriani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
50
|
Cocoa Extract Provides Protection against 6-OHDA Toxicity in SH-SY5Y Dopaminergic Neurons by Targeting PERK. Biomedicines 2022; 10:biomedicines10082009. [PMID: 36009556 PMCID: PMC9405838 DOI: 10.3390/biomedicines10082009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease (PD) represents one of the most common neurodegenerative disorders, characterized by a dopamine (DA) deficiency in striatal synapses and misfolded toxic α-synuclein aggregates with concomitant cytotoxicity. In this regard, the misfolded proteins accumulation in neurodegenerative disorders induces a remarkable perturbations of endoplasmic reticulum (ER) homeostasis leading to persistent ER stress, which in turn, effects protein synthesis, modification, and folding quality control. A large body of evidence suggests that natural products target the ER stress signaling pathway, exerting a potential action in cancers, diabetes, cardiovascular and neurodegenerative diseases. This study aims to assess the neuroprotective effect of cocoa extract and its purified fractions against a cellular model of Parkinson’s disease represented by 6-hydroxydopamine (6-OHDA)-induced SH-SY5Y human neuroblastoma. Our findings demonstrate, for the first time, the ability of cocoa to specifically targets PERK sensor, with significant antioxidant and antiapoptotic activities as both crude and fractioning extracts. In addition, cocoa also showed antiapoptotic properties in 3D cell model and a notable ability to inhibit the accumulation of α-synuclein in 6-OHDA-induced cells. Overall, these results indicate that cocoa exerts neuroprotective effects suggesting a novel possible strategy to prevent or, at least, mitigate neurodegenerative disorders, such as PD.
Collapse
|