1
|
Somanathan H. Why diversity matters for understanding the visual ecology and behaviour of bees. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101224. [PMID: 38925459 DOI: 10.1016/j.cois.2024.101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/25/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Two bee species, the European honeybee and the buff-tailed bumblebee, are well-developed models of visual behaviour and ecology. How representative of bees across phylogeny and geography are these two species? Bee sensory systems likely differ between temperate and tropical species due to differences in the intensity or the types of selection pressures. Differences in temperate and tropical floral diversity, abundance and seasonality can influence sensory adaptations and behaviours. Niche partitioning in the speciose tropics along the microhabitat and temporal axes is increasingly reported to involve special visual adaptations in bees. Inclusive approaches encompassing other bee species and building on lessons from the 'model' bees will inform how ecology shapes bee senses, and, in turn, the structure of plant-bee mutualisms.
Collapse
Affiliation(s)
- Hema Somanathan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India.
| |
Collapse
|
2
|
Wainwright JB, Schofield C, Conway M, Phillips D, Martin-Silverstone E, Brodrick EA, Cicconardi F, How MJ, Roberts NW, Montgomery SH. Multiple axes of visual system diversity in Ithomiini, an ecologically diverse tribe of mimetic butterflies. J Exp Biol 2023; 226:jeb246423. [PMID: 37921078 PMCID: PMC10714147 DOI: 10.1242/jeb.246423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
The striking structural variation seen in arthropod visual systems can be explained by the overall quantity and spatio-temporal structure of light within habitats coupled with developmental and physiological constraints. However, little is currently known about how fine-scale variation in visual structures arises across shorter evolutionary and ecological scales. In this study, we characterise patterns of interspecific (between species), intraspecific (between sexes) and intraindividual (between eye regions) variation in the visual system of four ithomiine butterfly species. These species are part of a diverse 26-million-year-old Neotropical radiation where changes in mimetic colouration are associated with fine-scale shifts in ecology, such as microhabitat preference. Using a combination of selection analyses on visual opsin sequences, in vivo ophthalmoscopy, micro-computed tomography (micro-CT), immunohistochemistry, confocal microscopy and neural tracing, we quantify and describe physiological, anatomical and molecular traits involved in visual processing. Using these data, we provide evidence of substantial variation within the visual systems of Ithomiini, including: (i) relaxed selection on visual opsins, perhaps mediated by habitat preference, (ii) interspecific shifts in visual system physiology and anatomy, and (iii) extensive sexual dimorphism, including the complete absence of a butterfly-specific optic neuropil in the males of some species. We conclude that considerable visual system variation can exist within diverse insect radiations, hinting at the evolutionary lability of these systems to rapidly develop specialisations to distinct visual ecologies, with selection acting at the perceptual, processing and molecular level.
Collapse
Affiliation(s)
- J. Benito Wainwright
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Corin Schofield
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Max Conway
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Daniel Phillips
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Elizabeth Martin-Silverstone
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Emelie A. Brodrick
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Francesco Cicconardi
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin J. How
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Nicholas W. Roberts
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Stephen H. Montgomery
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
3
|
Ogawa Y, Jones L, Ryan LA, Robson SKA, Hart NS, Narendra A. Physiological properties of the visual system in the Green Weaver ant, Oecophylla smaragdina. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01629-7. [PMID: 37055584 DOI: 10.1007/s00359-023-01629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/15/2023]
Abstract
The Green Weaver ants, Oecophylla smaragdina are iconic animals known for their extreme cooperative behaviour where they bridge gaps by linking to each other to build living chains. They are visually oriented animals, build chains towards closer targets, use celestial compass cues for navigation and are visual predators. Here, we describe their visual sensory capacity. The major workers of O. smaragdina have more ommatidia (804) in each eye compared to minor workers (508), but the facet diameters are comparable between both castes. We measured the impulse responses of the compound eye and found their response duration (42 ms) was similar to that seen in other slow-moving ants. We determined the flicker fusion frequency of the compound eye at the brightest light intensity to be 132 Hz, which is relatively fast for a walking insect suggesting the visual system is well suited for a diurnal lifestyle. Using pattern-electroretinography we identified the compound eye has a spatial resolving power of 0.5 cycles deg-1 and reached peak contrast sensitivity of 2.9 (35% Michelson contrast threshold) at 0.05 cycles deg-1. We discuss the relationship of spatial resolution and contrast sensitivity, with number of ommatidia and size of the lens.
Collapse
Affiliation(s)
- Yuri Ogawa
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, 5001, Australia
| | - Lochlan Jones
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, 4814, Australia
| | - Laura A Ryan
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Simon K A Robson
- College of Science and Sustainability, CQ University Australia, Townsville, QLD, 4812, Australia
| | - Nathan S Hart
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ajay Narendra
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
4
|
Abstract
The ability to see colour at night is known only from a handful of animals. First discovered in the elephant hawk moth Deilephila elpenor, nocturnal colour vision is now known from two other species of hawk moths, a single species of carpenter bee, a nocturnal gecko and two species of anurans. The reason for this rarity—particularly in vertebrates—is the immense challenge of achieving a sufficient visual signal-to-noise ratio to support colour discrimination in dim light. Although no less challenging for nocturnal insects, unique optical and neural adaptations permit reliable colour vision and colour constancy even in starlight. Using the well-studied Deilephila elpenor, we describe the visual light environment at night, the visual challenges that this environment imposes and the adaptations that have evolved to overcome them. We also explain the advantages of colour vision for nocturnal insects and its usefulness in discriminating night-opening flowers. Colour vision is probably widespread in nocturnal insects, particularly pollinators, where it is likely crucial for nocturnal pollination. This relatively poorly understood but vital ecosystem service is threatened from increasingly abundant and spectrally abnormal sources of anthropogenic light pollution, which can disrupt colour vision and thus the discrimination and pollination of flowers. This article is part of the theme issue ‘Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods’.
Collapse
Affiliation(s)
- Eric Warrant
- Department of Biology, University of Lund, Sölvegatan 35, 22362 Lund, Sweden
| | - Hema Somanathan
- School of Biology, Indian Institute of Science Education and Research, Maruthamala PO, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
5
|
Stöckl AL, Foster JJ. Night skies through animals' eyes-Quantifying night-time visual scenes and light pollution as viewed by animals. Front Cell Neurosci 2022; 16:984282. [PMID: 36274987 PMCID: PMC9582234 DOI: 10.3389/fncel.2022.984282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
A large proportion of animal species enjoy the benefits of being active at night, and have evolved the corresponding optical and neural adaptations to cope with the challenges of low light intensities. However, over the past century electric lighting has introduced direct and indirect light pollution into the full range of terrestrial habitats, changing nocturnal animals' visual worlds dramatically. To understand how these changes affect nocturnal behavior, we here propose an animal-centered analysis method based on environmental imaging. This approach incorporates the sensitivity and acuity limits of individual species, arriving at predictions of photon catch relative to noise thresholds, contrast distributions, and the orientation cues nocturnal species can extract from visual scenes. This analysis relies on just a limited number of visual system parameters known for each species. By accounting for light-adaptation in our analysis, we are able to make more realistic predictions of the information animals can extract from nocturnal visual scenes under different levels of light pollution. With this analysis method, we aim to provide context for the interpretation of behavioral findings, and to allow researchers to generate specific hypotheses for the behavior of nocturnal animals in observed light-polluted scenes.
Collapse
Affiliation(s)
- Anna Lisa Stöckl
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, Universität Konstanz, Konstanz, Germany
| | - James Jonathan Foster
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| |
Collapse
|
6
|
Li Q, Wang M, Zhang P, Liu Y, Guo Q, Zhu Y, Wen T, Dai X, Zhang X, Nagel M, Dethlefsen BH, Xie N, Zhao J, Jiang W, Han L, Wu L, Zhong W, Wang Z, Wei X, Dai W, Liu L, Xu X, Lu H, Yang H, Wang J, Boomsma JJ, Liu C, Zhang G, Liu W. A single-cell transcriptomic atlas tracking the neural basis of division of labour in an ant superorganism. Nat Ecol Evol 2022; 6:1191-1204. [PMID: 35711063 PMCID: PMC9349048 DOI: 10.1038/s41559-022-01784-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/03/2022] [Indexed: 01/21/2023]
Abstract
Ant colonies with permanent division of labour between castes and highly distinct roles of the sexes have been conceptualized to be superorganisms, but the cellular and molecular mechanisms that mediate caste/sex-specific behavioural specialization have remained obscure. Here we characterized the brain cell repertoire of queens, gynes (virgin queens), workers and males of Monomorium pharaonis by obtaining 206,367 single-nucleus transcriptomes. In contrast to Drosophila, the mushroom body Kenyon cells are abundant in ants and display a high diversity with most subtypes being enriched in worker brains, the evolutionarily derived caste. Male brains are as specialized as worker brains but with opposite trends in cell composition with higher abundances of all optic lobe neuronal subtypes, while the composition of gyne and queen brains remained generalized, reminiscent of solitary ancestors. Role differentiation from virgin gynes to inseminated queens induces abundance changes in roughly 35% of cell types, indicating active neurogenesis and/or programmed cell death during this transition. We also identified insemination-induced cell changes probably associated with the longevity and fecundity of the reproductive caste, including increases of ensheathing glia and a population of dopamine-regulated Dh31-expressing neurons. We conclude that permanent caste differentiation and extreme sex-differentiation induced major changes in the neural circuitry of ants. Using single-cell transcriptomics, the authors generate a brain cell atlas for the pharaoh ant including individuals of different sexes and castes and show changes in cell composition underlying division of labour and reproductive specialization.
Collapse
Affiliation(s)
- Qiye Li
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | - Qunfei Guo
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | | | - Xueqin Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Xiafang Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Manuel Nagel
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Bjarke Hamberg Dethlefsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nianxia Xie
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | | - Lei Han
- BGI-Shenzhen, Shenzhen, China
| | - Liang Wu
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjiang Zhong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | | | | | - Wei Dai
- BGI-Shenzhen, Shenzhen, China
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Haorong Lu
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China.,James D. Watson Institute of Genome Science, Hangzhou, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, China.,James D. Watson Institute of Genome Science, Hangzhou, China
| | - Jacobus J Boomsma
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Guojie Zhang
- BGI-Shenzhen, Shenzhen, China. .,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China. .,Evolutionary and Organismal Biology Research Center, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Weiwei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
7
|
Abstract
A recent study has revealed how the connectivity of neurons in the lamina of the Asian swallowtail butterfly forms the basis of this insect's exceptional colour vision through two circuit motifs: colour opponency of photoreceptors and broadband colour integration by lamina neurons.
Collapse
Affiliation(s)
- Anna Stöckl
- Chair of Zoology 2, Würzburg University, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
8
|
Connectome of the lamina reveals the circuit for early color processing in the visual pathway of a butterfly. Curr Biol 2022; 32:2291-2299.e3. [DOI: 10.1016/j.cub.2022.03.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/28/2022] [Accepted: 03/25/2022] [Indexed: 01/06/2023]
|
9
|
Artificial Compound Eye Systems and Their Application: A Review. MICROMACHINES 2021; 12:mi12070847. [PMID: 34357257 PMCID: PMC8307767 DOI: 10.3390/mi12070847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
The natural compound eye system has many outstanding properties, such as a more compact size, wider-angle view, better capacity to detect moving objects, and higher sensitivity to light intensity, compared to that of a single-aperture vision system. Thanks to the development of micro- and nano-fabrication techniques, many artificial compound eye imaging systems have been studied and fabricated to inherit fascinating optical features of the natural compound eye. This paper provides a review of artificial compound eye imaging systems. This review begins by introducing the principle of the natural compound eye, and then, the analysis of two types of artificial compound eye systems. We equally present the applications of the artificial compound eye imaging systems. Finally, we suggest our outlooks about the artificial compound eye imaging system.
Collapse
|
10
|
Somanathan H, Krishna S, Jos EM, Gowda V, Kelber A, Borges RM. Nocturnal Bees Feed on Diurnal Leftovers and Pay the Price of Day – Night Lifestyle Transition. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.566964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Jones BM, Seymoure BM, Comi TJ, Loew ER. Species and sex differences in eye morphometry and visual responsivity of two crepuscular sweat bee species ( Megalopta spp., Hymenoptera: Halictidae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Visually dependent dim-light foraging has evolved repeatedly, broadening the ecological niches of some species. Many dim-light foraging lineages evolved from diurnal ancestors, requiring immense visual sensitivity increases to compensate for light levels a billion times dimmer than daylight. Some taxa, such as bees, are anatomically constrained by apposition compound eyes, which function well in daylight but not in starlight. Even with this constraint, the bee genus Megalopta has incredibly sensitive eyes, foraging in light levels up to nine orders of magnitude dimmer than diurnal relatives. Despite many behavioural studies, variation in visual sensitivity and eye morphometry has not been investigated within and across Megalopta species. Here we quantify external eye morphology (corneal area and facet size) for sympatric species of Megalopta, M. genalis and M. amoena, which forage during twilight. We use electroretinograms to show that males, despite being smaller than females, have equivalent visual sensitivity and increased retinal responsivity. Although males have relatively larger eyes compared with females, corneal area and facet size were not correlated with retinal responsivity, suggesting that males have additional non-morphological adaptations to increase retinal responsiveness. These findings provide the foundation for future work into the neural and physiological mechanisms that interface with morphology to influence visual sensitivity, with implications for understanding niche exploitation.
Collapse
Affiliation(s)
- Beryl M Jones
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Brett M Seymoure
- Smithsonian Tropical Research Institute, Panama City, Panama
- Living Earth Collaborative, Washington University in St. Louis, St. Louis, MO, USA
- Sound and Light Ecology Team, Colorado State University, Fort Collins, CO, USA
| | - Troy J Comi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ellis R Loew
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
12
|
Stöckl AL, O’Carroll DC, Warrant EJ. Hawkmoth lamina monopolar cells act as dynamic spatial filters to optimize vision at different light levels. SCIENCE ADVANCES 2020; 6:eaaz8645. [PMID: 32494622 PMCID: PMC7164931 DOI: 10.1126/sciadv.aaz8645] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/23/2020] [Indexed: 06/11/2023]
Abstract
How neural form and function are connected is a central question of neuroscience. One prominent functional hypothesis, from the beginnings of neuroanatomical study, states that laterally extending dendrites of insect lamina monopolar cells (LMCs) spatially integrate visual information. We provide the first direct functional evidence for this hypothesis using intracellular recordings from type II LMCs in the hawkmoth Macroglossum stellatarum. We show that their spatial receptive fields broaden with decreasing light intensities, thus trading spatial resolution for higher sensitivity. These dynamic changes in LMC spatial properties can be explained by the density and lateral extent of their dendritic arborizations. Our results thus provide the first physiological evidence for a century-old hypothesis, directly correlating physiological response properties with distinctive dendritic morphology.
Collapse
Affiliation(s)
- Anna Lisa Stöckl
- Department of Biology, Lund University, Lund, Sweden
- Department of Behavioral Physiology and Sociobiology, Würzburg University, Würzburg, Germany
| | | | | |
Collapse
|
13
|
Nuutila J, Honkanen AE, Heimonen K, Weckström M. The effect of vertical extent of stimuli on cockroach optomotor response. J Exp Biol 2020:jeb.204768. [PMID: 34005539 DOI: 10.1242/jeb.204768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 03/09/2020] [Indexed: 11/20/2022]
Abstract
Using tethered American cockroaches walking on a trackball in a spherical virtual reality environment, we tested optomotor responses to horizontally moving black-and-white gratings of different vertical extent under six different light intensities. We found that shortening the vertical extent of the wide-field stimulus grating within a light level weakened response strength, reduced average velocity, and decreased angular walking distance. Optomotor responses with the vertically shortened stimuli persisted down to light intensity levels of 0.05 lx. Response latency seems to be independent of both the height of the stimulus and light intensity. The optomotor response started saturating at the light intensity of 5 lx, where the shortest behaviourally significant stimulus was 1°. This indicates that the number of vertical ommatidial rows needed to elicit an optomotor response at 5 lx and above is in the single digits, maybe even just one. Our behavioural results encourage further inquiry into the interplay of light intensity and stimulus size in insect dim-light vision.
Collapse
Affiliation(s)
- Juha Nuutila
- Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, FIN-90014, Oulu, Finland
| | - Anna E Honkanen
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| | - Kyösti Heimonen
- Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, FIN-90014, Oulu, Finland
| | - Matti Weckström
- Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, FIN-90014, Oulu, Finland
| |
Collapse
|
14
|
Kelber A, Somanathan H. Spatial Vision and Visually Guided Behavior in Apidae. INSECTS 2019; 10:insects10120418. [PMID: 31766747 PMCID: PMC6956220 DOI: 10.3390/insects10120418] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/05/2019] [Accepted: 11/21/2019] [Indexed: 01/10/2023]
Abstract
The family Apidae, which is amongst the largest bee families, are important pollinators globally and have been well studied for their visual adaptations and visually guided behaviors. This review is a synthesis of what is known about their eyes and visual capabilities. There are many species-specific differences, however, the relationship between body size, eye size, resolution, and sensitivity shows common patterns. Salient differences between castes and sexes are evident in important visually guided behaviors such as nest defense and mate search. We highlight that Apis mellifera and Bombus terrestris are popular bee models employed in the majority of studies that have contributed immensely to our understanding vision in bees. However, other species, specifically the tropical and many non-social Apidae, merit further investigation for a better understanding of the influence of ecological conditions on the evolution of bee vision.
Collapse
Affiliation(s)
- Almut Kelber
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
- Correspondence: (A.K.); (H.S.)
| | - Hema Somanathan
- IISER TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research, Maruthamala PO, Vithura, Thiruvananthapuram, Kerala 695551, India
- Correspondence: (A.K.); (H.S.)
| |
Collapse
|
15
|
Somanathan H, Saryan P, Balamurali GS. Foraging strategies and physiological adaptations in large carpenter bees. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:387-398. [PMID: 30840127 DOI: 10.1007/s00359-019-01323-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 10/27/2022]
Abstract
Large carpenter bees are charismatic and ubiquitous flower visitors in the tropics and sub-tropics. Unlike honeybees and bumblebees that have been popular subjects of extensive studies on their neuroethology, behaviour and ecology, carpenter bees have received little attention. This review integrates what is known about their foraging behaviour as well as sensory, physiological and cognitive adaptations and is motivated by their versatility as flower visitors and pollinators. This is evident from their extremely generalist foraging and adeptness at handling diverse flower types as legitimate pollinators and as illegitimate nectar robbers. They purportedly use traplining to forage between isolated patches and are long-distance flyers over several kilometres suggesting well-developed spatial learning, route memory and navigational capabilities. They have a broad range of temperature tolerance and thermoregulatory capabilities which are likely employed in their forays into crepuscular and nocturnal time periods. Such temporal extensions into dim-light periods invoke a suite of visual adaptations in their apposition optics. Thus, we propose that carpenter bees are an excellent though understudied group for exploring the complex nature of plant-pollinator mutualisms from ecological and mechanistic perspectives.
Collapse
Affiliation(s)
- Hema Somanathan
- IISER TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India.
| | - Preeti Saryan
- IISER TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| | - G S Balamurali
- IISER TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| |
Collapse
|
16
|
Sheehan ZBV, Kamhi JF, Seid MA, Narendra A. Differential investment in brain regions for a diurnal and nocturnal lifestyle in Australian Myrmecia ants. J Comp Neurol 2019; 527:1261-1277. [PMID: 30592041 DOI: 10.1002/cne.24617] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/07/2018] [Accepted: 12/22/2018] [Indexed: 12/29/2022]
Abstract
Animals are active at different times of the day. Each temporal niche offers a unique light environment, which affects the quality of the available visual information. To access reliable visual signals in dim-light environments, insects have evolved several visual adaptations to enhance their optical sensitivity. The extent to which these adaptations reflect on the sensory processing and integration capabilities within the brain of a nocturnal insect is unknown. To address this, we analyzed brain organization in congeneric species of the Australian bull ant, Myrmecia, that rely predominantly on visual information and range from being strictly diurnal to strictly nocturnal. Weighing brains and optic lobes of seven Myrmecia species, showed that after controlling for body mass, the brain mass was not significantly different between diurnal and nocturnal ants. However, the optic lobe mass, after controlling for central brain mass, differed between day- and night-active ants. Detailed volumetric analyses showed that the nocturnal ants invested relatively less in the primary visual processing regions but relatively more in both the primary olfactory processing regions and in the integration centers of visual and olfactory sensory information. We discuss how the temporal niche occupied by each species may affect cognitive demands, thus shaping brain organization among insects active in dim-light conditions.
Collapse
Affiliation(s)
- Zachary B V Sheehan
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - J Frances Kamhi
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Marc A Seid
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.,Biology Department, Neuroscience Program, The University of Scranton, Scranton, Pennsylvania
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Narendra A, Ribi WA. Ocellar structure is driven by the mode of locomotion and activity time in Myrmecia ants. ACTA ACUST UNITED AC 2018; 220:4383-4390. [PMID: 29187620 DOI: 10.1242/jeb.159392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023]
Abstract
Insects have exquisitely adapted their compound eyes to suit the ambient light intensity in the different temporal niches they occupy. In addition to the compound eye, most flying insects have simple eyes known as ocelli, which assist in flight stabilisation, horizon detection and orientation. Among ants, typically the flying alates have ocelli while the pedestrian workers lack this structure. The Australian ant genus Myrmecia is one of the few ant genera in which both workers and alates have three ocellar lenses. Here, we studied the variation in the ocellar structure in four sympatric species of Myrmecia that are active at different times of the day. In addition, we took advantage of the walking and flying modes of locomotion in workers and males, respectively, to ask whether the type of movement influences the ocellar structure. We found that ants active in dim light had larger ocellar lenses and wider rhabdoms compared with those in bright-light conditions. In the ocellar rhabdoms of workers active in dim-light habitats, typically each retinula cell contributed microvilli in more than one direction, probably destroying polarisation sensitivity. The organisation of the ocellar retina in the day-active workers and the males suggests that in these animals some cells are sensitive to the pattern of polarised skylight. We found that the night-flying males had a tapetum that reflects light back to the rhabdom, increasing their optical sensitivity. We discuss the possible functions of ocelli to suit the different modes of locomotion and the discrete temporal niches that animals occupy.
Collapse
Affiliation(s)
- Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Willi A Ribi
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
18
|
Lessios N, Rutowski RL, Cohen JH, Sayre ME, Strausfeld NJ. Multiple spectral channels in branchiopods. I. Vision in dim light and neural correlates. ACTA ACUST UNITED AC 2018; 221:jeb.165860. [PMID: 29622664 DOI: 10.1242/jeb.165860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 03/31/2018] [Indexed: 11/20/2022]
Abstract
Animals that have true color vision possess several spectral classes of photoreceptors. Pancrustaceans (Hexapoda+Crustacea) that integrate spectral information about their reconstructed visual world do so from photoreceptor terminals supplying their second optic neuropils, with subsequent participation of the third (lobula) and deeper centers (optic foci). Here, we describe experiments and correlative neural arrangements underlying convergent visual pathways in two species of branchiopod crustaceans that have to cope with a broad range of spectral ambience and illuminance in ephemeral pools, yet possess just two optic neuropils, the lamina and the optic tectum. Electroretinographic recordings and multimodel inference based on modeled spectral absorptance were used to identify the most likely number of spectral photoreceptor classes in their compound eyes. Recordings from the retina provide support for four color channels. Neuroanatomical observations resolve arrangements in their laminas that suggest signal summation at low light intensities, incorporating chromatic channels. Neuroanatomical observations demonstrate that spatial summation in the lamina of the two species are mediated by quite different mechanisms, both of which allow signals from several ommatidia to be pooled at single lamina monopolar cells. We propose that such summation provides sufficient signal for vision at intensities equivalent to those experienced by insects in terrestrial habitats under dim starlight. Our findings suggest that despite the absence of optic lobe neuropils necessary for spectral discrimination utilized by true color vision, four spectral photoreceptor classes have been maintained in Branchiopoda for vision at very low light intensities at variable ambient wavelengths that typify conditions in ephemeral freshwater habitats.
Collapse
Affiliation(s)
- Nicolas Lessios
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA .,Department of Neuroscience, University of Arizona, 611 Gould-Simpson, Tucson, AZ 85721, USA
| | - Ronald L Rutowski
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jonathan H Cohen
- School of Marine Science and Policy, College of Earth, Ocean and Environment, University of Delaware, 700 Pilottown Road, Lewes, DE 19958, USA
| | - Marcel E Sayre
- Department of Neuroscience, University of Arizona, 611 Gould-Simpson, Tucson, AZ 85721, USA
| | - Nicholas J Strausfeld
- Department of Neuroscience, University of Arizona, 611 Gould-Simpson, Tucson, AZ 85721, USA
| |
Collapse
|
19
|
Stöckl AL, O'Carroll D, Warrant EJ. Higher-order neural processing tunes motion neurons to visual ecology in three species of hawkmoths. Proc Biol Sci 2018. [PMID: 28637860 DOI: 10.1098/rspb.2017.0880] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To sample information optimally, sensory systems must adapt to the ecological demands of each animal species. These adaptations can occur peripherally, in the anatomical structures of sensory organs and their receptors; and centrally, as higher-order neural processing in the brain. While a rich body of investigations has focused on peripheral adaptations, our understanding is sparse when it comes to central mechanisms. We quantified how peripheral adaptations in the eyes, and central adaptations in the wide-field motion vision system, set the trade-off between resolution and sensitivity in three species of hawkmoths active at very different light levels: nocturnal Deilephila elpenor, crepuscular Manduca sexta, and diurnal Macroglossum stellatarum. Using optical measurements and physiological recordings from the photoreceptors and wide-field motion neurons in the lobula complex, we demonstrate that all three species use spatial and temporal summation to improve visual performance in dim light. The diurnal Macroglossum relies least on summation, but can only see at brighter intensities. Manduca, with large sensitive eyes, relies less on neural summation than the smaller eyed Deilephila, but both species attain similar visual performance at nocturnal light levels. Our results reveal how the visual systems of these three hawkmoth species are intimately matched to their visual ecologies.
Collapse
Affiliation(s)
- A L Stöckl
- Department of Biology, University of Lund, Sölvegatan 35, 22362 Lund, Sweden
| | - D O'Carroll
- Department of Biology, University of Lund, Sölvegatan 35, 22362 Lund, Sweden
| | - E J Warrant
- Department of Biology, University of Lund, Sölvegatan 35, 22362 Lund, Sweden
| |
Collapse
|
20
|
Honkanen A, Immonen EV, Salmela I, Heimonen K, Weckström M. Insect photoreceptor adaptations to night vision. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0077. [PMID: 28193821 DOI: 10.1098/rstb.2016.0077] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 01/25/2023] Open
Abstract
Night vision is ultimately about extracting information from a noisy visual input. Several species of nocturnal insects exhibit complex visually guided behaviour in conditions where most animals are practically blind. The compound eyes of nocturnal insects produce strong responses to single photons and process them into meaningful neural signals, which are amplified by specialized neuroanatomical structures. While a lot is known about the light responses and the anatomical structures that promote pooling of responses to increase sensitivity, there is still a dearth of knowledge on the physiology of night vision. Retinal photoreceptors form the first bottleneck for the transfer of visual information. In this review, we cover the basics of what is known about physiological adaptations of insect photoreceptors for low-light vision. We will also discuss major enigmas of some of the functional properties of nocturnal photoreceptors, and describe recent advances in methodologies that may help to solve them and broaden the field of insect vision research to new model animals.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
- Anna Honkanen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Esa-Ville Immonen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Iikka Salmela
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Kyösti Heimonen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Matti Weckström
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| |
Collapse
|
21
|
Warrant EJ. The remarkable visual capacities of nocturnal insects: vision at the limits with small eyes and tiny brains. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0063. [PMID: 28193808 DOI: 10.1098/rstb.2016.0063] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2016] [Indexed: 11/12/2022] Open
Abstract
Nocturnal insects have evolved remarkable visual capacities, despite small eyes and tiny brains. They can see colour, control flight and land, react to faint movements in their environment, navigate using dim celestial cues and find their way home after a long and tortuous foraging trip using learned visual landmarks. These impressive visual abilities occur at light levels when only a trickle of photons are being absorbed by each photoreceptor, begging the question of how the visual system nonetheless generates the reliable signals needed to steer behaviour. In this review, I attempt to provide an answer to this question. Part of the answer lies in their compound eyes, which maximize light capture. Part lies in the slow responses and high gains of their photoreceptors, which improve the reliability of visual signals. And a very large part lies in the spatial and temporal summation of these signals in the optic lobe, a strategy that substantially enhances contrast sensitivity in dim light and allows nocturnal insects to see a brighter world, albeit a slower and coarser one. What is abundantly clear, however, is that during their evolution insects have overcome several serious potential visual limitations, endowing them with truly extraordinary night vision.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
- Eric J Warrant
- Lund Vision Group, Department of Biology, University of Lund, Sölvegatan 35, 22362 Lund, Sweden
| |
Collapse
|
22
|
Stöckl A, Smolka J, O'Carroll D, Warrant E. Resolving the Trade-off Between Visual Sensitivity and Spatial Acuity-Lessons from Hawkmoths. Integr Comp Biol 2017; 57:1093-1103. [PMID: 28992251 DOI: 10.1093/icb/icx058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The visual systems of many animals, particularly those active during the day, are optimized for high spatial acuity. However, at night, when photons are sparse and the visual signal competes with increased noise levels, fine spatial resolution cannot be sustained and is traded-off for the greater sensitivity required to see in dim light. High spatial acuity demands detectors and successive visual processing units whose receptive fields each cover only a small area of visual space, in order to reassemble a finely sampled and well resolved image. However, the smaller the sampled area, the fewer the photons that can be collected, and thus the worse the visual sensitivity becomes-leading to the classical trade-off between sensitivity and resolution. Nocturnal animals usually resolve this trade-off in favour of sensitivity, and thus have lower spatial acuity than their diurnal counterparts. Here we review results highlighting how hawkmoths, a highly visual group of insects with species active at different light intensities, resolve the trade-off between sensitivity and spatial resolution. We compare adaptations both in the optics and retina, as well as at higher levels of neural processing in a nocturnal and a diurnal hawkmoth species, and also give a perspective on the behavioral consequences. We broaden the scope of our review by drawing comparisons with the adaptive strategies used by other nocturnal and diurnal insects.
Collapse
Affiliation(s)
- Anna Stöckl
- Department of Biology, Lund University, Lund 22362, Sweden
| | - Jochen Smolka
- Department of Biology, Lund University, Lund 22362, Sweden
| | | | - Eric Warrant
- Department of Biology, Lund University, Lund 22362, Sweden
| |
Collapse
|
23
|
Perry M, Konstantinides N, Pinto-Teixeira F, Desplan C. Generation and Evolution of Neural Cell Types and Circuits: Insights from the Drosophila Visual System. Annu Rev Genet 2017; 51:501-527. [PMID: 28961025 DOI: 10.1146/annurev-genet-120215-035312] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Drosophila visual system has become a premier model for probing how neural diversity is generated during development. Recent work has provided deeper insight into the elaborate mechanisms that control the range of types and numbers of neurons produced, which neurons survive, and how they interact. These processes drive visual function and influence behavioral preferences. Other studies are beginning to provide insight into how neuronal diversity evolved in insects by adding new cell types and modifying neural circuits. Some of the most powerful comparisons have been those made to the Drosophila visual system, where a deeper understanding of molecular mechanisms allows for the generation of hypotheses about the evolution of neural anatomy and function. The evolution of new neural types contributes additional complexity to the brain and poses intriguing questions about how new neurons interact with existing circuitry. We explore how such individual changes in a variety of species might play a role over evolutionary timescales. Lessons learned from the fly visual system apply to other neural systems, including the fly central brain, where decisions are made and memories are stored.
Collapse
Affiliation(s)
- Michael Perry
- Department of Biology, New York University, New York, NY 10003, USA;
| | | | - Filipe Pinto-Teixeira
- Department of Biology, New York University, New York, NY 10003, USA; .,Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA; .,Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
24
|
Narendra A, Kamhi JF, Ogawa Y. Moving in Dim Light: Behavioral and Visual Adaptations in Nocturnal Ants. Integr Comp Biol 2017; 57:1104-1116. [DOI: 10.1093/icb/icx096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
25
|
Characterization of the first-order visual interneurons in the visual system of the bumblebee (Bombus terrestris). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:903-913. [DOI: 10.1007/s00359-017-1201-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/26/2022]
|
26
|
Thoen HH, Strausfeld NJ, Marshall J. Neural organization of afferent pathways from the stomatopod compound eye. J Comp Neurol 2017; 525:3010-3030. [PMID: 28577301 DOI: 10.1002/cne.24256] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/25/2017] [Accepted: 05/16/2017] [Indexed: 01/01/2023]
Abstract
Crustaceans and insects share many similarities of brain organization suggesting that their common ancestor possessed some components of those shared features. Stomatopods (mantis shrimps) are basal eumalacostracan crustaceans famous for their elaborate visual system, the most complex of which possesses 12 types of color photoreceptors and the ability to detect both linearly and circularly polarized light. Here, using a palette of histological methods we describe neurons and their neuropils most immediately associated with the stomatopod retina. We first provide a general overview of the major neuropil structures in the eyestalks lateral protocerebrum, with respect to the optical pathways originating from the six rows of specialized ommatidia in the stomatopod's eye, termed the midband. We then focus on the structure and neuronal types of the lamina, the first optic neuropil in the stomatopod visual system. Using Golgi impregnations to resolve single neurons we identify cells in different parts of the lamina corresponding to the three different regions of the stomatopod eye (midband and the upper and lower eye halves). While the optic cartridges relating to the spectral and polarization sensitive midband ommatidia show some specializations not found in the lamina serving the upper and lower eye halves, the general morphology of the midband lamina reflects cell types elsewhere in the lamina and cell types described for other species of Eumalacostraca.
Collapse
Affiliation(s)
- Hanne H Thoen
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Nicholas J Strausfeld
- Department of Neuroscience, School of Mind, Brain and Behavior, University of Arizona, Tucson, Arizona, 85721
| | - Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
27
|
Immonen EV, Dacke M, Heinze S, El Jundi B. Anatomical organization of the brain of a diurnal and a nocturnal dung beetle. J Comp Neurol 2017; 525:1879-1908. [PMID: 28074466 DOI: 10.1002/cne.24169] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/14/2016] [Accepted: 12/21/2016] [Indexed: 12/25/2022]
Abstract
To avoid the fierce competition for food, South African ball-rolling dung beetles carve a piece of dung off a dung-pile, shape it into a ball and roll it away along a straight line path. For this unidirectional exit from the busy dung pile, at night and day, the beetles use a wide repertoire of celestial compass cues. This robust and relatively easily measurable orientation behavior has made ball-rolling dung beetles an attractive model organism for the study of the neuroethology behind insect orientation and sensory ecology. Although there is already some knowledge emerging concerning how celestial cues are processed in the dung beetle brain, little is known about its general neural layout. Mapping the neuropils of the dung beetle brain is thus a prerequisite to understand the neuronal network that underlies celestial compass orientation. Here, we describe and compare the brains of a day-active and a night-active dung beetle species based on immunostainings against synapsin and serotonin. We also provide 3D reconstructions for all brain areas and many of the fiber bundles in the brain of the day-active dung beetle. Comparison of neuropil structures between the two dung beetle species revealed differences that reflect adaptations to different light conditions. Altogether, our results provide a reference framework for future studies on the neuroethology of insects in general and dung beetles in particular.
Collapse
Affiliation(s)
- Esa-Ville Immonen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland.,Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Marie Dacke
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Stanley Heinze
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Basil El Jundi
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| |
Collapse
|
28
|
Abstract
Despite their tiny eyes and brains, nocturnal insects have evolved a remarkable capacity to visually navigate at night. Whereas some use moonlight or the stars as celestial compass cues to maintain a straight-line course, others use visual landmarks to navigate to and from their nest. These impressive abilities rely on highly sensitive compound eyes and specialized visual processing strategies in the brain.
Collapse
Affiliation(s)
- Eric Warrant
- Department of Biology, Lund Vision Group, University of Lund, Lund, Sweden
| | - Marie Dacke
- Department of Biology, Lund Vision Group, University of Lund, Lund, Sweden
| |
Collapse
|
29
|
Cordeiro GD, Pinheiro M, Dötterl S, Alves-Dos-Santos I. Pollination of Campomanesia phaea (Myrtaceae) by night-active bees: a new nocturnal pollination system mediated by floral scent. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:132-139. [PMID: 27770587 DOI: 10.1111/plb.12520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/19/2016] [Indexed: 05/27/2023]
Abstract
Bees are the most important diurnal pollinators of angiosperms. In several groups of bees a nocturnal/crepuscular habit developed, yet little is known about their role in pollination and whether some plants are adapted specifically to these bees. We used a multidisciplinary approach to investigate the reproductive biology and to understand the role of nocturnal/crepuscular bees in pollination of Campomanesia phaea (Myrtaceae), popularly named cambuci. We studied the floral biology and breeding system of C. phaea. We collected the floral visitors and tested the pollinators' effectiveness. We also determined the floral scents released at night and during daytime, and studied behavioural responses of crepuscular/nocturnal bees towards these scents. The flowers of cambuci were self-incompatible and had pollen as the only resource for flower visitors. Anthesis lasted around 14 h, beginning at 04:30 h at night. The flowers released 14 volatile compounds, mainly aliphatic and aromatic compounds. We collected 52 species of floral visitors, mainly bees. Nocturnal and crepuscular bees (four species) were among the most frequent species and the only effective pollinators. In field bioassays performed at night, nocturnal/crepuscular bees were attracted by a synthetic scent blend consisting of the six most abundant compounds. This study describes the first scent-mediated pollination system between a plant and its nocturnal bee pollinators. Further, C. phaea has several floral traits that do not allow classification into other nocturnal pollination syndromes (e.g. pollinator attraction already before sunrise, with pollen as the only reward), instead it is a plant specifically adapted to nocturnal bees.
Collapse
Affiliation(s)
- G D Cordeiro
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - M Pinheiro
- Universidade Federal da Fronteira Sul, Cerro Largo, Rio Grande do Sul, Brazil
| | - S Dötterl
- Department of Ecology & Evolution, University of Salzburg, Salzburg, Austria
| | - I Alves-Dos-Santos
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Charpentier CL, Cohen JH. Chemical cues from fish heighten visual sensitivity in larval crabs through changes in photoreceptor structure and function. ACTA ACUST UNITED AC 2016; 218:3381-90. [PMID: 26538174 DOI: 10.1242/jeb.125229] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several predator avoidance strategies in zooplankton rely on the use of light to control vertical position in the water column. Although light is the primary cue for such photobehavior, predator chemical cues or kairomones increase swimming responses to light. We currently lack a mechanistic understanding for how zooplankton integrate visual and chemical cues to mediate phenotypic plasticity in defensive photobehavior. In marine systems, kairomones are thought to be amino sugar degradation products of fish body mucus. Here, we demonstrate that increasing concentrations of fish kairomones heightened sensitivity of light-mediated swimming behavior for two larval crab species (Rhithropanopeus harrisii and Hemigrapsus sanguineus). Consistent with these behavioral results, we report increased visual sensitivity at the retinal level in larval crab eyes directly following acute (1-3 h) kairomone exposure, as evidenced electrophysiologically from V-log I curves and morphologically from wider, shorter rhabdoms. The observed increases in visual sensitivity do not correspond with a decline in temporal resolution, because latency in electrophysiological responses actually increased after kairomone exposure. Collectively, these data suggest that phenotypic plasticity in larval crab photobehavior is achieved, at least in part, through rapid changes in photoreceptor structure and function.
Collapse
Affiliation(s)
- Corie L Charpentier
- School of Marine Science and Policy, College of Earth, Ocean and Environment, University of Delaware, 700 Pilottown Road, Lewes, DE 19958, USA
| | - Jonathan H Cohen
- School of Marine Science and Policy, College of Earth, Ocean and Environment, University of Delaware, 700 Pilottown Road, Lewes, DE 19958, USA
| |
Collapse
|
31
|
Smolka J, Baird E, el Jundi B, Reber T, Byrne MJ, Dacke M. Night sky orientation with diurnal and nocturnal eyes: dim-light adaptations are critical when the moon is out of sight. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2015.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Hempel de Ibarra N, Langridge KV, Vorobyev M. More than colour attraction: behavioural functions of flower patterns. CURRENT OPINION IN INSECT SCIENCE 2015; 12:64-70. [PMID: 27064650 PMCID: PMC4804388 DOI: 10.1016/j.cois.2015.09.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Flower patterns are thought to influence foraging decisions of insect pollinators. However, the resolution of insect compound eyes is poor. Insects perceive flower patterns only from short distances when they initiate landings or search for reward on the flower. From further away flower displays jointly form larger-sized patterns within the visual scene that will guide the insect's flight. Chromatic and achromatic cues in such patterns may help insects to find, approach and learn rewarded locations in a flower patch, bringing them close enough to individual flowers. Flight trajectories and the spatial resolution of chromatic and achromatic vision in insects determine the effectiveness of floral displays, and both need to be considered in studies of plant-pollinator communication.
Collapse
Affiliation(s)
- Natalie Hempel de Ibarra
- University of Exeter, Centre for Research in Animal Behaviour, Department of Psychology, Exeter, UK
| | - Keri V Langridge
- University of Exeter, Centre for Research in Animal Behaviour, Department of Psychology, Exeter, UK
| | - Misha Vorobyev
- University of Auckland, School of Optometry and Vision Science, Auckland, New Zealand
| |
Collapse
|
33
|
Baird E, Fernandez DC, Wcislo WT, Warrant EJ. Flight control and landing precision in the nocturnal bee Megalopta is robust to large changes in light intensity. Front Physiol 2015; 6:305. [PMID: 26578977 PMCID: PMC4623526 DOI: 10.3389/fphys.2015.00305] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/12/2015] [Indexed: 11/13/2022] Open
Abstract
Like their diurnal relatives, Megalopta genalis use visual information to control flight. Unlike their diurnal relatives, however, they do this at extremely low light intensities. Although Megalopta has developed optical specializations to increase visual sensitivity, theoretical studies suggest that this enhanced sensitivity does not enable them to capture enough light to use visual information to reliably control flight in the rainforest at night. It has been proposed that Megalopta gain extra sensitivity by summing visual information over time. While enhancing the reliability of vision, this strategy would decrease the accuracy with which they can detect image motion-a crucial cue for flight control. Here, we test this temporal summation hypothesis by investigating how Megalopta's flight control and landing precision is affected by light intensity and compare our findings with the results of similar experiments performed on the diurnal bumblebee Bombus terrestris, to explore the extent to which Megalopta's adaptations to dim light affect their precision. We find that, unlike Bombus, light intensity does not affect flight and landing precision in Megalopta. Overall, we find little evidence that Megalopta uses a temporal summation strategy in dim light, while we find strong support for the use of this strategy in Bombus.
Collapse
Affiliation(s)
- Emily Baird
- Department of Biology, Lund University Lund, Sweden
| | - Diana C Fernandez
- Department of Biological Sciences, University of Lethbridge Lethbridge, AB, Canada
| | - William T Wcislo
- Smithsonian Tropical Research Institute Panama City, Republic of Panama
| | | |
Collapse
|
34
|
Honkanen A, Takalo J, Heimonen K, Vähäsöyrinki M, Weckström M. Cockroach optomotor responses below single photon level. ACTA ACUST UNITED AC 2015; 217:4262-8. [PMID: 25472974 DOI: 10.1242/jeb.112425] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reliable vision in dim light depends on the efficient capture of photons. Moreover, visually guided behaviour requires reliable signals from the photoreceptors to generate appropriate motor reactions. Here, we show that at behavioural low-light threshold, cockroach photoreceptors respond to moving gratings with single-photon absorption events known as 'quantum bumps' at or below the rate of 0.1 s(-1). By performing behavioural experiments and intracellular recordings from photoreceptors under identical stimulus conditions, we demonstrate that continuous modulation of the photoreceptor membrane potential is not necessary to elicit visually guided behaviour. The results indicate that in cockroach motion detection, massive temporal and spatial pooling takes place throughout the eye under dim conditions, involving currently unknown neural processing algorithms. The extremely high night-vision capability of the cockroach visual system provides a roadmap for bio-mimetic imaging design.
Collapse
Affiliation(s)
- Anna Honkanen
- Department of Physics, University of Oulu, Oulu, FI-90014, Finland Biocenter Oulu, University of Oulu, Oulu, FI-90014, Finland
| | - Jouni Takalo
- Department of Physics, University of Oulu, Oulu, FI-90014, Finland
| | - Kyösti Heimonen
- Department of Physics, University of Oulu, Oulu, FI-90014, Finland
| | | | - Matti Weckström
- Department of Physics, University of Oulu, Oulu, FI-90014, Finland
| |
Collapse
|
35
|
Stöckl AL, Ribi WA, Warrant EJ. Adaptations for nocturnal and diurnal vision in the hawkmoth lamina. J Comp Neurol 2015; 524:160-75. [DOI: 10.1002/cne.23832] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 06/06/2015] [Accepted: 06/09/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Anna L. Stöckl
- Department of Biology; Lund University; 22362 Lund Sweden
| | - Willi A. Ribi
- Department of Biology; Lund University; 22362 Lund Sweden
- Research School of Biology, Australian National University; Canberra ACT 02200 Australia
| | | |
Collapse
|
36
|
Photoreceptor projections and receptive fields in the dorsal rim area and main retina of the locust eye. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:427-40. [PMID: 25715758 DOI: 10.1007/s00359-015-0990-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 10/24/2022]
Abstract
In many insect species, photoreceptors of a small dorsal rim area of the eye are specialized for sensitivity to the oscillation plane of polarized skylight and, thus, serve a role in sky compass orientation. To further understand peripheral mechanisms of polarized-light processing in the optic lobe, we have studied the projections of photoreceptors and their receptive fields in the main eye and dorsal rim area of the desert locust, a model system for polarization vision analysis. In both eye regions, one photoreceptor per ommatidium, R7, has a long visual fiber projecting through the lamina to the medulla. Axonal fibers from R7 receptors of the dorsal rim area have short side branches throughout the depth of the dorsal lamina and maintain retinotopic projections to the dorsal medulla following the first optic chiasma. Receptive fields of dorsal rim photoreceptors are considerably larger (average acceptance angle 33°) than those of the main eye (average acceptance angle 2.04°) and, taken together, cover almost the entire sky. The data challenge previous reports of two long visual fibers per ommatidium in the main eye of the locust and provide data for future analysis of peripheral networks underlying polarization opponency in the locust brain.
Collapse
|
37
|
Santos L, Melo G. Updating the taxonomy of the bee genusMegalopta(Hymenoptera: Apidae, Augochlorini) including revision of the Brazilian species. J NAT HIST 2014. [DOI: 10.1080/00222933.2014.946106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Agi E, Langen M, Altschuler SJ, Wu LF, Zimmermann T, Hiesinger PR. The evolution and development of neural superposition. J Neurogenet 2014; 28:216-32. [PMID: 24912630 PMCID: PMC4245170 DOI: 10.3109/01677063.2014.922557] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Visual systems have a rich history as model systems for the discovery and understanding of basic principles underlying neuronal connectivity. The compound eyes of insects consist of up to thousands of small unit eyes that are connected by photoreceptor axons to set up a visual map in the brain. The photoreceptor axon terminals thereby represent neighboring points seen in the environment in neighboring synaptic units in the brain. Neural superposition is a special case of such a wiring principle, where photoreceptors from different unit eyes that receive the same input converge upon the same synaptic units in the brain. This wiring principle is remarkable, because each photoreceptor in a single unit eye receives different input and each individual axon, among thousands others in the brain, must be sorted together with those few axons that have the same input. Key aspects of neural superposition have been described as early as 1907. Since then neuroscientists, evolutionary and developmental biologists have been fascinated by how such a complicated wiring principle could evolve, how it is genetically encoded, and how it is developmentally realized. In this review article, we will discuss current ideas about the evolutionary origin and developmental program of neural superposition. Our goal is to identify in what way the special case of neural superposition can help us answer more general questions about the evolution and development of genetically “hard-wired” synaptic connectivity in the brain.
Collapse
Affiliation(s)
- Egemen Agi
- Green Center for Systems Biology, University of Texas Southwestern Medical Center , Dallas, TX , USA
| | | | | | | | | | | |
Collapse
|
39
|
Narendra A, Reid SF, Raderschall CA. Navigational efficiency of nocturnal Myrmecia ants suffers at low light levels. PLoS One 2013; 8:e58801. [PMID: 23484052 PMCID: PMC3590162 DOI: 10.1371/journal.pone.0058801] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/08/2013] [Indexed: 11/21/2022] Open
Abstract
Insects face the challenge of navigating to specific goals in both bright sun-lit and dim-lit environments. Both diurnal and nocturnal insects use quite similar navigation strategies. This is despite the signal-to-noise ratio of the navigational cues being poor at low light conditions. To better understand the evolution of nocturnal life, we investigated the navigational efficiency of a nocturnal ant, Myrmecia pyriformis, at different light levels. Workers of M. pyriformis leave the nest individually in a narrow light-window in the evening twilight to forage on nest-specific Eucalyptus trees. The majority of foragers return to the nest in the morning twilight, while few attempt to return to the nest throughout the night. We found that as light levels dropped, ants paused for longer, walked more slowly, the success in finding the nest reduced and their paths became less straight. We found that in both bright and dark conditions ants relied predominantly on visual landmark information for navigation and that landmark guidance became less reliable at low light conditions. It is perhaps due to the poor navigational efficiency at low light levels that the majority of foragers restrict navigational tasks to the twilight periods, where sufficient navigational information is still available.
Collapse
Affiliation(s)
- Ajay Narendra
- ARC Centre of Excellence in Vision Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | | |
Collapse
|
40
|
Friedrich M, Wood EJ, Wu M. Developmental evolution of the insect retina: insights from standardized numbering of homologous photoreceptors. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:484-99. [DOI: 10.1002/jez.b.21424] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 05/26/2011] [Indexed: 11/09/2022]
|
41
|
Berry RP, Wcislo WT, Warrant EJ. Ocellar adaptations for dim light vision in a nocturnal bee. J Exp Biol 2011; 214:1283-93. [DOI: 10.1242/jeb.050427] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Growing evidence indicates that insect ocelli are strongly adapted to meet the specific functional requirements in the environment in which that insect lives. We investigated how the ocelli of the nocturnal bee Megalopta genalis are adapted to life in the dim understory of a tropical rainforest. Using a combination of light microscopy and three-dimensional reconstruction, we found that the retinae contain bar-shaped rhabdoms loosely arranged in a radial pattern around multi-layered lenses, and that both lenses and retinae form complex non-spherical shapes reminiscent of those described in other ocelli. Intracellular electrophysiology revealed that the photoreceptors have high absolute sensitivity, but that the threshold location varied widely between 109 and 1011 photons cm–2 s–1. Higher sensitivity and greater visual reliability may be obtained at the expense of temporal resolution: the corner frequencies of dark-adapted ocellar photoreceptors were just 4–11 Hz. Spectral sensitivity profiles consistently peaked at 500 nm. Unlike the ocelli of other flying insects, we did not detect UV-sensitive visual pigments in M. genalis, which may be attributable to a scarcity of UV photons under the rainforest canopy at night. In contrast to earlier predictions based on anatomy, the photoreceptors are not sensitive to the e-vector of polarised light. Megalopta genalis ocellar photoreceptors possess a number of unusual properties, including inherently high response variability and the ability to produce spike-like potentials. These properties bear similarities to photoreceptors in the compound eye of the cockroach, and we suggest that the two insects share physiological characteristics optimised for vision in dim light.
Collapse
Affiliation(s)
- Richard P. Berry
- Centre for Visual Sciences, School of Biology, Australian National University, Canberra 2600, Australia
| | - William T. Wcislo
- Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Republic of Panama
| | - Eric J. Warrant
- Department of Cell and Organism Biology, University of Lund, Sölvegatan 35, Lund S-22350, Sweden
| |
Collapse
|
42
|
Abstract
With their highly sensitive visual systems, nocturnal insects have evolved a remarkable capacity to discriminate colors, orient themselves using faint celestial cues, fly unimpeded through a complicated habitat, and navigate to and from a nest using learned visual landmarks. Even though the compound eyes of nocturnal insects are significantly more sensitive to light than those of their closely related diurnal relatives, their photoreceptors absorb photons at very low rates in dim light, even during demanding nocturnal visual tasks. To explain this apparent paradox, it is hypothesized that the necessary bridge between retinal signaling and visual behavior is a neural strategy of spatial and temporal summation at a higher level in the visual system. Exactly where in the visual system this summation takes place, and the nature of the neural circuitry that is involved, is currently unknown but provides a promising avenue for future research.
Collapse
Affiliation(s)
- Eric Warrant
- Department of Biology, University of Lund, S-22362 Lund, Sweden
| | | |
Collapse
|
43
|
Somanathan H, Warrant EJ, Borges RM, Wallén R, Kelber A. Resolution and sensitivity of the eyes of the Asian honeybees Apis florea, Apis cerana and Apis dorsata. J Exp Biol 2009; 212:2448-53. [DOI: 10.1242/jeb.031484] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Bees of the genus Apis are important foragers of nectar and pollen resources. Although the European honeybee, Apis mellifera, has been well studied with respect to its sensory abilities, learning behaviour and role as pollinators, much less is known about the other Apis species. We studied the anatomical spatial resolution and absolute sensitivity of the eyes of three sympatric species of Asian honeybees, Apis cerana, Apis florea and Apis dorsata and compared them with the eyes of A. mellifera. Of these four species, the giant honeybee A. dorsata (which forages during moonlit nights) has the lowest spatial resolution and the most sensitive eyes, followed by A. mellifera, A. cerana and the dwarf honeybee, A. florea (which has the smallest acceptance angles and the least sensitive eyes). Moreover, unlike the strictly diurnal A. cerana and A. florea, A. dorsata possess large ocelli, a feature that it shares with all dim-light bees. However, the eyes of the facultatively nocturnal A. dorsata are much less sensitive than those of known obligately nocturnal bees such as Megalopta genalis in Panama and Xylocopa tranquebarica in India. The differences in sensitivity between the eyes of A. dorsataand other strictly diurnal Apis species cannot alone explain why the former is able to fly, orient and forage at half-moon light levels. We assume that additional neuronal adaptations, as has been proposed for A. mellifera, M. genalis and X. tranquebarica, might exist in A. dorsata.
Collapse
Affiliation(s)
- Hema Somanathan
- Department of Cell and Organism Biology–Zoology, Lund University, 22363 Lund, Sweden
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India
| | - Eric J. Warrant
- Department of Cell and Organism Biology–Zoology, Lund University, 22363 Lund, Sweden
| | - Renee M. Borges
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India
| | - Rita Wallén
- Department of Cell and Organism Biology–Zoology, Lund University, 22363 Lund, Sweden
| | - Almut Kelber
- Department of Cell and Organism Biology–Zoology, Lund University, 22363 Lund, Sweden
| |
Collapse
|
44
|
Frederiksen R, Wcislo WT, Warrant EJ. Visual reliability and information rate in the retina of a nocturnal bee. Curr Biol 2008; 18:349-53. [PMID: 18328705 DOI: 10.1016/j.cub.2008.01.057] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 01/28/2008] [Accepted: 01/28/2008] [Indexed: 11/18/2022]
Abstract
Nocturnal animals relying on vision typically have eyes that are optically and morphologically adapted for both increased sensitivity and greater information capacity in dim light. Here, we investigate whether adaptations for increased sensitivity also are found in their photoreceptors by using closely related and fast-flying nocturnal and diurnal bees as model animals. The nocturnal bee Megalopta genalis is capable of foraging and homing by using visually discriminated landmarks at starlight intensities. Megalopta's near relative, Lasioglossum leucozonium, performs these tasks only in bright sunshine. By recording intracellular responses to Gaussian white-noise stimuli, we show that photoreceptors in Megalopta actually code less information at most light levels than those in Lasioglossum. However, as in several other nocturnal arthropods, Megalopta's photoreceptors possess a much greater gain of transduction, indicating that nocturnal photoreceptors trade information capacity for sensitivity. By sacrificing photoreceptor signal-to-noise ratio and information capacity in dim light for an increased gain and, thus, an increased sensitivity, this strategy can benefit nocturnal insects that use neural summation to improve visual reliability at night.
Collapse
Affiliation(s)
- Rikard Frederiksen
- Department of Cell and Organism Biology, Lund University, Helgonavägen 3, S-22362 Lund, Sweden.
| | | | | |
Collapse
|
45
|
Warrant EJ. Seeing in the dark: vision and visual behaviour in nocturnal bees and wasps. J Exp Biol 2008; 211:1737-46. [DOI: 10.1242/jeb.015396] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
In response to the pressures of predation, parasitism and competition for limited resources, several groups of (mainly) tropical bees and wasps have independently evolved a nocturnal lifestyle. Like their day-active (diurnal)relatives, these insects possess apposition compound eyes, a relatively light-insensitive eye design that is best suited to vision in bright light. Despite this, nocturnal bees and wasps are able to forage at night, with many species capable of flying through a dark and complex forest between the nest and a foraging site, a behaviour that relies heavily on vision and is limited by light intensity. In the two best-studied species – the Central American sweat bee Megalopta genalis (Halictidae) and the Indian carpenter bee Xylocopa tranquebarica (Apidae) – learned visual landmarks are used to guide foraging and homing. Their apposition eyes,however, have only around 30 times greater optical sensitivity than the eyes of their closest diurnal relatives, a fact that is apparently inconsistent with their remarkable nocturnal visual abilities. Moreover, signals generated in the photoreceptors, even though amplified by a high transduction gain, are too noisy and slow to transmit significant amounts of information in dim light. How have nocturnal bees and wasps resolved these paradoxes? Even though this question remains to be answered conclusively, a mounting body of theoretical and experimental evidence suggests that the slow and noisy visual signals generated by the photoreceptors are spatially summed by second-order monopolar cells in the lamina, a process that could dramatically improve visual reliability for the coarser and slower features of the visual world at night.
Collapse
Affiliation(s)
- Eric J. Warrant
- Department of Cell and Organism Biology, Zoology Building, University of Lund, Helgonavägen 3, S-22362 Lund, Sweden
| |
Collapse
|
46
|
Theobald JC, Coates MM, Wcislo WT, Warrant EJ. Flight performance in night-flying sweat bees suffers at low light levels. ACTA ACUST UNITED AC 2008; 210:4034-42. [PMID: 17981871 DOI: 10.1242/jeb.003756] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sweat bee Megalopta (Hymenoptera: Halictidae), unlike most bees, flies in extremely dim light. And although nocturnal insects are often equipped with superposition eyes, which greatly enhance light capture, Megalopta performs visually guided flight with apposition eyes. We examined how light limits Megalopta's flight behavior by measuring flight times and corresponding light levels and comparing them with flight trajectories upon return to the nest. We found the average time to land increased in dim light, an effect due not to slow approaches, but to circuitous approaches. Some landings, however, were quite fast even in the dark. To explain this, we examined the flight trajectories and found that in dim light, landings became increasingly error prone and erratic, consistent with repeated landing attempts. These data agree well with the premise that Megalopta uses visual summation, sacrificing acuity in order to see and fly at the very dimmest light intensities that its visual system allows.
Collapse
Affiliation(s)
- Jamie Carroll Theobald
- Department of Cell and Organism Biology, Helgonavägen 3, Lund University, S-223 62, Lund, Sweden.
| | | | | | | |
Collapse
|
47
|
Visual ecology of Indian carpenter bees I: Light intensities and flight activity. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 194:97-107. [DOI: 10.1007/s00359-007-0291-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 11/09/2007] [Accepted: 11/10/2007] [Indexed: 10/22/2022]
|
48
|
KAPUSTJANSKIJ A, STREINZER M, PAULUS HF, SPAETHE J. Bigger is better: implications of body size for flight ability under different light conditions and the evolution of alloethism in bumblebees. Funct Ecol 2007. [DOI: 10.1111/j.1365-2435.2007.01329.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Warrant EJ, Kelber A, Wallén R, Wcislo WT. Ocellar optics in nocturnal and diurnal bees and wasps. ARTHROPOD STRUCTURE & DEVELOPMENT 2006; 35:293-305. [PMID: 18089077 DOI: 10.1016/j.asd.2006.08.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Accepted: 08/02/2006] [Indexed: 05/25/2023]
Abstract
Nocturnal bees, wasps and ants have considerably larger ocelli than their diurnal relatives, suggesting an active role in vision at night. In a first step to understanding what this role might be, the morphology and physiological optics of ocelli were investigated in three tropical rainforest species - the nocturnal sweat bee Megalopta genalis, the nocturnal paper wasp Apoica pallens and the diurnal paper wasp Polistes occidentalis - using hanging-drop techniques and standard histological methods. Ocellar image quality, in addition to lens focal length and back focal distance, was determined in all three species. During flight, the ocellar receptive fields of both nocturnal species are centred very dorsally, possibly in order to maximise sensitivity to the narrow dorsal field of light that enters through gaps in the rainforest canopy. Since all ocelli investigated had a slightly oval shape, images were found to be astigmatic: images formed by the major axis of the ocellus were located further from the proximal surface of the lens than images formed by the minor axis. Despite being astigmatic, images formed at either focal plane were reasonably sharp in all ocelli investigated. When compared to the position of the retina below the lens, measurements of back focal distance reveal that the ocelli of Megalopta are highly underfocused and unable to resolve spatial detail. This together with their very large and tightly packed rhabdoms suggests a role in making sensitive measurements of ambient light intensity. In contrast, the ocelli of the two wasps form images near the proximal boundary of the retina, suggesting the potential for modest resolving power. In light of these results, possible roles for ocelli in nocturnal bees and wasps are discussed, including the hypothesis that they might be involved in nocturnal homing and navigation, using two main cues: the spatial pattern of bright patches of daylight visible through the rainforest canopy, and compass information obtained from polarised skylight (from the setting sun or the moon) that penetrates these patches.
Collapse
Affiliation(s)
- Eric J Warrant
- Department of Cell & Organism Biology, Zoology Building, University of Lund, Helgonavägen 3, S-22362 Lund, Sweden
| | | | | | | |
Collapse
|
50
|
Theobald JC, Greiner B, Wcislo WT, Warrant EJ. Visual summation in night-flying sweat bees: a theoretical study. Vision Res 2006; 46:2298-309. [PMID: 16488460 DOI: 10.1016/j.visres.2006.01.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 12/25/2005] [Accepted: 01/04/2006] [Indexed: 11/20/2022]
Abstract
Bees are predominantly diurnal; only a few groups fly at night. An evolutionary limitation that bees must overcome to inhabit dim environments is their eye type: bees possess apposition compound eyes, which are poorly suited to vision in dim light. Here, we theoretically examine how nocturnal bees Megalopta genalis fly at light levels usually reserved for insects bearing more sensitive superposition eyes. We find that neural summation should greatly increase M. genalis's visual reliability. Predicted spatial summation closely matches the morphology of laminal neurons believed to mediate such summation. Improved reliability costs acuity, but dark adapted bees already suffer optical blurring, and summation further degrades vision only slightly.
Collapse
Affiliation(s)
- Jamie Carroll Theobald
- Department of Cell and Organism Biology, Helgonavägen 3, Lund University, S-223 62, Lund, Sweden.
| | | | | | | |
Collapse
|