1
|
Al Khashali H, Darweesh B, Ray R, Haddad B, Wozniak C, Ranzenberger R, Goel S, Khalil J, Guthrie J, Heyl D, Evans HG. Regulation of Vascular Endothelial Growth Factor Signaling by Nicotine in a Manner Dependent on Acetylcholine-and/or β-Adrenergic-Receptors in Human Lung Cancer Cells. Cancers (Basel) 2023; 15:5500. [PMID: 38067204 PMCID: PMC10705358 DOI: 10.3390/cancers15235500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/05/2023] [Accepted: 11/19/2023] [Indexed: 10/15/2024] Open
Abstract
Simple Summary Nicotine, a highly addictive component in cigarette smoke, facilitates tumorigenesis and the accelerated development of non-small cell lung cancer (NSCLC), which is known to account for ~80% of all lung cancer cases. This study sheds light on how the nicotine treatment of NSCLC cells regulates vascular endothelial growth factor (VEGF) signaling, known to be important in the progression of vascular disease and cancer, by acting through nicotinic acetylcholine receptors and by leading to the activation of β-adrenergic receptors through increased levels of the stress neurotransmitters, norepinephrine/noradrenaline, and epinephrine/adrenaline. Nicotine-induced activation of VEGF promoted the function of proteins involved in increased cell survival and suppressed the function of a crucial tumor suppressor, blocking cell death. This work expands our scientific knowledge of mechanisms employed by nicotine in regulating VEGF signaling in a manner dependent on the acetylcholine and/or β-adrenergic receptors, leading to lung cancer cell survival, and also provides significant insights into novel future therapeutic strategies to combat lung cancer. Abstract In addition to binding to nicotinic acetylcholine receptors (nAChRs), nicotine is known to regulate the β-adrenergic receptors (β-ARs) promoting oncogenic signaling. Using A549 (p53 wild-type) and H1299 (p53-null) lung cancer cells, we show that nicotine treatment led to: increased adrenaline/noradrenaline levels, an effect blocked by treatment with the α7nAChR inhibitor (α-BTX) but not by the β-blocker (propranolol) or the α4β2nAChR antagonist (DhβE); decreased GABA levels in A549 and H1299 cell media, an effect blocked by treatment with DhβE; increased VEGF levels and PI3K/AKT activities, an effect diminished by cell co-treatment with α-BTX, propranolol, and/or DhβE; and inhibited p53 activity in A549 cells, that was reversed, upon cell co-treatment with α-BTX, propranolol, and/or DhβE or by VEGF immunodepletion. VEGF levels increased upon cell treatment with nicotine, adrenaline/noradrenaline, and decreased with GABA treatment. On the other hand, the p53 activity decreased in A549 cells treated with nicotine, adrenaline/noradrenaline and increased upon cell incubation with GABA. Knockdown of p53 led to increased VEGF levels in the media of A549 cells. The addition of anti-VEGF antibodies to A549 and H1299 cells decreased cell viability and increased apoptosis; blocked the activities of PI3K, AKT, and NFκB in the absence or presence of nicotine; and resulted in increased p53 activation in A549 cells. We conclude that VEGF can be upregulated via α7nAChR and/or β-ARs and downregulated via GABA and/or p53 in response to the nicotine treatment of NSCLC cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hedeel Guy Evans
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI 48197, USA; (H.A.K.); (B.D.); (R.R.); (B.H.); (C.W.); (R.R.); (S.G.); (J.K.); (J.G.); (D.H.)
| |
Collapse
|
2
|
Piao X, Jiang SH, Wang JN, Wu J, Xu WC, Li LQ, Xue Z, Yu JE. Pingchuan formula attenuates airway mucus hypersecretion via regulation of the PNEC-GABA-IL13-Muc5ac axis in asthmatic mice. Biomed Pharmacother 2021; 140:111746. [PMID: 34062412 DOI: 10.1016/j.biopha.2021.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND/AIMS Asthma is a common chronic respiratory disease. It has been reported that Pingchuan formula (PCF) can control asthma attacks by reducing airway inflammation, muscle spasm and mucus secretion. However, PCF's mechanism for reducing airway mucus hypersecretion remains unclear. This study aimed to investigate the effect of PCF on airway mucus secretion in asthmatic mice and to explore changes in the PNEC-GABA-IL13-Muc5ac axis. METHODS Male Babl/c mice were used to establish the asthma model via sensitisation with OVA. Mice were randomly divided into Normal, OVA, DEX, and PCF groups. After treatment, lung histopathology was observed with H&E and PAS staining. BALF levels of IL-5 and IL-13 were detected using ELISA. The levels of mRNA and protein expression for GAD1, GABAARβ1, GABAARα1 and Muc5ac in the lung tissue were measured by RT-PCR and Western blot assays. PNECs were observed with AgNOR staining. RESULTS PCF treatment effectively reduced goblet cell (P < 0.01) and PNEC (P < 0.05) proliferation, lung tissue inflammation and airway mucus hypersecretion. In addition, PCF also markedly downregulated mRNA and protein expression of GAD1, GABAARβ1, GABAARα1 and Muc5ac (P < 0.05, compared with OVA), thus inhibiting the GABA-IL-13 pathway in the lung tissue of asthmatic mice. CONCLUSION These findings suggest that PCF controls asthma attacks by reducing airway inflammation and mucus hypersecretion via the PNEC-GABA-IL13-Muc5ac axis.
Collapse
Affiliation(s)
- Xiang Piao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China; Pediatric Institute of Shanghai Traditional Chinese Medicine Academy, Shanghai 200071, China.
| | - Shen-Hua Jiang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| | - Jia-Ni Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Jie Wu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China; Pediatric Institute of Shanghai Traditional Chinese Medicine Academy, Shanghai 200071, China
| | - Wan-Chao Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Li-Qing Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China; Pediatric Institute of Shanghai Traditional Chinese Medicine Academy, Shanghai 200071, China
| | - Zheng Xue
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China; Pediatric Institute of Shanghai Traditional Chinese Medicine Academy, Shanghai 200071, China.
| | - Jian-Er Yu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China; Pediatric Institute of Shanghai Traditional Chinese Medicine Academy, Shanghai 200071, China.
| |
Collapse
|
3
|
Huang T, Zhang Y, Wang C, Gao J. Propofol reduces acute lung injury by up-regulating gamma-aminobutyric acid type a receptors. Exp Mol Pathol 2019; 110:104295. [PMID: 31419406 DOI: 10.1016/j.yexmp.2019.104295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/11/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND We used a two-hit lung injury rat model that involves mechanical ventilation (MV) following lipopolysaccharide exposure to investigate the effects of propofol on the expression of GABAA receptors (GABAAR) and cytokine responses, and we then determined the specific effects of GABA on cytokine responses in vitro in alveolar epithelial cells (AECs). METHODS Forty-eight adult male Wister rats were equally and randomly divided into the following 4 groups (n = 12) using a random number table: sham group, sham+propofol group, lipopolysaccharide (LPS) + VILI group, and LPS + VILI + propofol group. All animals were anesthetized, and the animals received a 3.75 mg/kg intratracheal instillation of endotoxins or phosphate-buffered saline (PBS) as the control, as described previously. After 30 min, rats were ventilated for 5 h in a volume-controlled ventilation mode. In the LPS + VILI group, animals were ventilated with a tidal volume (Vt) of 22 ml/kg and zero positive end-expiratory pressure (PEEP) at a respiratory rate of 16-18 breaths/min, whereas control (sham) rats were ventilated with a Vt of 6 ml/kg and PEEP of 5 cmH2O at a rate of 45-55 breaths/min. The FiO2 remained constant as 0.4, propofol was administered intravenously in the LPS + VILI + propofol and sham + propofol groups at a rate of 10 mg·kg-1·h-1 while normal saline at the same rate was intravenously administered in the LPS + VILI and sham groups during the entire mechanical ventilation period. Five hours after mechanical ventilation, the rats were killed. Survival rates, histopathology, concentrations of inflammatory mediators in bronchoalveolar lavage fluid (BALF), wet weight/dry weight (W/D) ratio of the lung, myeloperoxidase (MPO) activity in lung tissues, and expression of GAD and GABAAR by immunohistochemical detection and Western blotting were assessed. Then, human type II-like alveolar epithelial cells (A549 cells) were cultured to full confluence and incubated with GABA (100 nM) alone, picrotoxin alone, a GABAAR antagonist (PTX, 50 nM), or GABA + PTX for 10 min, followed by stimulation with LPS (control) at 100 ng/ml for 4 h. The concentrations of IL-1β, IL-2, IL-8, and IL-10 were then measured. RESULTS Administration of propofol in a two-hit lung injury rat model can increase survival rates and the expression of GAD and GABAAR (P < .05). The administration of propofol can attenuate the release of pro-inflammatory cytokines both in vivo and in vitro, and the administration of propofol can attenuate histopathological changes, the W/D ratio, and MPO activity (P < .05). CONCLUSIONS In this study, we found that the administration of propofol improved lung function, alleviated lung injury, and up-regulated the GAD and GABAAR expressions in a two-hit model of acute lung injury (ALI) characterized by intratracheal instillation of an endotoxin and prolonged MV. Therefore, the protective effects of propofol may be associated with the up-regulation of GABAA receptors in AECs.
Collapse
Affiliation(s)
- Tianfeng Huang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Yang Zhang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Cunjin Wang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Ju Gao
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu Province, PR China.
| |
Collapse
|
4
|
Sieghart W, Savić MM. International Union of Basic and Clinical Pharmacology. CVI: GABAA Receptor Subtype- and Function-selective Ligands: Key Issues in Translation to Humans. Pharmacol Rev 2018; 70:836-878. [DOI: 10.1124/pr.117.014449] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
5
|
Stefanits H, Milenkovic I, Mahr N, Pataraia E, Hainfellner JA, Kovacs GG, Sieghart W, Yilmazer-Hanke D, Czech T. GABAAreceptor subunits in the human amygdala and hippocampus: Immunohistochemical distribution of 7 subunits. J Comp Neurol 2017; 526:324-348. [DOI: 10.1002/cne.24337] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/12/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Harald Stefanits
- Department of Neurosurgery; Medical University of Vienna; Vienna Austria
- Institute of Neurology, Medical University of Vienna; Vienna Austria
| | - Ivan Milenkovic
- Department of Clinical Neurology; Medical University of Vienna; Vienna Austria
| | - Nina Mahr
- Department of Neurosurgery; Medical University of Vienna; Vienna Austria
| | - Ekaterina Pataraia
- Department of Clinical Neurology; Medical University of Vienna; Vienna Austria
| | | | - Gabor G. Kovacs
- Institute of Neurology, Medical University of Vienna; Vienna Austria
| | - Werner Sieghart
- Center for Brain Research, Department of Molecular Neurosciences; Medical University of Vienna; Vienna Austria
| | - Deniz Yilmazer-Hanke
- Clinical Neuroanatomy, Neurology Department, Medical Faculty; Ulm University; Ulm Germany
| | - Thomas Czech
- Department of Neurosurgery; Medical University of Vienna; Vienna Austria
| |
Collapse
|
6
|
Kellner P, Müller M, Piegeler T, Eugster P, Booy C, Schläpfer M, Beck-Schimmer B. Sevoflurane Abolishes Oxygenation Impairment in a Long-Term Rat Model of Acute Lung Injury. Anesth Analg 2017; 124:194-203. [DOI: 10.1213/ane.0000000000001530] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Dose-Dependent Protective Effect of Inhalational Anesthetics Against Postoperative Respiratory Complications. Crit Care Med 2017; 45:e30-e39. [DOI: 10.1097/ccm.0000000000002015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Forkuo GS, Guthrie ML, Yuan NY, Nieman AN, Kodali R, Jahan R, Stephen MR, Yocum GT, Treven M, Poe MM, Li G, Yu OB, Hartzler BD, Zahn NM, Ernst M, Emala CW, Stafford DC, Cook JM, Arnold LA. Development of GABAA Receptor Subtype-Selective Imidazobenzodiazepines as Novel Asthma Treatments. Mol Pharm 2016; 13:2026-38. [PMID: 27120014 DOI: 10.1021/acs.molpharmaceut.6b00159] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent studies have demonstrated that subtype-selective GABAA receptor modulators are able to relax precontracted human airway smooth muscle ex vivo and reduce airway hyper-responsiveness in mice upon aerosol administration. Our goal in this study was to investigate systemic administration of subtype-selective GABAA receptor modulators to alleviate bronchoconstriction in a mouse model of asthma. Expression of GABAA receptor subunits was identified in mouse lungs, and the effects of α4-subunit-selective GABAAR modulators, XHE-III-74EE and its metabolite XHE-III-74A, were investigated in a murine model of asthma (ovalbumin sensitized and challenged BALB/c mice). We observed that chronic treatment with XHE-III-74EE significantly reduced airway hyper-responsiveness. In addition, acute treatment with XHE-III-74A but not XHE-III-74EE decreased airway eosinophilia. Immune suppressive activity was also shown in activated human T-cells with a reduction in IL-2 expression and intracellular calcium concentrations [Ca(2+)]i in the presence of GABA or XHE-III-74A, whereas XHE-III-74EE showed only partial reduction of [Ca(2+)]i and no inhibition of IL-2 secretion. However, both compounds significantly relaxed precontracted tracheal rings ex vivo. Overall, we conclude that the systemic delivery of a α4-subunit-selective GABAAR modulator shows good potential for a novel asthma therapy; however, the pharmacokinetic properties of this class of drug candidates have to be improved to enable better beneficial systemic pharmacodynamic effects.
Collapse
Affiliation(s)
- Gloria S Forkuo
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Margaret L Guthrie
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Nina Y Yuan
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Amanda N Nieman
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Revathi Kodali
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Rajwana Jahan
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Michael R Stephen
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Gene T Yocum
- Department of Anesthesiology, Columbia University , New York, New York 10032, United States
| | - Marco Treven
- Department of Molecular Neurosciences, Medical University of Vienna , 1090 Vienna, Austria
| | - Michael M Poe
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Guanguan Li
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Olivia B Yu
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Benjamin D Hartzler
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Nicolas M Zahn
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Margot Ernst
- Department of Molecular Neurosciences, Medical University of Vienna , 1090 Vienna, Austria
| | - Charles W Emala
- Department of Anesthesiology, Columbia University , New York, New York 10032, United States
| | - Douglas C Stafford
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - James M Cook
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
9
|
Zhang H, Guo Y, Mishra A, Gou D, Chintagari NR, Liu L. MicroRNA-206 regulates surfactant secretion by targeting VAMP-2. FEBS Lett 2014; 589:172-6. [PMID: 25481410 DOI: 10.1016/j.febslet.2014.11.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/13/2014] [Accepted: 11/24/2014] [Indexed: 12/12/2022]
Abstract
Lung surfactant secretion is a highly regulated process. Our previous studies have shown that VAMP-2 is essential for surfactant secretion. In the present study we investigated the role of miR-206 in surfactant secretion through VAMP-2. VAMP-2 was confirmed to be a target of miR-206 by 3'-untranslational region (3'-UTR) luciferase assay. Mutations in the predicated miR-206 binding sites reduced the binding of miR-206 to the 3'-UTR of VAMP-2. miR-206 decreased the expression of VAMP-2 protein and decreased the lung surfactant secretion in alveolar type II cells. In conclusion, miR-206 regulates lung surfactant secretion by limiting the availability of VAMP-2 protein.
Collapse
Affiliation(s)
- Honghao Zhang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 73034, United States
| | - Yujie Guo
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 73034, United States; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 73034, United States
| | - Amarjit Mishra
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 73034, United States
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Narendranath Reddy Chintagari
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 73034, United States
| | - Lin Liu
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 73034, United States; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 73034, United States.
| |
Collapse
|
10
|
Isoflurane regulates atypical type-A γ-aminobutyric acid receptors in alveolar type II epithelial cells. Anesthesiology 2013; 118:1065-75. [PMID: 23485993 DOI: 10.1097/aln.0b013e31828e180e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Volatile anesthetics act primarily through upregulating the activity of γ-aminobutyric acid type A (GABAA) receptors. They also exhibit antiinflammatory actions in the lung. Rodent alveolar type II (ATII) epithelial cells express GABAA receptors and the inflammatory factor cyclooxygenase-2 (COX-2). The goal of this study was to determine whether human ATII cells also express GABAA receptors and whether volatile anesthetics upregulate GABAA receptor activity, thereby reducing the expression of COX-2 in ATII cells. METHODS The expression of GABAA receptor subunits and COX-2 in ATII cells of human lung tissue and in the human ATII cell line A549 was studied with immunostaining and immunoblot analyses. Patch clamp recordings were used to study the functional and pharmacological properties of GABAA receptors in cultured A549 cells. RESULTS ATII cells in human lungs and cultured A549 cells expressed GABAA receptor subunits and COX-2. GABA induced currents in A549 cells, with half-maximal effective concentration of 2.5 µM. Isoflurane (0.1-250 µM) enhanced the GABA currents, which were partially inhibited by bicuculline. Treating A549 cells with muscimol or with isoflurane (250 µM) reduced the expression of COX-2, an effect that was attenuated by cotreatment with bicuculline. CONCLUSIONS GABAA receptors expressed by human ATII cells differ pharmacologically from those in neurons, exhibiting a higher affinity for GABA and lower sensitivity to bicuculline. Clinically relevant concentrations of isoflurane increased the activity of GABAA receptors and reduced the expression of COX-2 in ATII cells. These findings reveal a novel mechanism that could contribute to the antiinflammatory effect of isoflurane in the human lung.
Collapse
|
11
|
Chintagari NR, Liu L. GABA receptor ameliorates ventilator-induced lung injury in rats by improving alveolar fluid clearance. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R55. [PMID: 22480160 PMCID: PMC3681384 DOI: 10.1186/cc11298] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/05/2012] [Accepted: 04/05/2012] [Indexed: 12/18/2022]
Abstract
Introduction Mechanical ventilators are increasingly used in critical care units. However, they can cause lung injury, including pulmonary edema. Our previous studies indicated that γ-aminobutyric acid (GABA) receptors are involved in alveolar-fluid homeostasis. The present study investigated the role of GABA receptors in ventilator-induced lung injury. Methods Adult female Sprague-Dawley rats were subjected to high-tidal-volume ventilation of 40 ml/kg body weight for 1 hour, and lung injuries were assessed. Results High-tidal-volume ventilation resulted in lung injury, as indicated by an increase in total protein in bronchoalveolar fluid, wet-to-dry ratio (indication of pulmonary edema), and Evans Blue dye extravasation (indication of vascular damage). Intratracheal administration of GABA before ventilation significantly reduced the wet-to-dry ratio. Further, histopathologic analysis indicated that GABA reduced ventilator-induced lung injury and apoptosis. GABA-mediated reduction was effectively blocked by the GABAA-receptor antagonist, bicuculline. The GABA-mediated effect was not due to the vascular damage, because no differences in Evans Blue dye extravasation were noted. However, the decrease in alveolar fluid clearance by high-tidal-volume ventilation was partly prevented by GABA, which was blocked by bicuculline. Conclusions These results suggest that GABA reduces pulmonary edema induced by high-tidal-volume ventilation via its effects on alveolar fluid clearance and apoptosis.
Collapse
Affiliation(s)
- Narendranath Reddy Chintagari
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK 74078, USA
| | | |
Collapse
|
12
|
Effects of anesthetic regimes on inflammatory responses in a rat model of acute lung injury. Intensive Care Med 2012; 38:1548-55. [PMID: 22711173 DOI: 10.1007/s00134-012-2610-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 05/17/2012] [Indexed: 12/30/2022]
Abstract
PURPOSE Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter through activation of GABA receptors. Volatile anesthetics activate type-A (GABA(A)) receptors resulting in inhibition of synaptic transmission. Lung epithelial cells have been recently found to express GABA(A) receptors that exert anti-inflammatory properties. We hypothesized that the volatile anesthetic sevoflurane (SEVO) attenuates lung inflammation through activation of lung epithelial GABA(A) receptors. METHODS Sprague-Dawley rats were anesthetized with SEVO or ketamine/xylazine (KX). Acute lung inflammation was induced by intratracheal instillation of endotoxin, followed by mechanical ventilation for 4 h at a tidal volume of 15 mL/kg without positive end-expiratory pressure (two-hit lung injury model). To examine the specific effects of GABA, healthy human lung epithelial cells (BEAS-2B) were challenged with endotoxin in the presence and absence of GABA with and without addition of the GABA(A) receptor antagonist picrotoxin. RESULTS Anesthesia with SEVO improved oxygenation and reduced pulmonary cytokine responses compared to KX. This phenomenon was associated with increased expression of the π subunit of GABA(A) receptors and glutamic acid decarboxylase (GAD). The endotoxin-induced cytokine release from BEAS-2B cells was attenuated by the treatment with GABA, which was reversed by the administration of picrotoxin. CONCLUSION Anesthesia with SEVO suppresses pulmonary inflammation and thus protects the lung from the two-hit injury. The anti-inflammatory effect of SEVO is likely due to activation of pulmonary GABA(A) signaling pathways.
Collapse
|
13
|
Zhao C, Huang C, Weng T, Xiao X, Ma H, Liu L. Computational prediction of MicroRNAs targeting GABA receptors and experimental verification of miR-181, miR-216 and miR-203 targets in GABA-A receptor. BMC Res Notes 2012; 5:91. [PMID: 22321448 PMCID: PMC3296612 DOI: 10.1186/1756-0500-5-91] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 02/09/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND GABA receptors are well known as the inhibitory receptors in the central nervous system and are also found in peripheral tissues. We have previously shown that GABA receptors are involved in lung development and fluid homeostasis. However, the microRNAs that regulate GABA receptors have not yet been identified. RESULTS In this study, we used the online software, TargetScan and miRanda, to query the microRNAs that directly target GABA receptors and then selected some of them to verify experimentally using 3'-UTR reporter assays. Computational approaches predict many microRNA binding sites on the 3'-UTR of GABAA receptors, but not on GABAC receptors. 3'-UTR reporter assays only verified miR-181, miR-216, and miR-203 as the microRNAs that target GABA receptor α1-subunit among 10 microRNAs tested. CONCLUSIONS Our studies reinforce that microRNA target prediction needs to be verified experimentally. The identification of microRNAs that target GABA receptors provides a basis for further studies of post-transcriptional regulation of GABA receptors.
Collapse
Affiliation(s)
- Chunling Zhao
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Lee SA, Belyaeva OV, Wu L, Kedishvili NY. Retinol dehydrogenase 10 but not retinol/sterol dehydrogenase(s) regulates the expression of retinoic acid-responsive genes in human transgenic skin raft culture. J Biol Chem 2011; 286:13550-60. [PMID: 21345790 DOI: 10.1074/jbc.m110.181065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoic acid is essential for skin growth and differentiation, and its concentration in skin is controlled tightly. In humans, four different members of the short-chain dehydrogenase/reductase (SDR) superfamily of proteins were proposed to catalyze the rate-limiting step in the biosynthesis of retinoic acid (the oxidation of retinol to retinaldehyde). Epidermis contains at least three of these enzymes, but their relative importance for retinoic acid biosynthesis and regulation of gene expression during growth and differentiation of epidermis is not known. Here, we investigated the effect of the four human SDRs on retinoic acid biosynthesis, and their impact on growth and differentiation of keratinocytes using organotypic skin raft culture model of human epidermis. The results of this study demonstrate that ectopic expression of retinol dehydrogenase 10 (RDH10, SDR16C4) in skin rafts dramatically increases proliferation and inhibits differentiation of keratinocytes, consistent with the increased steady-state levels of retinoic acid and activation of retinoic acid-inducible genes in RDH10 rafts. In contrast, SDRs with dual retinol/sterol substrate specificity, namely retinol dehydrogenase 4 (RoDH4, SDR9C8), RoDH-like 3α-hydroxysteroid dehydrogenase (RL-HSD, SDR9C6), and RDH-like SDR (RDHL, SDR9C4) do not affect the expression of retinoic acid-inducible genes but alter the expression levels of several components of extracellular matrix. These results reveal essential differences in the metabolic contribution of RDH10 versus retinol/sterol dehydrogenases to retinoic acid biosynthesis and provide the first evidence that non-retinoid metabolic products of retinol/sterol dehydrogenases affect gene expression in human epidermis.
Collapse
Affiliation(s)
- Seung-Ah Lee
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Fluid accumulation is critical for lung distension and normal development. The multi-subunit γ-amino butyric acid type A receptors (GABAA) mainly act by mediating chloride ion (Cl−) fluxes. Since fetal lung actively secretes Cl−-rich fluid, we investigated the role of GABAA receptors in fetal lung development. The physiological ligand, GABA, and its synthesizing enzyme, glutamic acid decarboxylase, were predominantly localized to saccular epithelium. To examine the effect of activating GABAA receptors in fetal lung development in vivo, timed-pregnant rats of day 18 gestation underwent an in utero surgery for the administration of GABAA receptor modulators into the fetuses. The fetal lungs were isolated on day 21 of gestation and analyzed for changes in fetal lung development. Fetuses injected with GABA had a significantly higher body weight and lung weight when compared to phosphate-buffered saline (control)-injected fetuses. GABA-injected fetal lungs had a higher number of saccules than the control. GABA increased the number of alveolar epithelial type II cells as indicated by surfactant protein C-positive cells. However, GABA decreased the number of α-smooth muscle actin-positive myofibroblasts, but did not affect the number of Clara cells or alveolar type I cells. GABA-mediated effects were blocked by the GABAA receptor antagonist, bicuculline. GABA also increased cell proliferation and Cl− efflux in fetal distal lung epithelial cells. In conclusion, our results indicate that GABAA receptors accelerate fetal lung development, likely through an enhanced cell proliferation and/or fluid secretion.
Collapse
|
16
|
Wang G, Wang R, Ferris B, Salit J, Strulovici-Barel Y, Hackett NR, Crystal RG. Smoking-mediated up-regulation of GAD67 expression in the human airway epithelium. Respir Res 2010; 11:150. [PMID: 21034448 PMCID: PMC2988726 DOI: 10.1186/1465-9921-11-150] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 10/29/2010] [Indexed: 01/08/2023] Open
Abstract
Background The production of gamma-amino butyric acid (GABA) is dependent on glutamate decarboxylases (GAD65 and GAD67), the enzymes that catalyze the decarboxylation of glutamate to GABA. Based on studies suggesting a role of the airway epithelial GABAergic system in asthma-related mucus overproduction, we hypothesized that cigarette smoking, another disorder associated with increased mucus production, may modulate GABAergic system-related gene expression levels in the airway epithelium. Methods We assessed expression of the GABAergic system in human airway epithelium obtained using bronchoscopy to sample the epithelium and microarrays to evaluate gene expression. RT-PCR was used to confirm gene expression of GABAergic system gene in large and small airway epithelium from heathy nonsmokers and healthy smokers. The differences in the GABAergic system gene was further confirmed by TaqMan, immunohistochemistry and Western analysis. Results The data demonstrate there is a complete GABAergic system expressed in the large and small human airway epithelium, including glutamate decarboxylase, GABA receptors, transporters and catabolism enzymes. Interestingly, of the entire GABAergic system, smoking modified only the expression of GAD67, with marked up-regulation of GAD67 gene expression in both large (4.1-fold increase, p < 0.01) and small airway epithelium of healthy smokers (6.3-fold increase, p < 0.01). At the protein level, Western analysis confirmed the increased expression of GAD67 in airway epithelium of healthy smokers compared to healthy nonsmokers (p < 0.05). There was a significant positive correlation between GAD67 and MUC5AC gene expression in both large and small airway epithelium (p < 0.01), implying a link between GAD67 and mucin overproduction in association with smoking. Conclusions In the context that GAD67 is the rate limiting enzyme in GABA synthesis, the correlation of GAD67 gene expression with MUC5AC expressions suggests that the up-regulation of airway epithelium expression of GAD67 may contribute to the increase in mucus production observed in association with cigarette smoking. Trial registration NCT00224198; NCT00224185
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Expression of GABAergic receptors in mouse taste receptor cells. PLoS One 2010; 5:e13639. [PMID: 21049022 PMCID: PMC2964312 DOI: 10.1371/journal.pone.0013639] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 10/04/2010] [Indexed: 12/05/2022] Open
Abstract
Background Multiple excitatory neurotransmitters have been identified in the mammalian taste transduction, with few studies focused on inhibitory neurotransmitters. Since the synthetic enzyme glutamate decarboxylase (GAD) for gamma-aminobutyric acid (GABA) is expressed in a subset of mouse taste cells, we hypothesized that other components of the GABA signaling pathway are likely expressed in this system. GABA signaling is initiated by the activation of either ionotropic receptors (GABAA and GABAC) or metabotropic receptors (GABAB) while it is terminated by the re-uptake of GABA through transporters (GATs). Methodology/Principal Findings Using reverse transcriptase-PCR (RT-PCR) analysis, we investigated the expression of different GABA signaling molecules in the mouse taste system. Taste receptor cells (TRCs) in the circumvallate papillae express multiple subunits of the GABAA and GABAB receptors as well as multiple GATs. Immunocytochemical analyses examined the distribution of the GABA machinery in the circumvallate papillae. Both GABAA-and GABAB- immunoreactivity were detected in the peripheral taste receptor cells. We also used transgenic mice that express green fluorescent protein (GFP) in either the Type II taste cells, which can respond to bitter, sweet or umami taste stimuli, or in the Type III GAD67 expressing taste cells. Thus, we were able to identify that GABAergic receptors are expressed in some Type II and Type III taste cells. Mouse GAT4 labeling was concentrated in the cells surrounding the taste buds with a few positively labeled TRCs at the margins of the taste buds. Conclusions/Significance The presence of GABAergic receptors localized on Type II and Type III taste cells suggests that GABA is likely modulating evoked taste responses in the mouse taste bud.
Collapse
|
18
|
Yang C, Su L, Wang Y, Liu L. UTP regulation of ion transport in alveolar epithelial cells involves distinct mechanisms. Am J Physiol Lung Cell Mol Physiol 2009; 297:L439-54. [PMID: 19542245 DOI: 10.1152/ajplung.90268.2008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
UTP is known to regulate alveolar fluid clearance. However, the relative contribution of alveolar type I cells and type II cells to this process is unknown. In this study, we investigated the effects of UTP on ion transport in type I-like cell (AEC I) and type II-like cell (AEC II) monolayers. Luminal treatment of cell monolayers with UTP increased short-circuit current (I(sc)) of AEC II but decreased I(sc) of AEC I. The Cl(-) channel blockers NPPB and DIDS inhibited the UTP-induced changes in I(sc) (DeltaIsc) in both types of cells. Amiloride, an inhibitor of epithelial Na(+) channels (ENaC), abolished the UTP-induced DeltaI(sc) in AEC I, but not in AEC II. The general blocker of K(+) channels, BaCl(2), eliminated the UTP-induced DeltaI(sc) in AEC II, but not in AEC I. The intermediate conductance (IK(Ca)) blocker, clofilium, also blocked the UTP effect in AEC II. The signal transduction pathways mediated by UTP were the same in AEC I and AEC II. Furthermore, UTP increased Cl(-) secretion in AEC II and Cl(-) absorption in AEC I. Our results suggest that UTP induces opposite changes in I(sc) in AEC I and AEC II, likely due to the reversed Cl(-) flux and different contributions of ENaC and IK(Ca). Our results further imply a new concept that type II cells contribute to UTP-induced fluid secretion and type I cells contribute to UTP-induced fluid absorption in alveoli.
Collapse
Affiliation(s)
- Chuanxiu Yang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | | | |
Collapse
|
19
|
Szaniszlo P, German P, Hajas G, Saenz DN, Kruzel M, Boldogh I. New insights into clinical trial for Colostrinin in Alzheimer's disease. J Nutr Health Aging 2009; 13:235-41. [PMID: 19262960 DOI: 10.1007/s12603-009-0065-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND The pathomechanism of Alzheimer's disease (AD) is multifactorial although the most popular hypotheses are centered on the effects of the misfolded, aggregated protein, amyloid beta (Abeta) and on Tau hyperphosphorylation. OBJECTIVES Double blinded clinical trials were planned to demonstrate the effect of Colostrinin (CLN) on instrumental daily activities of AD patients. The potential molecular mechanisms by which CLN mediates its effects were investigated by gene expression profiling. METHODS RNAs isolated from CLN-treated cells were analyzed by high-density oligonucleotide arrays. Network and pathway analyses were performed using the Ingenuity Pathway Analysis software. RESULTS The Full Sample Analysis at week 15 showed a stabilizing effect of CLN on cognitive function in ADAS-cog (p = 0.02) and on daily function in IADL (p = 0.02). The overall patient response was also in favor of CLN (p = 0.03). Patients graded as mild on entry also showed a superior response of ADAS-cog compared to more advanced cases (p = 0.01). Data derived from microarray network analysis show that CLN elicits highly complex and multiphasic changes in the cells' transcriptome. Importantly, transcriptomal analysis showed that CLN alters gene expression of molecular networks implicated in Abeta precursor protein synthesis, Tau phosphorylation and increased levels of enzymes that proteolitically eliminate Abeta. In addition, CLN enhanced the defense against oxidative stress and decreased expression of inflammatory chemokines and cytokines, thereby attenuating inflammatory processes that precede Alzheimer's and other neurological diseases. CONCLUSION Together these data suggest that CLN has promising potential for clinical use in prevention and therapy of Alzheimer's and other age-associated central nervous system diseases.
Collapse
Affiliation(s)
- P Szaniszlo
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| | | | | | | | | | | |
Collapse
|
20
|
Szaniszlo P, German P, Hajas G, Saenz DN, Woodberry MW, Kruzel ML, Boldogh I. Effects of Colostrinin on gene expression-transcriptomal network analysis. Int Immunopharmacol 2008; 9:181-93. [PMID: 19015048 DOI: 10.1016/j.intimp.2008.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 10/23/2008] [Accepted: 10/27/2008] [Indexed: 11/26/2022]
Abstract
Colostrinin (CLN) is a uniform mixture of low-molecular weight proline-rich polypeptides isolated from the mother's first milk, colostrum. Exposure of cells to CLN decreases intracellular levels of reactive oxygen species by regulating glutathione metabolism and modulating activities of antioxidant enzymes and mitochondrial function. It also inhibits beta amyloid-induced apoptosis and induces neurite outgrowth of pheochromocytoma cells. Administration of CLN to Alzheimer's disease patients has resulted in a stabilizing effect on cognitive function. We analyzed CLN-induced gene expression changes using high-density oligonucleotide arrays and transcriptomal network analysis. We found that CLN elicited highly complex and multiphasic changes in the gene expression profile of treated cells. CLN treatment affected a total of 58 molecular networks, 27 of which contained at least 10 differentially expressed genes. Here we present CLN-modulated gene networks as potential underlying molecular mechanisms leading to the reported effects of CLN on cellular oxidative state, chemokine and cytokine production, and cell differentiation, as well as on pathological processes like allergy, asthma, Alzheimer's, and other neurological diseases. Based on our results, we also predict possible modulatory effects of CLN on adipocytokine gene networks that play a crucial role in the pathobiology of diabetes, cardiovascular disorders, obesity, and inflammation. Taken together, CLN-altered gene expression networks presented here provide the molecular basis for previously described biological phenomena and predict potential fields of application for CLN in the prevention and treatment of diseases.
Collapse
Affiliation(s)
- Peter Szaniszlo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Expression of GABAergic system in pulmonary neuroendocrine cells and airway epithelial cells in GAD67-GFP knock-in mice. Med Mol Morphol 2008; 41:20-7. [PMID: 18470677 DOI: 10.1007/s00795-007-0391-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
Gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter in the brain, is also located in many peripheral nonneuronal tissues. The glutamate decarboxylase 67-green fluorescent protein (GAD67-GFP) knock-in mouse is a useful model for studying the distribution of GABAergic cells in many tissues and organs. The lungs of these mice contain cells with an intense GFP signal exclusively in the airway epithelium. We aimed to characterize the GFP-positive cells and to clarify their relationship with the GABAergic system. We identified the GFP-positive cells as pulmonary neuroendocrine cells (PNECs) by immunohistochemistry for the protein gene product 9.5 and calcitonin gene-related peptide and by ultrastructural analysis. Immunohistochemistry for GADs and GABA revealed GAD65/67 and GABA in GFP-positive PNECs. Reverse transcription-polymerase chain reaction analyses revealed mRNAs encoding the GABA(B) receptor subunits necessary for the assembly of functional receptors, R1 and R2, in the lung. GABA(B) receptor subunit R1 and R2 proteins were expressed in many airway epithelial cells including alveolar epithelial cells other than GFP-positive PNECs. The present findings demonstrated that PNECs in the airway epithelium have a GABA production system and indicated that GABA plays functional roles in airway epithelial cells through GABA(B) receptors.
Collapse
|
22
|
Jin N, Guo Y, Sun P, Bell A, Chintagari NR, Bhaskaran M, Rains K, Baviskar P, Chen Z, Weng T, Liu L. Ionotropic GABA receptor expression in the lung during development. Gene Expr Patterns 2008; 8:397-403. [PMID: 18539546 DOI: 10.1016/j.gep.2008.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 04/04/2008] [Accepted: 04/27/2008] [Indexed: 11/28/2022]
Abstract
Cl(-) transport is essential for lung development. Because gamma-aminobutyric acid (GABA) receptors allow the flow of negatively-charged Cl(-) ions across the cell membrane, we hypothesized that the expression of ionotropic GABA receptors are regulated in the lungs during development. We identified 17 GABA receptor subunits in the lungs by real-time PCR. These subunits were categorized into four groups: Group 1 had high mRNA expression during fetal stages and low in adults; Group 2 had steady expression to adult stages with a slight up-regulation at birth; Group 3 showed an increasing expression from fetal to adult lungs; and Group 4 displayed irregular mRNA fluctuations. The protein levels of selected subunits were also determined by Western blots and some subunits had protein levels that corresponded to mRNA levels. Further studied subunits were primarily localized in epithelial cells in the developing lung with differential mRNA expression between isolated cells and whole lung tissues. Our results add to the knowledge of GABA receptor expression in the lung during development.
Collapse
Affiliation(s)
- Nili Jin
- Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK 74078, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mizuta K, Osawa Y, Mizuta F, Xu D, Emala CW. Functional expression of GABAB receptors in airway epithelium. Am J Respir Cell Mol Biol 2008; 39:296-304. [PMID: 18403780 DOI: 10.1165/rcmb.2007-0414oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system and exerts its actions via both ionotropic (GABA(A)) and metabotropic (GABA(B)) receptors. The GABA(B) receptor is a dimer composed of R1 and R2 components and classically couples to the heterotrimeric G(i) protein. In addition to their location on neurons, GABA and functional GABA(B) receptors have been detected in peripheral tissue such as airway smooth muscle. We questioned whether airway epithelium expresses receptors that could respond to GABA. We detected the mRNA encoding multiple-splice variants of the GABA(B)R1 and GABA(B)R2 in total RNA isolated from native human and guinea pig airway epithelium and human airway epithelial cell lines (BEAS-2B and H441). Immunoblots identified the GABA(B)R1 and GABA(B)R2 proteins in both guinea pig airway epithelium and BEAS-2B cells. The expression of GABA(B)R1 protein was immunohistochemically localized to basal mucin-secreting and ciliated columnar epithelial cells in guinea pig trachea. Baclofen inhibited adenylyl cyclase activity, induced ERK phosphorylation and cross-regulated phospholipase C, leading to increased inositol phosphates in BEAS-2B cells in a pertussis toxin-sensitive manner, implicating G(i) protein coupling. Thus, these receptors couple to G(i) and cross-regulate the phospholipase C/inositol phosphate pathway. The second messengers of these pathways, cyclic AMP and calcium, play pivotal roles in airway epithelial cell primary functions of mucus clearance. Furthermore, the enzyme that synthesizes GABA, glutamic acid decarboxylase (GAD65/67), was also localized to airway epithelium. GABA may modulate an uncharacterized signaling cascade via GABA(B) receptors coupled to G(i) protein in airway epithelium.
Collapse
Affiliation(s)
- Kentaro Mizuta
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Xiang YY, Wang S, Liu M, Hirota JA, Li J, Ju W, Fan Y, Kelly MM, Ye B, Orser B, O'Byrne PM, Inman MD, Yang X, Lu WY. A GABAergic system in airway epithelium is essential for mucus overproduction in asthma. Nat Med 2007; 13:862-7. [PMID: 17589520 DOI: 10.1038/nm1604] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 05/08/2007] [Indexed: 11/09/2022]
Abstract
Gamma-aminobutyric acid (GABA) is an important neurotransmitter that, through the subtype A GABA receptor (GABAAR), induces inhibition in the adult brain. Here we show that an excitatory, rather than inhibitory, GABAergic system exists in airway epithelial cells. Both GABAARs and the GABA synthetic enzyme glutamic acid decarboxylase (GAD) are expressed in pulmonary epithelial cells. Activation of GABAARs depolarized these cells. The expression of GAD in the cytosol and GABAARs in the apical membranes of airway epithelial cells increased markedly when mice were sensitized and then challenged with ovalbumin, an approach for inducing allergic asthmatic reactions. Similarly, GAD and GABAARs in airway epithelial cells of humans with asthma increased after allergen inhalation challenge. Intranasal application of selective GABAAR inhibitors suppressed the hyperplasia of goblet cells and the overproduction of mucus induced by ovalbumin or interleukin-13 in mice. These findings show that a previously unknown epithelial GABAergic system has an essential role in asthma.
Collapse
Affiliation(s)
- Yun-Yan Xiang
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Even-Tzur N, Elad D, Zaretsky U, Randell SH, Haklai R, Wolf M. Custom-designed wells and flow chamber for exposing air-liquid interface cultures to wall shear stress. Ann Biomed Eng 2006; 34:1890-5. [PMID: 17063387 DOI: 10.1007/s10439-006-9211-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 09/25/2006] [Indexed: 10/24/2022]
Abstract
The effects of mechanical stimuli such as wall shear stresses (WSS) on cellular processes have been studied in vitro in numerous cell types. In order to study WSS effects on cells cultured under air-liquid interface (ALI) conditions, we developed a custom-designed well that can be disassembled into sub-units that allow installation of the cultured cells in a flow chamber, and then, re-assembled for further incubation or biological tests. Human nasal epithelial cells were cultured in the new wells under ALI conditions, and some of their biological characteristics were compared with those cultured in commercial Millicells. The cultured cells from both types of wells secreted the same amount of mucin and had similar cytoskeletal structures. Preliminary WSS experiments demonstrated the advantage of the new wells and provided initial indications that WSS affects the performance of ALI cultured respiratory epithelial cells.
Collapse
Affiliation(s)
- Nurit Even-Tzur
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | | | | | | | | |
Collapse
|
27
|
Jin N, Kolliputi N, Gou D, Weng T, Liu L. A novel function of ionotropic gamma-aminobutyric acid receptors involving alveolar fluid homeostasis. J Biol Chem 2006; 281:36012-20. [PMID: 17003036 DOI: 10.1074/jbc.m606895200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polarized distribution of chloride channels on the plasma membrane of epithelial cells is required for fluid transport across the epithelium of fluid-transporting organs. Ionotropic gamma-aminobutyric acid receptors are primary ligand-gated chloride channels that mediate inhibitory neurotransmission. Traditionally, these receptors are not considered to be contributors to fluid transport. Here, we report a novel function of gamma-aminobutyric acid receptors involving alveolar fluid homeostasis in adult lungs. We demonstrated the expression of functional ionotropic gamma-aminobutyric acid receptors on the apical plasma membrane of alveolar epithelial type II cells. gamma-Aminobutyric acid significantly increased chloride efflux in the isolated type II cells and inhibited apical to basolateral chloride transport on type II cell monolayers. Reduction of the gamma-aminobutyric acid receptor pi subunit using RNA interference abolished the gamma-aminobutyric acid-mediated chloride transport. In intact rat lungs, gamma-aminobutyric acid inhibited both basal and beta agonist-stimulated alveolar fluid clearance. Thus, we provide molecular and pharmacological evidence that ionotropic gamma-aminobutyric acid receptors contribute to fluid transport in the lung via luminal secretion of chloride. This finding may have the potential to develop clinical approaches for pulmonary diseases involving abnormal fluid dynamics.
Collapse
Affiliation(s)
- Nili Jin
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | | | | | |
Collapse
|