1
|
Gardani CFF, Diz FM, Dondé LB, Rockenbach L, Laufer S, Morrone FB. The potential role of purinergic signaling in cancer therapy: perspectives on anti-CD73 strategies for prostate cancer. Front Immunol 2024; 15:1455469. [PMID: 39355246 PMCID: PMC11442216 DOI: 10.3389/fimmu.2024.1455469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 10/03/2024] Open
Abstract
Purines and pyrimidines are signaling molecules in the tumor microenvironment that affect cancer immunity. The purinergic signaling pathways have been shown to play an important role in the development and progression of cancer. CD39 and CD73 are ectonucleotidases responsible for breaking down ATP or ADP into adenosine, which regulates immunosuppression in various types of cancer. These enzymes have been studied as a potential therapeutic target in immunotherapy, and recent research suggests a correlation between ectonucleotidases and clinical outcomes in cancer.Prostate cancer is the most diagnosed cancer in men, after non-melanoma skin tumors, and is the second leading cause of death in men in the world. Despite having long survival periods, patients often receive excessive or insufficient treatment. Within this complex landscape, the adenosine/CD73 pathway plays a crucial role. Therefore, this review aims to highlight new findings on the potential role of purinergic signaling in cancer treatment and emphasizes the importance of anti-CD73 as a pharmacological strategy for prostate cancer therapy.
Collapse
Affiliation(s)
- Carla Fernanda Furtado Gardani
- Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando Mendonça Diz
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Pesquisa Pré-Clínica, Instituto do Cerebro do Rio Grande do Sul (InsCer), Pontíficia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luísa Brandalise Dondé
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Liliana Rockenbach
- Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Fernanda Bueno Morrone
- Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Escola de Ciências da Saúde e da Vida, Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
2
|
Gai N, Ju WN, Yu TC, Qi BC. Low-energy shock waves promote the cisplatin chemosensitivity of human osteosarcoma MNNG/HOS cells via the P2X7/Akt/mTOR pathway. Ann Med Surg (Lond) 2024; 86:2665-2670. [PMID: 38694312 PMCID: PMC11060266 DOI: 10.1097/ms9.0000000000001909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/25/2024] [Indexed: 05/04/2024] Open
Abstract
Background The current dilemma of osteosarcoma treatment is the resistance of chemotherapeutic drugs after long-term usage, which also introduces life-threatening side effects. Methods and results To minimize chemoresistance in osteosarcoma patients, the authors applied shock waves (SWs) to human osteosarcoma MNNG/HOS cells, then evaluated the cell viability and extracellular ATP levels, and further investigated the effect of SWs on cisplatin (DDP) cytotoxicity in MNNG/HOS cells. The authors' results showed that 400 SW pulses at 0.21 mJ/mm2 exhibited little influence on the MNNG/HOS cell viability. In addition, this SW condition significantly promoted the extracellular ATP release in MNNG/HOS cells. Importantly, low-energy SWs obviously increased Akt and mammalian target of rapamycin (mTOR) phosphorylation and activation in MNNG/HOS cells, which could be partially reversed in the presence of P2X7 siRNA. The authors also found that low-energy SWs strongly increased the DDP sensitivity of MNNG/HOS cells in the absence of P2X7. Conclusions For the first time, the authors found that SW therapy reduced the DDP resistance of MNNG/HOS osteosarcoma cells when the ATP receptor P2X7 was downregulated. SW therapy may provide a novel treatment strategy for chemoresistant human osteosarcoma.
Collapse
Affiliation(s)
- Ning Gai
- Departments ofOrthopedic Traumatology
| | | | | | | |
Collapse
|
3
|
Janho Dit Hreich S, Hofman P, Vouret-Craviari V. The Role of IL-18 in P2RX7-Mediated Antitumor Immunity. Int J Mol Sci 2023; 24:ijms24119235. [PMID: 37298187 DOI: 10.3390/ijms24119235] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is the leading cause of death worldwide despite the variety of treatments that are currently used. This is due to an innate or acquired resistance to therapy that encourages the discovery of novel therapeutic strategies to overcome the resistance. This review will focus on the role of the purinergic receptor P2RX7 in the control of tumor growth, through its ability to modulate antitumor immunity by releasing IL-18. In particular, we describe how the ATP-induced receptor activities (cationic exchange, large pore opening and NLRP3 inflammasome activation) modulate immune cell functions. Furthermore, we recapitulate our current knowledge of the production of IL-18 downstream of P2RX7 activation and how IL-18 controls the fate of tumor growth. Finally, the potential of targeting the P2RX7/IL-18 pathway in combination with classical immunotherapies to fight cancer is discussed.
Collapse
Affiliation(s)
- Serena Janho Dit Hreich
- Faculty of Medicine, Université Côte d'Azur, CNRS, INSERM, IRCAN, 06108 Nice, France
- IHU RespirEREA, Université Côte d'Azur, 06108 Nice, France
- FHU OncoAge, 06108 Nice, France
| | - Paul Hofman
- IHU RespirEREA, Université Côte d'Azur, 06108 Nice, France
- Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur Hospital, 06108 Nice, France
- Hospital-Related Biobank, Pasteur Hospital, 06108 Nice, France
| | - Valérie Vouret-Craviari
- Faculty of Medicine, Université Côte d'Azur, CNRS, INSERM, IRCAN, 06108 Nice, France
- IHU RespirEREA, Université Côte d'Azur, 06108 Nice, France
- FHU OncoAge, 06108 Nice, France
| |
Collapse
|
4
|
Kan LK, Drill M, Jayakrishnan PC, Sequeira RP, Galea E, Todaro M, Sanfilippo PG, Hunn M, Williams DA, O'Brien TJ, Drummond KJ, Monif M. P2X7 receptor antagonism by AZ10606120 significantly reduced in vitro tumour growth in human glioblastoma. Sci Rep 2023; 13:8435. [PMID: 37225786 DOI: 10.1038/s41598-023-35712-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/22/2023] [Indexed: 05/26/2023] Open
Abstract
Glioblastomas are highly aggressive and deadly brain tumours, with a median survival time of 14-18 months post-diagnosis. Current treatment modalities are limited and only modestly increase survival time. Effective therapeutic alternatives are urgently needed. The purinergic P2X7 receptor (P2X7R) is activated within the glioblastoma microenvironment and evidence suggests it contributes to tumour growth. Studies have implicated P2X7R involvement in a range of neoplasms, including glioblastomas, although the roles of P2X7R in the tumour milieu remain unclear. Here, we report a trophic, tumour-promoting role of P2X7R activation in both patient-derived primary glioblastoma cultures and the U251 human glioblastoma cell line, and demonstrate its inhibition reduces tumour growth in vitro. Primary glioblastoma and U251 cell cultures were treated with the specific P2X7R antagonist, AZ10606120 (AZ), for 72 h. The effects of AZ treatment were also compared to cells treated with the current first-line chemotherapeutic drug, temozolomide (TMZ), and a combination of both AZ and TMZ. P2X7R antagonism by AZ significantly depleted glioblastoma cell numbers compared to untreated cells, in both primary glioblastoma and U251 cultures. Notably, AZ treatment was more effective at tumour cell killing than TMZ. No synergistic effect between AZ and TMZ was observed. AZ treatment also significantly increased lactate dehydrogenase release in primary glioblastoma cultures, suggesting AZ-induced cellular cytotoxicity. Our results reveal a trophic role of P2X7R in glioblastoma. Importantly, these data highlight the potential for P2X7R inhibition as a novel and effective alternative therapeutic approach for patients with lethal glioblastomas.
Collapse
Affiliation(s)
- Liyen K Kan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Matthew Drill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | - Richard P Sequeira
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Emily Galea
- Department of Neurosurgery, The Alfred, Melbourne, VIC, Australia
| | - Marian Todaro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Neurology, The Alfred, Melbourne, VIC, Australia
| | - Paul G Sanfilippo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Martin Hunn
- Department of Neurosurgery, The Alfred, Melbourne, VIC, Australia
| | - David A Williams
- Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Neurology, The Alfred, Melbourne, VIC, Australia
| | - Katharine J Drummond
- Department of Neurosurgery, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia.
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, VIC, Australia.
- Department of Neurology, The Alfred, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Jamshidi V, Nobakht M Gh BF, Parvin S, Bagheri H, Ghanei M, Shahriary A, Davoudi SM, Arabfard M. Proteomics analysis of chronic skin injuries caused by mustard gas. BMC Med Genomics 2022; 15:175. [PMID: 35933451 PMCID: PMC9357330 DOI: 10.1186/s12920-022-01328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
Sulfur mustard (SM) is an alkylating and forming chemical that was widely used by Iraqi forces during the Iran–Iraq wars. One of the target organs of SM is the skin. Understanding the mechanisms involved in the pathogenesis of SM may help better identify complications and find appropriate treatments. The current study collected ten SM-exposed patients with long-term skin complications and ten healthy individuals. Proteomics experiments were performed using the high-efficiency TMT10X method to evaluate the skin protein profile, and statistical bioinformatics methods were used to identify the differentially expressed proteins. One hundred twenty-nine proteins had different expressions between the two groups. Of these 129 proteins, 94 proteins had increased expression in veterans' skins, while the remaining 35 had decreased expression. The hub genes included RPS15, ACTN1, FLNA, HP, SDHC, and RPL29, and three modules were extracted from the PPI network analysis. Skin SM exposure can lead to oxidative stress, inflammation, apoptosis, and cell proliferation.
Collapse
Affiliation(s)
- Vahid Jamshidi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - B Fatemeh Nobakht M Gh
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shahram Parvin
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Education Office, Pasteur Institute of Iran, Tehran, Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyyed Masoud Davoudi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
De Salis SKF, Li L, Chen Z, Lam KW, Skarratt KK, Balle T, Fuller SJ. Alternatively Spliced Isoforms of the P2X7 Receptor: Structure, Function and Disease Associations. Int J Mol Sci 2022; 23:ijms23158174. [PMID: 35897750 PMCID: PMC9329894 DOI: 10.3390/ijms23158174] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
The P2X7 receptor (P2X7R) is an ATP-gated membrane ion channel that is expressed by multiple cell types. Following activation by extracellular ATP, the P2X7R mediates a broad range of cellular responses including cytokine and chemokine release, cell survival and differentiation, the activation of transcription factors, and apoptosis. The P2X7R is made up of three P2X7 subunits that contain specific domains essential for the receptor’s varied functions. Alternative splicing produces P2X7 isoforms that exclude one or more of these domains and assemble in combinations that alter P2X7R function. The modification of the structure and function of the P2X7R may adversely affect cellular responses to carcinogens and pathogens, and alternatively spliced (AS) P2X7 isoforms have been associated with several cancers. This review summarizes recent advances in understanding the structure and function of AS P2X7 isoforms and their associations with cancer and potential role in modulating the inflammatory response.
Collapse
Affiliation(s)
- Sophie K. F. De Salis
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (S.K.F.D.S.); (Z.C.); (T.B.)
| | - Lanxin Li
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Penrith, NSW 2750, Australia; (L.L.); (K.W.L.); (K.K.S.)
| | - Zheng Chen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (S.K.F.D.S.); (Z.C.); (T.B.)
| | - Kam Wa Lam
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Penrith, NSW 2750, Australia; (L.L.); (K.W.L.); (K.K.S.)
| | - Kristen K. Skarratt
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Penrith, NSW 2750, Australia; (L.L.); (K.W.L.); (K.K.S.)
| | - Thomas Balle
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (S.K.F.D.S.); (Z.C.); (T.B.)
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Stephen J. Fuller
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Penrith, NSW 2750, Australia; (L.L.); (K.W.L.); (K.K.S.)
- Correspondence: ; Tel.: +61-2-4734-3732
| |
Collapse
|
7
|
Di Virgilio F. P2X7 is a cytotoxic receptor….maybe not: implications for cancer. Purinergic Signal 2021; 17:55-61. [PMID: 33011962 PMCID: PMC7955003 DOI: 10.1007/s11302-020-09735-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment is rich in extracellular ATP. This nucleotide affects both cancer and infiltrating immune cell responses by acting at P2 receptors, chiefly P2X7. ATP is then degraded to generate adenosine, a very powerful immunosuppressant. The purinergic hypothesis put forward by Geoff Burnstock prompted innovative investigation in this field and provided the intellectual framework to interpret a myriad of experimental findings. This is a short appraisal of how Geoff's inspiration influenced cancer studies and my own investigation highlighting the key role of the P2X7 receptor.
Collapse
|
8
|
Zhu X, Li Q, Song W, Peng X, Zhao R. P2X7 receptor: a critical regulator and potential target for breast cancer. J Mol Med (Berl) 2021; 99:349-358. [PMID: 33486566 DOI: 10.1007/s00109-021-02041-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer is currently the most common cancer and the leading cause of cancer death among women worldwide. Advanced breast cancer is prone to metastasis, and there is currently no drug to cure metastatic breast cancer. The purinergic ligand-gated ion channel 7 receptor is an ATP-gated nonselective cation channel receptor and is involved in signal transduction, growth regulation, cytokine secretion, and tumor cell development. Recent studies have shown that upregulation of the P2X7 receptor in breast cancer can mediate AKT signaling pathways, Ca2 þ-activated SK3 potassium channels, and EMT and regulate the secretion of small extracellular vesicles to promote breast cancer invasion and migration, which are affected by factors such as hypoxia and ATP. In addition, studies have shown that microRNAs can bind to the 3' untranslated region of the P2X7 receptor, which affects the occurrence and development of breast cancer by upregulating and downregulating P2X7 receptor expression. Studies have shown that new P2X7 receptor inhibitors, such as emodin and Uncaria tomentosa, can inhibit P2X7 receptor-mediated breast cancer invasion and are expected to be used clinically. This article reviews the research progress on the relationship between the P2X7 receptor and breast cancer to provide new ideas and a basis for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaodi Zhu
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Qianqian Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Wei Song
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
9
|
The P2X7 purinergic receptor: a potential therapeutic target for lung cancer. J Cancer Res Clin Oncol 2020; 146:2731-2741. [PMID: 32892231 DOI: 10.1007/s00432-020-03379-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Purinergic P2X7 receptor (P2X7R) is a gated ion channel for which adenosine triphosphate (ATP) is a ligand. Activated P2X7R is widely expressed in a variety of immune cells and tissues and is involved in a variety of physiological and pathological processes. Studies have confirmed that P2X7R is involved in the regulation of tumor cell growth, stimulating cell proliferation or inducing apoptosis. Recent studies have found that P2X7R is abnormally expressed in lung cancer and is closely related to the carcinogenesis and development of lung cancer. In this paper, we comprehensively describe the structure, function, and genetic polymorphisms of P2X7R. In particular, the role and therapeutic potential of P2X7R in lung cancer are discussed to provide new targets and new strategies for the treatment and prognosis of clinical lung cancer. METHODS The relevant literature on P2X7R and lung cancer from PubMed databases is reviewed in this article. RESULTS P2X7R regulates the function of lung cancer cells by activating multiple intracellular signaling pathways (such as the JNK, Rho, HMGB1 and EMT pathways), thereby affecting cell survival, growth, invasion, and metastasis and patient prognosis. Targeting P2X7R with inhibitors effectively suppresses the growth and metastasis of lung cancer cells. CONCLUSION In summary, P2X7R is expected to become a potential target for the treatment of lung cancer, and more clinical research is needed in the future to explore the effectiveness of P2X7R antagonists as treatments.
Collapse
|
10
|
Benzaquen J, Dit Hreich SJ, Heeke S, Juhel T, Lalvee S, Bauwens S, Saccani S, Lenormand P, Hofman V, Butori M, Leroy S, Berthet JP, Marquette CH, Hofman P, Vouret-Craviari V. P2RX7B is a new theranostic marker for lung adenocarcinoma patients. Theranostics 2020; 10:10849-10860. [PMID: 33042257 PMCID: PMC7532666 DOI: 10.7150/thno.48229] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/21/2020] [Indexed: 12/25/2022] Open
Abstract
Rationale: The characterization of new theranostic biomarkers is crucial to improving the clinical outcome of patients with advanced lung cancer. Here, we aimed at characterizing the P2RX7 receptor, a positive modulator of the anti-tumor immune response, in patients with lung adenocarcinoma. Methods: The expression of P2RX7 and its splice variants was analyzed by RT-qPCR using areas of tumor and non-tumor lung adenocarcinoma (LUAD) tissues on both immune and non-immune cells. The biological activity of P2RX7 was studied by flow cytometry using fluorescent dyes. Bi-molecular fluorescence complementation and confocal microscopy were used to assess the oligomerization of P2RX7. Tumor immune infiltrates were characterized by immunohistochemistry. Results: Fifty-three patients with LUAD were evaluated. P2RX7A, and 3 alternative splice variants were expressed in LUAD tissues and expression was down regulated in tumor versus adjacent non-tumor tissues. The protein retained biological activity only in immune cells. The P2RX7B splice variant was differentially upregulated in immune cells (P < 0.001) of the tumor and strong evidence of oligomerization of P2RX7A and B was observed in the HEK expression model, which correlated with a default in the activity of P2RX7. Finally, LUAD patients with a high level of P2RX7B had non-inflamed tumors (P = 0.001). Conclusion: Our findings identified P2RX7B as a new theranostic tool to restore functional P2RX7 activity and open alternative therapeutic opportunities to improve LUAD patient outcome.
Collapse
|
11
|
Böhme I, Schönherr R, Eberle J, Bosserhoff AK. Membrane Transporters and Channels in Melanoma. Rev Physiol Biochem Pharmacol 2020; 181:269-374. [PMID: 32737752 DOI: 10.1007/112_2020_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent research has revealed that ion channels and transporters can be important players in tumor development, progression, and therapy resistance in melanoma. For example, members of the ABC family were shown to support cancer stemness-like features in melanoma cells, while several members of the TRP channel family were reported to act as tumor suppressors.Also, many transporter proteins support tumor cell viability and thus suppress apoptosis induction by anticancer therapy. Due to the high number of ion channels and transporters and the resulting high complexity of the field, progress in understanding is often focused on single molecules and is in total rather slow. In this review, we aim at giving an overview about a broad subset of ion transporters, also illustrating some aspects of the field, which have not been addressed in detail in melanoma. In context with the other chapters in this special issue on "Transportome Malfunctions in the Cancer Spectrum," a comparison between melanoma and these tumors will be possible.
Collapse
Affiliation(s)
- Ines Böhme
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Schönherr
- Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology and Allergology, Skin Cancer Center Charité, University Medical Center Charité, Berlin, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany. .,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
12
|
Kan LK, Seneviratne S, Drummond KJ, Williams DA, O'Brien TJ, Monif M. P2X7 receptor antagonism inhibits tumour growth in human high-grade gliomas. Purinergic Signal 2020; 16:327-336. [PMID: 32583309 DOI: 10.1007/s11302-020-09705-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Gliomas, the most common primary brain cancer, are highly infiltrative and extremely difficult to treat. Despite advancements, current treatment is limited, with patients surviving for a median of 14-15 months post-diagnosis. Previous research has demonstrated the upregulation of a purinergic receptor, P2X7R, in human gliomas. P2X7R is expressed on both glioma cells and microglia within the glioma microenvironment. It is hypothesized that P2X7R contributes to tumour growth and proliferation via immune-mediated mechanisms involving tumour cells and surrounding microglia. We sought to elucidate the role of P2X7R in a human glioblastoma cell line (U251) and on surgically resected human glioma samples. We treated U251 and human glioma cultures for 72 h with P2X7R antagonists, Brilliant Blue G (BBG), oxidized ATP (oATP) and AZ10606120. Cell counting via fluorescence confocal microscopy was conducted to assess tumour proliferation. We observed no significant reductions in tumour cell numbers following P2X7R antagonism with BBG (20 μM) and oATP (250 μM) in both U251 cells and human glioma samples. Interestingly, there was a significant reduction in tumour cell number in both U251 cells (p = 0.0156) and human glioma samples (p = 0.0476) treated with varying concentrations of AZ10606120. When compared with the conventional chemotherapeutic agent, temozolomide, AZ10606120 was also found to more effectively inhibit tumour proliferation in U251 cells (p < 0.0001). Our pilot results demonstrate a potential trophic role of P2X7R where its inhibition by AZ10606120, a potent antagonist, hinders glioma growth directly or through the inactivation of microglia. This sheds new light on P2X7R as a therapeutic target for human gliomas.
Collapse
Affiliation(s)
- Liyen Katrina Kan
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Rd, Melbourne, VIC, 3004, Australia.,Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Kate J Drummond
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - David A Williams
- Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Rd, Melbourne, VIC, 3004, Australia.,Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Rd, Melbourne, VIC, 3004, Australia. .,Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia. .,Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia.
| |
Collapse
|
13
|
Lara R, Adinolfi E, Harwood CA, Philpott M, Barden JA, Di Virgilio F, McNulty S. P2X7 in Cancer: From Molecular Mechanisms to Therapeutics. Front Pharmacol 2020; 11:793. [PMID: 32581786 PMCID: PMC7287489 DOI: 10.3389/fphar.2020.00793] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
P2X7 is a transmembrane receptor expressed in multiple cell types including neurons, dendritic cells, macrophages, monocytes, B and T cells where it can drive a wide range of physiological responses from pain transduction to immune response. Upon activation by its main ligand, extracellular ATP, P2X7 can form a nonselective channel for cations to enter the cell. Prolonged activation of P2X7, via high levels of extracellular ATP over an extended time period can lead to the formation of a macropore, leading to depolarization of the plasma membrane and ultimately to cell death. Thus, dependent on its activation state, P2X7 can either drive cell survival and proliferation, or induce cell death. In cancer, P2X7 has been shown to have a broad range of functions, including playing key roles in the development and spread of tumor cells. It is therefore unsurprising that P2X7 has been reported to be upregulated in several malignancies. Critically, ATP is present at high extracellular concentrations in the tumor microenvironment (TME) compared to levels observed in normal tissues. These high levels of ATP should present a survival challenge for cancer cells, potentially leading to constitutive receptor activation, prolonged macropore formation and ultimately to cell death. Therefore, to deliver the proven advantages for P2X7 in driving tumor survival and metastatic potential, the P2X7 macropore must be tightly controlled while retaining other functions. Studies have shown that commonly expressed P2X7 splice variants, distinct SNPs and post-translational receptor modifications can impair the capacity of P2X7 to open the macropore. These receptor modifications and potentially others may ultimately protect cancer cells from the negative consequences associated with constitutive activation of P2X7. Significantly, the effects of both P2X7 agonists and antagonists in preclinical tumor models of cancer demonstrate the potential for agents modifying P2X7 function, to provide innovative cancer therapies. This review summarizes recent advances in understanding of the structure and functions of P2X7 and how these impact P2X7 roles in cancer progression. We also review potential therapeutic approaches directed against P2X7.
Collapse
Affiliation(s)
- Romain Lara
- Biosceptre (UK) Limited, Cambridge, United Kingdom
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mike Philpott
- Centre for Cutaneous Research, Blizard Institute, Bart's & The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
14
|
Kim DC, Jin H, Lee JS, Son E, Lee GW, Kim HJ. P2Y 2R has a significant correlation with Notch-4 in patients with breast cancer. Oncol Lett 2020; 20:647-654. [PMID: 32565989 PMCID: PMC7286009 DOI: 10.3892/ol.2020.11630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023] Open
Abstract
Our previous study found that highly metastatic breast cancer cells, such as MDA-MB-231 cells, release higher levels of ATP and exhibit greater P2Y2 receptor (P2Y2R) activity than lowly metastatic breast cancer cells, and that P2Y2R activation mediated by ATP plays a significant role in tumor progression and metastasis. In addition, we reported that radiotherapy-resistant (RT-R) breast cancer cells promote invasion and tumor growth through the activation of P2Y2R by ATP released from RT-R-breast cancer cells than breast cancer cells. Moreover, increased numbers of cancer stem cells (CSCs) were observed among the RT-R-breast cancer cell population. Therefore, in this study, we investigated the expression level of five CSC markers (CD24, CD44, Oct3/4, Notch-4 and ALDH1A1) as well as P2Y2R in the tumor tissues of patients with breast cancer and determined which CSC marker correlates with P2Y2R in breast cancer. According to the immunohistochemical analysis, CD44, Oct3/4 and Notch-4 but not ALDH1A1 were significantly expressed in the tumor tissues (n=180) compared with the normal epithelial tissues (n=20) of patients with breast cancer. It was demonstrated that P2Y2R expression was increased in tumor tissues of patients with breast cancer compared with normal epithelial tissue. Notably, it was identified that P2Y2R expression has a significant correlation with only the CSC marker Notch-4 in patients with breast cancer. The results of this study suggested for the first time to the best of our knowledge that Notch-4 has a notable correlation with P2Y2R, which has important roles in tumor progression and metastasis.
Collapse
Affiliation(s)
- Dong Chul Kim
- Department of Pathology, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Hana Jin
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Jong Sil Lee
- Department of Pathology, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Euna Son
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, South Gyeongsang 52828, Republic of Korea
| | - Gyeong Won Lee
- Division of Hematology-Oncology, Department of Internal Medicine, College of Medicine, Gyeongsang National University Hospital, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| |
Collapse
|
15
|
Hevia MJ, Castro P, Pinto K, Reyna-Jeldes M, Rodríguez-Tirado F, Robles-Planells C, Ramírez-Rivera S, Madariaga JA, Gutierrez F, López J, Barra M, De la Fuente-Ortega E, Bernal G, Coddou C. Differential Effects of Purinergic Signaling in Gastric Cancer-Derived Cells Through P2Y and P2X Receptors. Front Pharmacol 2019; 10:612. [PMID: 31249523 PMCID: PMC6584115 DOI: 10.3389/fphar.2019.00612] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/15/2019] [Indexed: 01/04/2023] Open
Abstract
Gastric cancer (GC) is the one of the most prevalent cancers and one of the leading causes of cancer-induced deaths. Previously, we found that the expression of purinergic P2Y2 receptor (P2Y2R) is increased in GC samples as compared to adjacent healthy mucosa taken from GC-diagnosed patients. In this work, we studied in detail purinergic signaling in the gastric adenocarcinoma-derived cell lines: AGS, MKN-45, and MKN-74, and compared them to a nontumoral epithelial cell line: GES-1. In GC-derived cells, we detected the expression of several purinergic receptors, and found important differences as compared to GES-1 cells. Functional studies revealed a strong contribution of P2Y2Rs in intracellular calcium increases, elicited by adenosine-triphosphate (ATP), uridine-triphosphate (UTP), and the P2Y2R agonist MRS2768. Responses were preserved in the absence of extracellular calcium and inhibited by P2Y2R antagonists. In GES-1 cells, ATP and UTP induced similar responses and the combination of P2X and P2Y receptor antagonists was able to block them. Proliferation studies showed that ATP regulates AGS and MKN-74 cells in a biphasic manner, increasing cell proliferation at 10–100 μM, but inhibiting at 300 μM ATP. On the other hand, 1–300 μM UTP, a P2Y2R agonist, increased concentration-dependent cell proliferation. The effects of UTP and ATP were prevented by both wide-range and specific purinergic antagonists. In contrast, in GES-1 cells ATP only decreased cell proliferation in a concentration-dependent manner, and UTP had no effect. Notably, the isolated application of purinergic antagonists was sufficient to change the basal proliferation of AGS cells, indicating that nucleotides released by the cells can act as paracrine/autocrine signals. Finally, in tumor-derived biopsies, we found an increase of P2Y2R and a decrease in P2X4R expression; however, we found high variability between seven different biopsies and their respective adjacent healthy gastric mucosa. Even so, we found a correlation between the expression levels of P2Y2R and P2X4R and survival rates of GC patients. Taken together, these results demonstrate the involvement of different purinergic receptors and signaling in GC, and the pattern of expression changes in tumoral cells, and this change likely directs ATP and nucleotide signaling from antiproliferative effects in healthy tissues to proliferative effects in cancer.
Collapse
Affiliation(s)
- María José Hevia
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Patricio Castro
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Katherine Pinto
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Mauricio Reyna-Jeldes
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | | | | | - Sebastián Ramírez-Rivera
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Juan Andrés Madariaga
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Hospital San Pablo, Coquimbo, Chile
| | | | - Javier López
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Hospital San Pablo, Coquimbo, Chile
| | - Marcelo Barra
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Hospital San Pablo, Coquimbo, Chile
| | - Erwin De la Fuente-Ortega
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Giuliano Bernal
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Claudio Coddou
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| |
Collapse
|
16
|
The role of microglia and P2X7 receptors in gliomas. J Neuroimmunol 2019; 332:138-146. [PMID: 31031209 DOI: 10.1016/j.jneuroim.2019.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
Gliomas are the most prevalent tumours of the central nervous system and present with high morbidity and mortality. The most common and most aggressive form of glioma is glioblastoma multiforme, of which patients have a median survival time of only 12 to 15 months. Current treatment options are limited and have a small impact on clinical outcome and prognosis. There is accumulating evidence that microglia, the immunocompetent cells of the central nervous system, and the purinergic P2X7 receptor (P2X7R) may contribute to tumour progression and pathology. Importantly, P2X7R on both tumour cells and infiltrating microglia is overexpressed in animal and human glioma cultures. Factors released by glioma cells and P2X7R activation recruit microglia into the largely immunosuppressive tumour microenvironment where they have been demonstrated to contribute to either tumour proliferation or tumour suppression. It is likely that P2X7R mediates a range of microglia effector functions in the glioma setting, potentially increasing tumour growth and proliferation. This review evaluates current evidence on the roles of microglia and P2X7R in glioma pathogenesis. Understanding the nature, mechanisms and outcomes of microglia and P2X7R activation in gliomas is necessary for the development of more therapies with increased efficacy and specificity.
Collapse
|
17
|
Pethő Z, Najder K, Bulk E, Schwab A. Mechanosensitive ion channels push cancer progression. Cell Calcium 2019; 80:79-90. [PMID: 30991298 DOI: 10.1016/j.ceca.2019.03.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
In many cases, the mechanical properties of a tumor are different from those of the host tissue. Mechanical cues regulate cancer development by affecting both tumor cells and their microenvironment, by altering cell migration, proliferation, extracellular matrix remodeling and metastatic spread. Cancer cells sense mechanical stimuli such as tissue stiffness, shear stress, tissue pressure of the extracellular space (outside-in mechanosensation). These mechanical cues are transduced into a cellular response (e. g. cell migration and proliferation; inside-in mechanotransduction) or to a response affecting the microenvironment (e. g. inducing a fibrosis or building up growth-induced pressure; inside-out mechanotransduction). These processes heavily rely on mechanosensitive membrane proteins, prominently ion channels. Mechanosensitive ion channels are involved in the Ca2+-signaling of the tumor and stroma cells, both directly, by mediating Ca2+ influx (e. g. Piezo and TRP channels), or indirectly, by maintaining the electrochemical gradient necessary for Ca2+ influx (e. g. K2P, KCa channels). This review aims to discuss the diverse roles of mechanosenstive ion channels in cancer progression, especially those involved in Ca2+-signaling, by pinpointing their functional relevance in tumor pathophysiology.
Collapse
Affiliation(s)
- Zoltán Pethő
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | - Karolina Najder
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany
| | - Etmar Bulk
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany
| | - Albrecht Schwab
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany
| |
Collapse
|
18
|
Abstract
Cancer metastasis is the second leading cause of death in the United States. Despite its morbidity, metastasis is an inefficient process that few cells can survive. However, cancer cells can overcome these metastatic barriers via cellular responses to microenvironmental cues, such as through mechanotransduction. This review focuses on the mechanosensitive ion channels TRPV4 and P2X7, and their roles in metastasis, as both channels have been shown to significantly affect tumor cell dissemination. Upon activation, these channels help form tumor neovasculature, promote transendothelial migration, and increase cell motility. Conversely, they have also been linked to forms of cancer cell death dependent upon levels of activation, implying the complex functionality of mechanosensitive ion channels. Understanding the roles of TRPV4, P2X7 and other mechanosensitive ion channels in these processes may reveal new possible drug targets that modify channel function to reduce a tumor's metastatic potential.
Collapse
|
19
|
Jin H, Ko YS, Kim HJ. P2Y2R-mediated inflammasome activation is involved in tumor progression in breast cancer cells and in radiotherapy-resistant breast cancer. Int J Oncol 2018; 53:1953-1966. [PMID: 30226596 PMCID: PMC6192788 DOI: 10.3892/ijo.2018.4552] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022] Open
Abstract
In the tumor microenvironment, extracellular nucleotides are released and accumulate, and can activate the P2Y2 receptor (P2Y2R), which regulates various responses in tumor cells, resulting in tumor progression and metastasis. Moreover, the inflammasome has recently been reported to be associated with tumor progression. However, the role of P2Y2R in inflammasome activation in breast cancer cells is not yet well defined. Therefore, in this study, we investigated the role of P2Y2R in inflammasome-mediated tumor progression in breast cancer using breast cancer cells and radiotherapy-resistant (RT‑R) breast cancer cells. We established RT‑R-breast cancer cells (RT‑R‑MDA‑MB‑231, RT‑R‑MCF‑7, and RT‑R-T47D cells) by repeated irradiation (2 Gy each, 25 times) in a previous study. In this study, we found that the RT‑R breast cancer cells exhibited an increased release of adenosine triphosphate (ATP) and P2Y2R activity. In particular, the RT‑R‑MDA‑MB‑231 cells derived from highly metastatic MDA‑MB‑231 cells, exhibited a markedly increased ATP release, which was potentiated by tumor necrosis factor (TNF)-α. The MDA‑MB‑231 cells exhibited inflammasome activation, as measured by caspase‑1 activity and interleukin (IL)-1β secretion following treatment with TNF‑α and ATP; these effects were enhanced in the RT‑R‑MDA‑MB‑231 cells. However, the increased caspase‑1 activities and IL‑1β secretion levels induced in response to treatment with TNF‑α or ATP were significantly reduced by P2Y2R knockdown or the presence of apyrase in both the MDA‑MB‑231 and RT‑R‑MDA‑MB‑231 cells, suggesting the involvement of ATP-activated P2Y2R in inflammasome activation. In addition, TNF‑α and ATP increased the invasive and colony-forming ability of the MDA‑MB‑231 and RT‑R‑MDA‑MB‑231 cells, and these effects were caspase‑1-dependent. Moreover, matrix metalloproteinase (MMP)-9 activity was modulated by caspase-1, in a P2Y2R-dependent manner in the MDA‑MB‑231 and RT‑R‑MDA‑MB‑231 cells. Finally, nude mice injected with the RT‑R‑MDA‑MB‑231-EV cells (transfected with the empty vector) exhibited increased tumor growth, and higher levels of MMP-9 in their tumors and IL‑1β levels in their serum compared with the mice injected with the RT‑R‑MDA‑MB‑231-P2Y2R shRNA cells (transfected with P2Y2R shRNA). On the whole, the findings of this study suggest that extracellular ATP promotes tumor progression in RT‑R-breast cancer cells and breast cancer cells by modulating invasion and associated molecules through the P2Y2R-inflammasome activation pathway.
Collapse
Affiliation(s)
- Hana Jin
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Gyeongsang 52727, Republic of Korea
| | - Young Shin Ko
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Gyeongsang 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Gyeongsang 52727, Republic of Korea
| |
Collapse
|
20
|
Abstract
OBJECTIVES The aim of this study was to investigate the effects of the activated P2X7 receptors on the proliferation and growth of human pancreatic cancer cells. METHODS Proliferation was measured by incorporating bromodeoxyuridine into pancreatic cancer cells, MIA PaCa-2 and HPAC. Expression of P2 receptors and signal molecules was examined using quantitative reverse transcription/polymerase chain reaction and/or Western blot. Proliferative effects of the P2X7 receptors in vivo were examined using a xenotransplant model of pancreatic cancer cell lines. RESULTS Incubating pancreatic cancer cells with adenosine triphosphate (ATP) and 2'(3')-O-(4-Benzoylbenzoyl)ATP resulted in a dose-dependent increase of cell proliferation. The P2 receptor antagonist, KN-62, and small interfering RNA against P2X7 receptors, significantly decreased the proliferative effects of ATP. The ATP-induced proliferation was mediated by protein kinase C, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), and c-Jun N-terminal kinase (JNK); specifically, ATP increased the phosphorylation of ERK1/2 and JNK. The expression of inducible nitric oxide synthase was decreased by P2X7 receptor activation. In a xenotransplant model, applying ATP significantly increased the growth of induced tumors. CONCLUSIONS The P2X7 receptor activation by extracellular nucleotides increased proliferation and growth of human pancreatic cancer cells via ERK1/2 and JNK. This supports the pathophysiological role of P2X7 receptors in pancreatic disease and recovery.
Collapse
|
21
|
Liu J, Li N, Sheng R, Wang R, Xu Z, Mao Y, Wang Y, Liu Y. Hypermethylation downregulates P2X 7 receptor expression in astrocytoma. Oncol Lett 2018; 14:7699-7704. [PMID: 29344216 PMCID: PMC5755164 DOI: 10.3892/ol.2017.7241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/16/2017] [Indexed: 12/24/2022] Open
Abstract
The present study investigated the altered expression of p2X purinoceptor (P2X7R) in astrocytoma. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were used to determine the P2X7R expression in glioblastoma (GBM) and surrounding normal brain tissue. DNA methylation levels of P2X7R gene promoter in GBM were analyzed using a Sequenom MassARRAY® System. Immunohistochemistry (IHC) was used to detect the expression of P2X7R in astrocytoma at different malignancy grades, including diffuse astrocytoma, anaplastic astrocytoma and GBM. P2X7R mRNA and protein were significantly decreased in GBM compared with normal brain tissues. IHC results showed a negative correlation between P2X7R expression and tumor grade. The decreased P2X7R expression was mostly attributed to hypermethylation of its promoter. Therefore, P2X7R was found to perform an important role in tumorigenesis and progression of astrocytoma.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, School of Basic Medical Science, Fudan University, Shanghai 200032, P.R. China.,Xiawafang Street Community Health Center, Tianjin, Hebei 300220, P.R. China
| | - Ningning Li
- Department of Pathology, School of Basic Medical Science, Fudan University, Shanghai 200032, P.R. China
| | - Ruofan Sheng
- Department of Pathology, School of Basic Medical Science, Fudan University, Shanghai 200032, P.R. China
| | - Rui Wang
- Department of Pathology, School of Basic Medical Science, Fudan University, Shanghai 200032, P.R. China
| | - Zude Xu
- Department of Pathology, School of Basic Medical Science, Fudan University, Shanghai 200032, P.R. China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yin Wang
- Department of Neuropathology, Institute of Neurology of Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Ying Liu
- Department of Pathology, School of Basic Medical Science, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
22
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
23
|
Santos AA, Cappellari AR, de Marchi FO, Gehring MP, Zaparte A, Brandão CA, Lopes TG, da Silva VD, Pinto LFR, Savio LEB, Moreira-Souza ACA, Coutinho-Silva R, Paccez JD, Zerbini LF, Morrone FB. Potential role of P2X7R in esophageal squamous cell carcinoma proliferation. Purinergic Signal 2017; 13:279-292. [PMID: 28397110 DOI: 10.1007/s11302-017-9559-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 03/01/2017] [Indexed: 12/15/2022] Open
Abstract
Esophageal cancer is an aggressive tumor and is the sixth leading cause of cancer death worldwide. ATP is well known to regulate cancer progression in a variety of models by different mechanisms, including P2X7R activation. This study aimed to evaluate the role of P2X7R in esophageal squamous cell carcinoma (ESCC) proliferation. Our results show that treatment with high ATP concentrations induced a decrease in cell number, cell viability, number of polyclonal colonies, and reduced migration of ESCC. The treatment with the selective P2X7R antagonist A740003 or siRNA for P2X7 reverted this effect in the KYSE450 cell line. In addition, results showed that P2X7R is highly expressed, at mRNA and protein levels, in KYSE450 lineage. Additionally, KYSE450, KYSE30, and OE21 cells express P2X3R, P2X4R, P2X5R, P2X6R, and P2X7R genes. P2X1R is expressed by KYSE30 and KYSE450, and only KYSE450 expresses the P2X2R gene. Furthermore, esophageal cancer cell line KYSE450 presented higher expression of E-NTPDases 1 and 2 and of Ecto-5'-NT/CD73 when compared to normal cells. This cell line also exhibits ATPase, ADPase, and AMPase activity, although in different levels, and the co-treatment of apyrase was able to revert the antiproliferative effects of ATP. Moreover, results showed high immunostaining for P2X7R in biopsies of patients with esophageal carcinoma, indicating the involvement of this receptor in the growth of this type of cancer. The results suggest that P2X7R may be a potential pharmacological target to treat ESCC and can lead us to further investigate the effect of this receptor in cancer cell progression.
Collapse
Affiliation(s)
- André A Santos
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Angélica R Cappellari
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda O de Marchi
- Faculdade de Farmácia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina P Gehring
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Aline Zaparte
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Caroline A Brandão
- Faculdade de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tiago Giuliani Lopes
- Hospital São Lucas da PUCRS, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vinicius D da Silva
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Faculdade de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Hospital São Lucas da PUCRS, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Coordenação de Pesquisa, Instituto Nacional do Câncer (INCA), Rio de Janeiro, Brazil.,Departamento de Bioquímica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliano D Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cancer Genomics Group, Cape Town, South Africa
| | - Luiz F Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cancer Genomics Group, Cape Town, South Africa.,Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Fernanda B Morrone
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil. .,Faculdade de Farmácia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil. .,Programa de Pós-graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
24
|
Tanamachi K, Nishino K, Mori N, Suzuki T, Tanuma SI, Abe R, Tsukimoto M. Radiosensitizing Effect of P2X7 Receptor Antagonist on Melanoma in Vitro and in Vivo. Biol Pharm Bull 2017; 40:878-887. [DOI: 10.1248/bpb.b17-00083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Keisuke Tanamachi
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Keisuke Nishino
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Natsuki Mori
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Toshihiro Suzuki
- Research Institute for Biomedical Sciences, Tokyo University of Science
| | - Sei-ichi Tanuma
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Ryo Abe
- Research Institute for Biomedical Sciences, Tokyo University of Science
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
25
|
Ferrari D, Malavasi F, Antonioli L. A Purinergic Trail for Metastases. Trends Pharmacol Sci 2016; 38:277-290. [PMID: 27989503 DOI: 10.1016/j.tips.2016.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 01/14/2023]
Abstract
Nucleotides and nucleosides have emerged as important modulators of tumor biology. Recently acquired evidence shows that, when these molecules are released by cancer cells or surrounding tissues, they act as potent prometastatic factors, favoring tumor cell migration and tissue colonization. Therefore, nucleotides and nucleosides should be considered as a new class of prometastatic factors. In this review, we focus on the prometastatic roles of nucleotides and discuss future applications of purinergic signaling modulation in view of antimetastatic therapies.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Fabio Malavasi
- Laboratory of Immunogenetics and CeRMS, Department of Medical Sciences, University of Torino and Transplant Immunology, Città della Salute e della Scienza, Torino, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
26
|
Burnstock G. Short- and long-term (trophic) purinergic signalling. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150422. [PMID: 27377731 PMCID: PMC4938022 DOI: 10.1098/rstb.2015.0422] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2016] [Indexed: 12/26/2022] Open
Abstract
There is long-term (trophic) purinergic signalling involving cell proliferation, differentiation, motility and death in the development and regeneration of most systems of the body, in addition to fast purinergic signalling in neurotransmission, neuromodulation and secretion. It is not always easy to distinguish between short- and long-term signalling. For example, adenosine triphosphate (ATP) can sometimes act as a short-term trigger for long-term trophic events that become evident days or even weeks after the original challenge. Examples of short-term purinergic signalling during sympathetic, parasympathetic and enteric neuromuscular transmission and in synaptic transmission in ganglia and in the central nervous system are described, as well as in neuromodulation and secretion. Long-term trophic signalling is described in the immune/defence system, stratified epithelia in visceral organs and skin, embryological development, bone formation and resorption and in cancer. It is likely that the increase in intracellular Ca(2+) in response to both P2X and P2Y purinoceptor activation participates in many short- and long-term physiological effects.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Geraghty NJ, Watson D, Adhikary SR, Sluyter R. P2X7 receptor in skin biology and diseases. World J Dermatol 2016; 5:72-83. [DOI: 10.5314/wjd.v5.i2.72] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/23/2015] [Accepted: 01/29/2016] [Indexed: 02/06/2023] Open
Abstract
The P2X7 receptor is a trimeric ligand-gated cation channel present on immune and other cells. Activation of this receptor by its natural ligand extracellular adenosine triphosphate results in a variety of downstream responses, including the release of pro-inflammatory mediators and cell death. In normal skin, P2X7 is present on keratinocytes, Langerhans cells and fibroblasts, while the presence of this receptor on other cutaneous cells is mainly inferred from studies of equivalent cell types present in other tissues. Mast cells in normal skin however express negligible amounts of P2X7, which can be upregulated in cutaneous disease. This review discusses the potential significance of P2X7 in skin biology, and the role of this receptor in inflammatory skin disorders such as irritant and chronic dermatitis, psoriasis, graft-versus-host disease, as well is in wound healing, transplantation and skin cancer.
Collapse
|
28
|
Giannuzzo A, Pedersen SF, Novak I. The P2X7 receptor regulates cell survival, migration and invasion of pancreatic ductal adenocarcinoma cells. Mol Cancer 2015; 14:203. [PMID: 26607222 PMCID: PMC4660609 DOI: 10.1186/s12943-015-0472-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/18/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is presently one of the cancers with the worst survival rates and least effective treatments. Moreover, total deaths due to PDAC are predicted to increase in the next 15 years. Therefore, novel insights into basic mechanism of PDAC development and therapies are needed. PDAC is characterized by a complex microenvironment, in which cancer and stromal cells release different molecules, such as ATP. ATP can be transported and/or exocytosed from active cancer cells and released from dying cells in the necrotic core of the cancer. We hypothesized that one of the ATP receptors, the P2X7 receptor (P2X7R) could be an important player in PDAC behaviour. METHODS We determined the expression (real time PCR and Western blot) and localization (immunofluorescence) of P2X7R in human PDAC cell lines (AsPC-1, BxPC-3, Capan-1, MiaPaCa-2, Panc-1) and a "normal" human pancreatic duct epithelial cell line (HPDE). The function of P2X7R in proliferation (BrdU assay), migration (wound assay) and invasion (Boyden chamber with matrigel) was characterized. Furthermore, we studied P2X7R-dependent pore formation (YoPro-1 assay) and cell death (caspase and annexin V / propidium iodide assays). RESULTS We found higher expression of P2X7R protein in PDAC compared to HPDE cells. P2X7R had notable disparate effects on PDAC survival. Firstly, high concentrations of ATP or the specific P2X7R agonist, BzATP, had cytotoxic effects in all cell lines, and cell death was mediated by necrosis. Moreover, the P2X7R-pore antagonist, A438079, prevented ATP-induced pore formation and cell death. Second, in basal conditions and with low concentrations of ATP/BzATP, the P2X7R allosteric inhibitor AZ10606120 reduced proliferation in all PDAC cell lines. P2X7R also affected other key characteristics of cancer cell behavior. AZ10606120 reduced cell migration and invasion in PDAC cell lines compared to that of untreated/vehicle-treated control cells, and stimulation with sub-millimolar concentrations of ATP or BzATP substantially increased cell invasion. CONCLUSIONS PDAC cell lines overexpress P2X7R and the receptor plays crucial roles in cell survival, migration and invasion. Therefore, we propose that drugs targeting P2X7R could be exploited in therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Andrea Giannuzzo
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, August Krogh Building, Universitetsparken 13, DK-2100, Copenhagen, Denmark.
| | - Stine Falsig Pedersen
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, August Krogh Building, Universitetsparken 13, DK-2100, Copenhagen, Denmark.
| | - Ivana Novak
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, August Krogh Building, Universitetsparken 13, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
29
|
Gehring MP, Kipper F, Nicoletti NF, Sperotto ND, Zanin R, Tamajusuku ASK, Flores DG, Meurer L, Roesler R, Filho AB, Lenz G, Campos MM, Morrone FB. P2X7 receptor as predictor gene for glioma radiosensitivity and median survival. Int J Biochem Cell Biol 2015; 68:92-100. [PMID: 26358881 DOI: 10.1016/j.biocel.2015.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
Abstract
Glioblastoma multiforme (GBM) is considered the most lethal intracranial tumor and the median survival time is approximately 14 months. Although some glioma cells present radioresistance, radiotherapy has been the mainstay of therapy for patients with malignant glioma. The activation of P2X7 receptor (P2X7R) is responsible for ATP-induced death in various cell types. In this study, we analyzed the importance of ATP-P2X7R pathway in the radiotherapy response P2X7R silenced cell lines, in vivo and human tumor samples. Both glioma cell lines used in this study present a functional P2X7R and the P2X7R silencing reduced P2X7R pore activity by ethidium bromide uptake. Gamma radiation (2Gy) treatment reduced cell number in a P2X7R-dependent way, since both P2X7R antagonist and P2X7R silencing blocked the cell cytotoxicity caused by irradiation after 24h. The activation of P2X7R is time-dependent, as EtBr uptake significantly increased after 24h of irradiation. The radiotherapy plus ATP incubation significantly increased annexin V incorporation, compared with radiotherapy alone, suggesting that ATP acts synergistically with radiotherapy. Of note, GL261 P2X7R silenced-bearing mice failed in respond to radiotherapy (8Gy) and GL261 WT-bearing mice, that constitutively express P2X7R, presented a significant reduction in tumor volume after radiotherapy, showing in vivo that functional P2X7R expression is essential for an efficient radiotherapy response in gliomas. We also showed that a high P2X7R expression is a good prognostic factor for glioma radiosensitivity and survival probability in humans. Our data revealed the relevance of P2X7R expression in glioma cells to a successful radiotherapy response, and shed new light on this receptor as a useful predictor of the sensitivity of cancer patients to radiotherapy and median survival.
Collapse
Affiliation(s)
- Marina P Gehring
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Farmacologia Aplicada, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Franciele Kipper
- Laboratório de Sinalização e Plasticidade Celular, UFRGS, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil.
| | - Natália F Nicoletti
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Farmacologia Aplicada, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Nathalia D Sperotto
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Farmacologia Aplicada, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Rafael Zanin
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Farmacologia Aplicada, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Alessandra S K Tamajusuku
- Laboratório de Sinalização e Plasticidade Celular, UFRGS, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil.
| | - Debora G Flores
- Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Porto Alegre, RS, Brazil.
| | - Luise Meurer
- Departamento de Patologia, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90420-010 Porto Alegre, RS, Brazil.
| | - Rafael Roesler
- Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil; Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), UFRGS, Porto Alegre, RS, Brazil; National Institute for Translational Medicine, Rua Sarmento Leite, 500, Sala 202, 90050-170 Porto Alegre, RS, Brazil.
| | - Aroldo B Filho
- Serviço de Radioterapia, Hospital São Lucas da PUCRS, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Guido Lenz
- Laboratório de Sinalização e Plasticidade Celular, UFRGS, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil.
| | - Maria M Campos
- PUCRS, Instituto de Toxicologia e Farmacologia e Faculdade de Odontologia, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Fernanda B Morrone
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Farmacologia Aplicada, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| |
Collapse
|
30
|
Feng W, Wang L, Zheng G. Expression and function of P2 receptors in hematopoietic stem and progenitor cells. Stem Cell Investig 2015; 2:14. [PMID: 27358882 DOI: 10.3978/j.issn.2306-9759.2015.07.01] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/28/2015] [Indexed: 12/15/2022]
Abstract
Nucleotides have unambiguously emerged as a family of mediators of intercellular communication, which bind to a class of plasma membrane receptors, P2 receptors, to trigger intercellular signaling. P2 receptors can be further divided into P2X and P2Y subfamilies based on structure and function. Different hematopoietic cells express diverse spectrums of P2 receptors at different levels, including hematopoietic stem and progenitor cells (HSPCs). Extracellular adenosine triphosphate (ATP) exerts different effects on HSPCs, regulating cell proliferation, differentiation, migration, and chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species. The relationship between abnormal P2 receptor function and human diseases attracts more and more attention. This review summarizes the expression and function of P2 receptors in HSPCs and the relationship to hematopoietic diseases.
Collapse
Affiliation(s)
- Wenli Feng
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China ; 2 Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lina Wang
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China ; 2 Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guoguang Zheng
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China ; 2 Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
31
|
Bose T, Cieślar-Pobuda A, Wiechec E. Role of ion channels in regulating Ca²⁺ homeostasis during the interplay between immune and cancer cells. Cell Death Dis 2015; 6:e1648. [PMID: 25695601 PMCID: PMC4669790 DOI: 10.1038/cddis.2015.23] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 01/08/2023]
Abstract
Ion channels are abundantly expressed in both excitable and non-excitable cells, thereby regulating the Ca2+ influx and downstream signaling pathways of physiological processes. The immune system is specialized in the process of cancer cell recognition and elimination, and is regulated by different ion channels. In comparison with the immune cells, ion channels behave differently in cancer cells by making the tumor cells more hyperpolarized and influence cancer cell proliferation and metastasis. Therefore, ion channels comprise an important therapeutic target in anti-cancer treatment. In this review, we discuss the implication of ion channels in regulation of Ca2+ homeostasis during the crosstalk between immune and cancer cell as well as their role in cancer progression.
Collapse
Affiliation(s)
- T Bose
- Leibniz-Institute of Neurobiology, Brenneckestrasse 6, D-39 Magdeburg, Germany
| | - A Cieślar-Pobuda
- 1] Department of Clinical and Experimental Medicine, Division of Cell Biology & Integrative Regenerative Medicine Center (IGEN), Linköping University, 581 85 Linköping, Sweden [2] Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - E Wiechec
- Department of Clinical and Experimental Medicine, Division of Cell Biology & Integrative Regenerative Medicine Center (IGEN), Linköping University, 581 85 Linköping, Sweden
| |
Collapse
|
32
|
Roger S, Jelassi B, Couillin I, Pelegrin P, Besson P, Jiang LH. Understanding the roles of the P2X7 receptor in solid tumour progression and therapeutic perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2584-602. [PMID: 25450340 DOI: 10.1016/j.bbamem.2014.10.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/13/2014] [Accepted: 10/20/2014] [Indexed: 01/05/2023]
Abstract
P2X7 is an intriguing ionotropic receptor for which the activation by extracellular ATP induces rapid inward cationic currents and intracellular signalling pathways associated with numerous physiological processes such as the induction of the inflammatory cascade, the survival and proliferation of cells. In contrast, long-term stimulation of P2X7 is generally associated with membrane permeabilisation and cell death. Recently, P2X7 has attracted great attention in the cancer field, and particularly in the neoplastic transformation and the progression of solid tumours. A growing number of studies were published; however they often appeared contradictory in their results and conclusions. As such, the involvement of P2X7 in the oncogenic process remains unclear so far. The present review aims to discuss the current knowledge and hypotheses on the involvement of the P2X7 receptor in the development and progression of solid tumours, and highlight the different aspects that require further clarification in order to decipher whether P2X7 could be considered as a cancer biomarker or as a target for pharmacological intervention. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Sébastien Roger
- Inserm UMR1069 Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France; Département de Physiologie Animale, UFR Sciences et Techniques, Université François-Rabelais de Tours, Avenue Monge, 37200 Tours, France.
| | - Bilel Jelassi
- Inserm UMR1069 Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Isabelle Couillin
- UMR CNRS 7355 Experimental and Molecular Immunology and Neurogenetics, Université d'Orléans, 3B rue de la Ferollerie, F-45071 Orléans, France
| | - Pablo Pelegrin
- Inflammation and Experimental Surgery Research Unit, CIBERehd, Clinical University Hospital "Virgen de la Arrixaca", Murcia's BioHealth Research Institute IMIB-Arrixaca, Carretera Cartagena-Madrid s/n, 30120 Murcia, Spain
| | - Pierre Besson
- Inserm UMR1069 Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
33
|
Schneider SL, Ross AL, Grichnik JM. Do inflammatory pathways drive melanomagenesis? Exp Dermatol 2014; 24:86-90. [PMID: 25041143 DOI: 10.1111/exd.12502] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2014] [Indexed: 12/12/2022]
Abstract
Inflammatory pathways serve to protect the host and promote tissue healing/repair; however, over-activation or dysregulation can be pathological with unintended consequences including malignant progression. A correlation between inflammation and cancer has been well established, and anti-inflammatory medications have been shown to be chemopreventive in certain malignancies. Data are now becoming available that outline an inflammatory pathway that may have a critical role in melanomagenesis. ATP-regulated membrane channels/receptors P2X7 and PANX1 have been directly implicated in melanoma tumor growth. Among other potential effects, opening of the P2X7/PANX1 channel results in activation of the NALP3 inflammasome, which in turn leads to caspase-1 activation and increased levels of activated IL-1β. Elevated levels of caspase-1 and IL-1β have been correlated with melanoma progression, and inhibitors of the inflammasome, caspase and IL-1β activity have all been shown to inhibit melanoma growth. Among many other potential actions, IL-1β increases cyclooxygenase-2 expression leading to local increases in inflammatory mediators such as prostaglandin E2 (PGE2). Anti-inflammatory medications targeting the end of this pathway have had positive results for certain cancers but overall remain mixed for melanoma. A better understanding of the pathways and appropriate intervention points may help direct future therapies. In this viewpoint, we will review data and attempt to model an inflammatory pathway that may be critical for melanomagenesis and propose future directions for exploration.
Collapse
Affiliation(s)
- Samantha L Schneider
- Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA; Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
34
|
Alves LA, de Melo Reis RA, de Souza CAM, de Freitas MS, Teixeira PCN, Neto Moreira Ferreira D, Xavier RF. The P2X7 receptor: Shifting from a low- to a high-conductance channel — An enigmatic phenomenon? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2578-87. [DOI: 10.1016/j.bbamem.2014.05.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 04/22/2014] [Accepted: 05/13/2014] [Indexed: 01/08/2023]
|
35
|
P2X7 receptors are a potential novel target for anti-glioma therapies. JOURNAL OF INFLAMMATION-LONDON 2014. [DOI: 10.1186/s12950-014-0025-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Burnstock G, Di Virgilio F. Purinergic signalling and cancer. Purinergic Signal 2014; 9:491-540. [PMID: 23797685 DOI: 10.1007/s11302-013-9372-5] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/06/2013] [Indexed: 01/24/2023] Open
Abstract
Receptors for extracellular nucleotides are widely expressed by mammalian cells. They mediate a large array of responses ranging from growth stimulation to apoptosis, from chemotaxis to cell differentiation and from nociception to cytokine release, as well as neurotransmission. Pharma industry is involved in the development and clinical testing of drugs selectively targeting the different P1 nucleoside and P2 nucleotide receptor subtypes. As described in detail in the present review, P2 receptors are expressed by all tumours, in some cases to a very high level. Activation or inhibition of selected P2 receptor subtypes brings about cancer cell death or growth inhibition. The field has been largely neglected by current research in oncology, yet the evidence presented in this review, most of which is based on in vitro studies, although with a limited amount from in vivo experiments and human studies, warrants further efforts to explore the therapeutic potential of purinoceptor targeting in cancer.
Collapse
|
37
|
Jin H, Eun SY, Lee JS, Park SW, Lee JH, Chang KC, Kim HJ. P2Y2 receptor activation by nucleotides released from highly metastatic breast cancer cells increases tumor growth and invasion via crosstalk with endothelial cells. Breast Cancer Res 2014; 16:R77. [PMID: 25156554 PMCID: PMC4406012 DOI: 10.1186/bcr3694] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/01/2014] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Extracellular nucleotides are released and detectable in a high concentration within the tumor microenvironment. G protein-coupled P2Y2 nucleotide receptor (P2Y2R) is activated equipotently by adenosine triphosphate (ATP) and uridine 5'-triphosphate (UTP), which mediate proinflammatory responses such as cell migration and proliferation. However, the role of P2Y2R in the process of cancer metastasis remains unclear. This study aimed to determine the role of P2Y2R in the proliferation, migration and invasion of highly metastatic MDA-MB-231 breast cancer cells through crosstalk with endothelial cells (ECs). METHODS ATP release and P2Y2R activity between high metastatic breast cancer cell MDA-MB-231 and low metastatic breast cancer cell MCF-7 were compared. Then, the role of P2Y2R on tumor growth and invasion via crosstalk with ECs was examined in vitro, using MDA-MB-231 cells and ECs transfected with control- or P2Y2R-siRNA, and in vivo, using an animal model injected with control-shRNA- or P2Y2R-shRNA-transfected MDA-MB-231 cells. RESULTS We found that this highly metastatic breast cancer cell line released higher levels of ATP and showed a higher P2Y2R activity in comparison to a low metastatic breast cancer cell line, MCF-7. In MDA-MB-231 cells, P2Y2R activation by ATP or UTP increased proliferation at 24 or 72 hours, which was abolished by P2Y2R knock-down. In addition, the adhesion of MDA-MB-231 cells to ECs and cell migration were both significantly increased by ATP or UTP through the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in MDA-MB-231 or ECs but not in cells where P2Y2R was knocked down. Furthermore, ATP- or UTP-mediated activation of P2Y2R induced MDA-MB-231 invasion through ECs, increased matrix metalloproteinase-9 (MMP-9) activity and vascular endothelial growth factor (VEGF) production in MDA-MB-231 and induced the phosphorylation of vascular endothelial (VE)-cadherin in ECs. Tumor growth and metastasis to other tissues were dramatically reduced, and body weight was increased in mice injected with P2Y2R-shRNA-transfected MDA-MB-231 cells compared to mice injected with control shRNA-transfected MDA-MB-231 cells. CONCLUSION This study suggests that P2Y2R may play an important role in cancer metastasis via modulation of the crosstalk between cancer cells and ECs.
Collapse
Affiliation(s)
- Hana Jin
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea.
| | - So Young Eun
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea.
| | - Jong Sil Lee
- Department of Pathology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, 660-751, Korea.
| | - Sang Won Park
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea.
| | - Jae Heun Lee
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea.
| | - Ki Churl Chang
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea.
| | - Hye Jung Kim
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea.
| |
Collapse
|
38
|
Burnstock G. Introduction and perspective, historical note. Front Cell Neurosci 2013; 7:227. [PMID: 24312014 PMCID: PMC3836022 DOI: 10.3389/fncel.2013.00227] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/04/2013] [Indexed: 12/11/2022] Open
Abstract
P2 nucleotide receptors were proposed to consist of two subfamilies based on pharmacology in 1985, named P2X and P2Y receptors. Later, this was confirmed following cloning of the receptors for nucleotides and studies of transduction mechanisms in the early 1990s. P2X receptors are ion channels and seven subtypes are recognized that form trimeric homomultimers or heteromultimers. P2X receptors are involved in neuromuscular and synaptic neurotransmission and neuromodulation. They are also expressed on many types of non-neuronal cells to mediate smooth muscle contraction, secretion, and immune modulation. The emphasis in this review will be on the pathophysiology of P2X receptors and therapeutic potential of P2X receptor agonists and antagonists for neurodegenerative and inflammatory disorders, visceral and neuropathic pain, irritable bowel syndrome, diabetes, kidney failure, bladder incontinence and cancer, as well as disorders if the special senses, airways, skin, cardiovascular, and musculoskeletal systems.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, UK
- Department of Pharmacology, The University of MelbourneMelbourne, VIC, Australia
| |
Collapse
|
39
|
Fischer W, Urban N, Immig K, Franke H, Schaefer M. Natural compounds with P2X7 receptor-modulating properties. Purinergic Signal 2013; 10:313-26. [PMID: 24163006 PMCID: PMC4040168 DOI: 10.1007/s11302-013-9392-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/10/2013] [Indexed: 12/19/2022] Open
Abstract
The adenosine 5'-triphosphate (ATP)-gated P2X7 receptor is a membrane-bound, non-selective cation channel, expressed in a variety of cell types. The P2X7 senses high extracellular ATP concentrations and seems to be implicated in a wide range of cellular functions as well as pathophysiological processes, including immune responses and inflammation, release of gliotransmitters and cytokines, cancer cell growth or development of neurodegenerative diseases. In the present study, we identified natural compounds and analogues that can block or sensitize the ATP (1 mM)-induced Ca(2+) response using a HEK293 cell line stably expressing human P2X7 and fluorometric imaging plate reader technology. For instance, teniposide potently blocked the human P2X7 at sub-miromolar concentrations, but not human P2X4 or rat P2X2. A marked block of ATP-induced Ca(2+) entry and Yo-Pro-1 uptake was also observed in human A375 melanoma cells and mouse microglial cells, both expressing P2X7. On the other hand, agelasine (AGL) and garcinolic acid (GA) facilitated the P2X7 response to ATP in all three cell populations. GA also enhanced the YO-PRO-1 uptake, whereas AGL did not affect the ATP-stimulated intracellular accumulation of this dye. According to the pathophysiological role of P2X7 in various diseases, selective modulators may have potential for further development, e.g. as neuroprotective or antineoplastic drugs.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Haertelstr. 16-18, 04107, Leipzig, Germany,
| | | | | | | | | |
Collapse
|
40
|
Muzzachi S, Blasi A, Ciani E, Favia M, Cardone RA, Marzulli D, Reshkin SJ, Merizzi G, Casavola V, Soleti A, Guerra L. MED1101: A new dialdehydic compound regulating P2×7 receptor cell surface expression in U937 cells. Biol Cell 2013; 105:399-413. [DOI: 10.1111/boc.201200088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 05/24/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Stefania Muzzachi
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | | | - Elena Ciani
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | - Maria Favia
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | - Rosa A. Cardone
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | - Domenico Marzulli
- Institute of Biomembranes and Bioenergetics; CNR; Bari; 70126; Italy
| | - Stephan J. Reshkin
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | | | - Valeria Casavola
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | | | - Lorenzo Guerra
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| |
Collapse
|
41
|
Hattori F, Ohshima Y, Seki S, Tsukimoto M, Sato M, Takenouchi T, Suzuki A, Takai E, Kitani H, Harada H, Kojima S. Feasibility study of B16 melanoma therapy using oxidized ATP to target purinergic receptor P2X7. Eur J Pharmacol 2012; 695:20-6. [PMID: 22981895 DOI: 10.1016/j.ejphar.2012.09.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/28/2012] [Accepted: 09/05/2012] [Indexed: 12/11/2022]
Abstract
The P2X7 receptor is not only involved in cell proliferation, but also acts as an adenosine 5'-triphosphate (ATP)-gated non-selective channel, and its expression is increased in human melanoma. An irreversible antagonist of P2X7, such as oxidized ATP (oxATP), might block P2X7 receptor-mediated ATP release and proliferative signaling. Therefore, we carried out basic studies to test this idea and to examine the feasibility of using oxATP to treat B16 melanoma. We first found that low-pH conditions (mimicking the hypoxia and acidosis commonly seen in solid tumors) induced P2X7 receptor-mediated ATP release from B16 melanoma cells. Then, we compared the proliferation rates of B16 melanoma wild-type cells and B16 P2X7 receptor-knockdown clone (P2X7-KDC) cells in the presence of P2X7 agonists. The proliferation rate, as well as the ATP release, of agonist-treated P2X7-KDC cells was lower than that of agonist-treated wild-type cells. Next, the effect of P2X7 antagonist oxATP on B16 melanoma cell growth was examined in vitro and in vivo. oxATP significantly decreased B16 melanoma cell proliferation in vitro, and also significantly inhibited tumor growth in B16 melanoma-bearing mice. These data indicate that extracellularly released ATP may serve as an intercellular signaling molecule. We propose that the P2X7 receptor is a promising target for treatment of solid tumors.
Collapse
Affiliation(s)
- Fumie Hattori
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Burnstock G, Knight GE, Greig AV. Purinergic Signaling in Healthy and Diseased Skin. J Invest Dermatol 2012; 132:526-46. [DOI: 10.1038/jid.2011.344] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
43
|
Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death. Cell Death Dis 2011; 1:e9. [PMID: 21364628 PMCID: PMC3032501 DOI: 10.1038/cddis.2009.11] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purinergic signalling system, which uses purines and pyrimidines as chemical transmitters, and purinoceptors as effectors, is deeply rooted in evolution and development and is a pivotal factor in cell communication. The ATP and its derivatives function as a 'danger signal' in the most primitive forms of life. Purinoceptors are extraordinarily widely distributed in all cell types and tissues and they are involved in the regulation of an even more extraordinary number of biological processes. In addition to fast purinergic signalling in neurotransmission, neuromodulation and secretion, there is long-term (trophic) purinergic signalling involving cell proliferation, differentiation, motility and death in the development and regeneration of most systems of the body. In this article, we focus on the latter in the immune/defence system, in stratified epithelia in visceral organs and skin, embryological development, bone formation and resorption, as well as in cancer.
Collapse
|
44
|
Abstract
ATP-gated P2X7 receptors (P2X7) make a unique family of extracellular ATP-activated plasma membrane ion channels expressed in haematopoietic and epithelial cells. They have been extensively studied in immune cells where their activation leads to the rapid release of pro-inflammatory cytokines and the initiation of the inflammatory cascade. As such, P2X7 represent a pharmaceutical target for the treatment of inflammatory diseases. Recently, P2X7 expression has been found in diverse tumours and has been suggested as a potential cancer cell biomarker. On ATP stimulation, tumour cells can use P2X7 signalling in different scenarios: i) as a reaction to this death-related signal, they can downregulate P2X7 to avoid apoptosis or ii) as a cancer-promoting signal to survive and enhance invasion of new niches. The high levels of extracellular ATP found in tumours could represent a stressful stimulus for cancer cells by initiating P2X7-driven cell death. Therefore, the increased P2X7-dependent invasiveness of cancer cells could be an escape strategy to flee the noxious high level of ATP. The use of specific P2X7 antagonists could be a new alternative way to reduce the development of cancer metastases and improve the efficacy of conventional treatments.
Collapse
|
45
|
Gendaszewska-Darmach E, Kucharska M. Nucleotide receptors as targets in the pharmacological enhancement of dermal wound healing. Purinergic Signal 2011; 7:193-206. [PMID: 21519856 PMCID: PMC3146642 DOI: 10.1007/s11302-011-9233-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/10/2011] [Indexed: 12/15/2022] Open
Abstract
With a growing interest of the involvement of extracellular nucleotides in both normal physiology and pathology, it has become evident that P2 receptor agonists and antagonists may have therapeutic potential. The P2Y2 receptor agonists (diquafosol tetrasodium and denufosol tetrasodium) are in the phase 3 of clinical trials for dry eye and cystic fibrosis, respectively. The thienopyridine derivatives clopidogrel and ticlopidine (antagonists of the platelet P2Y12 receptor) have been used in cardiovascular medicine for nearly a decade. Purines and pyrimidines may be of therapeutic potential also in wound healing since ATP and UTP have been shown to have many hallmarks of wound healing factors. Recent studies have demonstrated that extracellular nucleotides take part in all phases of wound repair: hemostasis, inflammation, tissue formation, and tissue remodeling. This review is focused on the potent purines and pyrimidines which regulate many physiological processes important for wound healing.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Stefanowskiego 4/10, 90-924, Lodz, Poland,
| | | |
Collapse
|
46
|
Burnstock G, Kennedy C. P2X receptors in health and disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:333-372. [PMID: 21586364 DOI: 10.1016/b978-0-12-385526-8.00011-4] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Seven P2X receptor subunits have been cloned which form functional homo- and heterotrimers. These are cation-selective channels, equally permeable to Na(+) and K(+) and with significant Ca(2+) permeability. The three-dimensional structure of the P2X receptor is described. The channel pore is formed by the α-helical transmembrane spanning region 2 of each subunit. When ATP binds to a P2X receptor, the pore opens within milliseconds, allowing the cations to flow. P2X receptors are expressed on both central and peripheral neurons, where they are involved in neuromuscular and synaptic neurotransmission and neuromodulation. They are also expressed in most types of nonneuronal cells and mediate a wide range of actions, such as contraction of smooth muscle, secretion, and immunomodulation. Changes in the expression of P2X receptors have been characterized in many pathological conditions of the cardiovascular, gastrointestinal, respiratory, and urinogenital systems and in the brain and special senses. The therapeutic potential of P2X receptor agonists and antagonists is currently being investigated in a range of disorders, including chronic neuropathic and inflammatory pain, depression, cystic fibrosis, dry eye, irritable bowel syndrome, interstitial cystitis, dysfunctional urinary bladder, and cancer.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London, United Kingdom
| | | |
Collapse
|
47
|
Fu W, McCormick T, Qi X, Luo L, Zhou L, Li X, Wang BC, Gibbons HE, Abdul-Karim FW, Gorodeski GI. Activation of P2X(7)-mediated apoptosis Inhibits DMBA/TPA-induced formation of skin papillomas and cancer in mice. BMC Cancer 2009; 9:114. [PMID: 19379509 PMCID: PMC2676299 DOI: 10.1186/1471-2407-9-114] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 04/20/2009] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The study tested the hypothesis that apoptosis can prevent and control growth of neoplastic cells. Previous studies in-vitro have shown that the pro-apoptotic P2X(7) receptor regulates growth of epithelial cells. The specific objective of the present study was to understand to what degree the P2X(7) system controls development and growth of skin cancer in vivo, and what cellular and molecular mechanisms are involved in the P2X(7) action. METHODS Skin neoplasias in mice (papillomas, followed by squamous spindle-cell carcinomas) were induced by local application of DMBA/TPA. Experiments in-vitro utilized cultured epidermal keratinocytes generated from wild-type or from P2X(7)-null mice. Assays involved protein immunostaining and Western blots; mRNA real-time qPCR; and apoptosis (evaluated in situ by TUNEL and quantified in cultured keratinocytes as solubilized DNA or by ELISA). Changes in cytosolic calcium or in ethidium bromide influx (P2X(7) pore formation) were determined by confocal laser microscopy. RESULTS (a) Co-application on the skin of the P2X7 specific agonist BzATP inhibited formation of DMBA/TPA-induced skin papillomas and carcinomas. At the completion of study (week 28) the proportion of living animals with cancers in the DMBA/TPA group was 100% compared to 43% in the DMBA/TPA+BzATP group. (b) In the normal skin BzATP affected mainly P2X(7)-receptor - expressing proliferating keratinocytes, where it augmented apoptosis without evoking inflammatory changes. (c) In BzATP-treated mice the degree of apoptosis was lesser in cancer than in normal or papilloma keratinocytes. (d) Levels of P2X(7) receptor, protein and mRNA were 4-5 fold lower in cancer tissues than in normal mouse tissues. (e) In cultured mouse keratinocytes BzATP induced apoptosis, formation of pores in the plasma membrane, and facilitated prolonged calcium influx. (f) The BzATP-induced apoptosis, pore-formation and augmented calcium influx had similar dose-dependence for BzATP. (g) Pore formation and the augmented calcium influx were depended on the expression of the P2X(7) receptor, while the BzATP-induced apoptosis depended on calcium influx. (h) The BzATP-induced apoptosis could be blocked by co-treatment with inhibitors of caspase-9 and caspase-3, but not of caspase-8. CONCLUSION (a) P2X(7)-dependent apoptosis is an important mechanism that controls the development and progression of epidermal neoplasia in the mouse. (b) The P2X(7)-dependent apoptosis is mediated by calcium influx via P2X(7) pores, and involves the caspase-9 (mitochondrial) pathway. (c) The diminished pro-apoptotic effect of BzATP in mouse cancer keratinocytes is possibly the result of low expression of the P2X(7) receptor. (d) Activation of P2X(7)-dependent apoptosis, e.g. with BzATP could be a novel chemotherapeutic growth-preventive modality for papillomas and epithelial cancers in vivo.
Collapse
Affiliation(s)
- Wen Fu
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
White N, Knight GE, Butler PEM, Burnstock G. An in vivo model of melanoma: treatment with ATP. Purinergic Signal 2009; 5:327-33. [PMID: 19347609 DOI: 10.1007/s11302-009-9156-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 03/11/2009] [Indexed: 12/19/2022] Open
Abstract
Athymic mice, injected with A375 human melanoma cells, were treated daily with intraperitoneal injections of adenosine 5'-triphosphate (ATP). The tumour volume and animal weight were measured over the course of the experiment and the final tumour nodule weight was measured at the end of the experiment. Tumour volume decreased by nearly 50% by 7 weeks in treated mice. Weight loss in untreated animals was prevented by ATP. Histological examination of the excised tumour nodules showed necrosis in the ATP-treated tumours only. The presence of P2Y(1) and P2X(7) receptors, previously proposed as extracellular targets for melanoma treatment with ATP, were demonstrated in the excised specimens by immunohistochemistry. This paper provides further support for the use of ATP as a treatment for melanoma.
Collapse
Affiliation(s)
- Nicholas White
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
| | | | | | | |
Collapse
|
49
|
Alqallaf SM, Evans BAJ, Kidd EJ. Atypical P2X receptor pharmacology in two human osteoblast-like cell lines. Br J Pharmacol 2009; 156:1124-35. [PMID: 19226284 DOI: 10.1111/j.1476-5381.2009.00119.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The expression and function of P2X(7) receptors in osteoclasts is well established, but less is known about their role in osteoblast-like cells. A study in P2X(7) receptor knockout mice suggested the involvement of these receptors in bone formation. We have investigated the expression and pharmacology of several P2X receptors in two human osteosarcoma cell lines to see if they could be involved in bone turnover in man. EXPERIMENTAL APPROACH Reverse transcriptase-polymerase chain reaction and Western blotting were used to study P2X(2), P2X(4) and P2X(7) receptor expression at mRNA and protein levels, respectively, in human osteoblast-like cells. P2X(7) receptor pharmacology was studied by measuring pore formation in the presence of different agonists and antagonists using the YO-PRO 1 uptake method. KEY RESULTS P2X(4) and P2X(7) receptor mRNA and protein were found to be expressed by these cell lines. No evidence was found for P2X(4)/P2X(7) receptor heteropolymerization. 2'-3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (DBzATP) was equipotent to ATP and the antagonists used were either ineffective or weakly blocked pore formation. CONCLUSIONS AND IMPLICATIONS This study demonstrates that P2X(4) and P2X(7) receptors are expressed by human osteoblast-like cells. The affinities of the different agonists suggest that the P2X(7) receptor is mainly responsible for pore formation although P2X(4) receptors may also be involved. The low affinity of DBzATP and the weak action of the antagonists support the previously described atypical pharmacology of the P2X(7) receptor in osteoblasts. Targeting the P2X(7) receptor in osteoblasts could represent a promising new treatment for bone diseases such as osteoporosis and rheumatoid arthritis.
Collapse
Affiliation(s)
- S M Alqallaf
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff, UK
| | | | | |
Collapse
|
50
|
Deli T, Csernoch L. Extracellular ATP and cancer: an overview with special reference to P2 purinergic receptors. Pathol Oncol Res 2008; 14:219-31. [PMID: 18575829 DOI: 10.1007/s12253-008-9071-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 05/22/2008] [Indexed: 12/12/2022]
Abstract
Purinergic signal transduction mechanisms have been appreciated as a complex intercellular signalling network that plays an important regulatory role in both short- and long-term processes in practically every living cell. One of the most intriguing aspects of the field is the participation of ATP and other purine nucleotides in the determination of cell fate and the way they direct cells towards proliferation, differentiation or apoptosis, thereby possibly taking part in promoting or preventing malignant transformation. In this review, following a very brief introduction to the historical aspects of purinergic signalling and a concise overview of the structure of and signal transduction pathways coupled to P2 purinergic receptors, the current theories concerning the possible ways how extracellular ATP can alter the function of tumour cells and the effectiveness of anticancer therapies are discussed, including pharmacological, nutritional, vasoactive and 'anti-antioxidant' actions of the nucleotide. The effects of ATP on animals inoculated with human tumours and on patients with cancer are looked over next, and then an overview of the literature regarding the expression and presumed functions of P2 purinoceptors on tumour cells in vitro is presented, sorted out according to the relevant special clinical fields. The article is closed by reviewing the latest developments in the diagnostic use of P2 purinergic receptors as tumour markers and prognostic factors, while discussing some of the difficulties and pitfalls of the therapeutic use of ATP analogues.
Collapse
Affiliation(s)
- Tamás Deli
- Department of Physiology, Research Centre for Molecular Medicine, Medical and Health Science Centre, University of Debrecen, Debrecen, Hungary
| | | |
Collapse
|