1
|
Estévez-Lao TY, Martin LE, Hillyer JF. Activation of the immune deficiency pathway (IMD) reduces the mosquito heart rate via a nitric oxide-based mechanism. JOURNAL OF INSECT PHYSIOLOGY 2024; 161:104738. [PMID: 39647603 DOI: 10.1016/j.jinsphys.2024.104738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
The immune deficiency pathway (IMD) is an important component of the antibacterial, antimalarial and antiviral response in mosquitoes. The IMD pathway also drives the infection induced migration of hemocytes to the heart. During an infection, periostial hemocytes kill pathogens in areas of high hemolymph flow and produce nitric oxide that reduces the heart rate. Here, we investigated the consequences of repressing the IMD pathway by silencing the transcription factor, rel2, or activating the pathway by silencing the negative regulator, caspar, in Anopheles gambiae. In uninfected mosquitoes, repression of the IMD pathway does not affect the circulatory system. However, activating the IMD pathway decreases the heart rate, and this correlates with increased transcription and activity of nitric oxide synthase (NOS), but not increased transcription of the lysozymes, LysC1 or LysC2. In infected mosquitoes, however, activation of the IMD pathway does not affect the heart rate but repression of the pathway decreases the heart rate. This latter phenotype correlates with increased transcription and activity of nitric oxide synthase, which is likely due to an increase in infection intensity. In conclusion, we demonstrate that a major immune signaling pathway that regulates periostial hemocyte aggregation, the IMD pathway, reduces the heart rate via a nitric oxide-based mechanism.
Collapse
Affiliation(s)
- Tania Y Estévez-Lao
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Lindsay E Martin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
Brock KE, Elliott ER, Abul-Khoudoud MO, Cooper RL. The effects of Gram-positive and Gram-negative bacterial toxins (LTA & LPS) on cardiac function in Drosophila melanogaster larvae. JOURNAL OF INSECT PHYSIOLOGY 2023; 147:104518. [PMID: 37119936 DOI: 10.1016/j.jinsphys.2023.104518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
The effects of Gram negative and positive bacterial sepsis depend on the type of toxins released, such as lipopolysaccharides (LPS) or lipoteichoic acid (LTA). Previous studies show LPS to rapidly hyperpolarize larval Drosophila skeletal muscle, followed by desensitization and return to baseline. In larvae, heart rate increased then decreased with exposure to LPS. However, responses to LTA, as well as the combination of LTA and LPS, on the larval Drosophila heart have not been previously examined. This study examined the effects of LTA and a cocktail of LTA and LPS on heart rate. The combined effects were examined by first treating with either LTA or LPS only, and then with the cocktail. The results showed a rapid increase in heart rate upon LTA application, followed by a gradual decline over time. When applying LTA followed by the cocktail, an increase in the rate occurred. However, if LPS was applied before the cocktail, the rate continued declining. These responses indicate the receptors or cellular cascades responsible for controlling heart rate within seconds and the rapid desensitization are affected by LTA or LPS and a combination of the two. The mechanisms for rapid changes which are not regulated by gene expression by exposure to LTA or LPS or associated bacterial peptidoglycans have yet to be identified in cardiac tissues of any organism.
Collapse
Affiliation(s)
- Kaitlyn E Brock
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| | - Elizabeth R Elliott
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| | | | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| |
Collapse
|
3
|
Su Y, Fan J, Wang X, Wang X, Li J, Duan B, Kang L, Wei L, Yao XS. Noninvasive examination of the cardiac properties of insect embryos enabled by optical coherence tomography. JOURNAL OF BIOPHOTONICS 2022; 15:e202100308. [PMID: 35234351 DOI: 10.1002/jbio.202100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/14/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Understanding the cardiac properties of insect embryos at different development stages is important, however, few works have been conducted probably due to the lack of effective tools. Using locust embryos as an example, here we show, for the first time, that optical coherence tomography (OCT) is capable of obtaining detailed information of embryos' heart activities and irregularities, such as the heart rate, cardiac cycle, diastolic and systolic diameters, hemolymph pumping rate and ejection fraction at different stages of embryonic development and at different temperatures. We develop algorithms and mathematical methods for extracting and analyzing cardiac behavior information of locust embryos. We discover that locust embryos experienced suspended development (quiescence) caused by cold storage have a heart rate 20% more than that of embryos without experiencing quiescence and that the hemolymph pumping rate of the two types of embryos behaves differently as the embryos grow. In addition, using OCT as an accurate cardiac activity examination tool, we show that the heart rates of locust embryos are effectively reduced due to nitric oxide synthase gene silencing by RNA interference, indicating potential application of using locust embryos as a good model organism to study cardiovascular diseases, including the congenital heart disease and arrhythmia. Finally, the capabilities offered by OCT in the studies of locust embryonic development may also prove helpful to promote locust reproduction for nutritions or restrain locust reproduction for pest control.
Collapse
Affiliation(s)
- Ya Su
- Photonics Information Innovation Center and Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding, China
| | - Jiangling Fan
- College of Life Sciences, Hebei University, Baoding, China
| | - Xiuli Wang
- Photonics Information Innovation Center and Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding, China
| | - Xiaoxiao Wang
- College of Life Sciences, Hebei University, Baoding, China
| | - Jing Li
- College of Life Sciences, Hebei University, Baoding, China
| | - Bingbing Duan
- Photonics Information Innovation Center and Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding, China
| | - Le Kang
- College of Life Sciences, Hebei University, Baoding, China
| | - Liya Wei
- College of Life Sciences, Hebei University, Baoding, China
- Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - X Steve Yao
- Photonics Information Innovation Center and Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding, China
| |
Collapse
|
4
|
Estévez-Lao TY, Sigle LT, Gomez SN, Hillyer JF. Nitric oxide produced by periostial hemocytes modulates the bacterial infection-induced reduction of the mosquito heart rate. J Exp Biol 2020; 223:jeb225821. [PMID: 32561636 DOI: 10.1242/jeb.225821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022]
Abstract
The circulatory and immune systems of mosquitoes are functionally integrated. An infection induces the migration of hemocytes to the dorsal vessel, and specifically, to the regions surrounding the ostia of the heart. These periostial hemocytes phagocytose pathogens in the areas of the hemocoel that experience the highest hemolymph flow. Here, we investigated whether a bacterial infection affects cardiac rhythmicity in the African malaria mosquito, Anopheles gambiae We discovered that infection with Escherichia coli, Staphylococcus aureus and Staphylococcus epidermidis, but not Micrococcus luteus, reduces the mosquito heart rate and alters the proportional directionality of heart contractions. Infection does not alter the expression of genes encoding crustacean cardioactive peptide (CCAP), FMRFamide, corazonin, neuropeptide F or short neuropeptide F, indicating that they do not drive the cardiac phenotype. Infection upregulates the transcription of two superoxide dismutase (SOD) genes, catalase and a glutathione peroxidase, but dramatically induces upregulation of nitric oxide synthase (NOS) in both the heart and hemocytes. Within the heart, nitric oxide synthase is produced by periostial hemocytes, and chemically inhibiting the production of nitric oxide using l-NAME reverses the infection-induced cardiac phenotype. Finally, infection induces the upregulation of two lysozyme genes in the heart and other tissues, and treating mosquitoes with lysozyme reduces the heart rate in a manner reminiscent of the infection phenotype. These data demonstrate an exciting new facet of the integration between the immune and circulatory systems of insects, whereby a hemocyte-produced factor with immune activity, namely nitric oxide, modulates heart physiology.
Collapse
Affiliation(s)
- Tania Y Estévez-Lao
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Leah T Sigle
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Scherly N Gomez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
5
|
Powers JC, Turangan R, Joosse BA, Hillyer JF. Adult Mosquitoes Infected with Bacteria Early in Life Have Stronger Antimicrobial Responses and More Hemocytes after Reinfection Later in Life. INSECTS 2020; 11:insects11060331. [PMID: 32481519 PMCID: PMC7349202 DOI: 10.3390/insects11060331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Abstract
The immunological strategies employed by insects to overcome infection vary with the type of infection and may change with experience. We investigated how a bacterial infection in the hemocoel of the African malaria mosquito, Anopheles gambiae, prepares the immune system to face a subsequent bacterial infection. For this, adult female mosquitoes were separated into three groups—unmanipulated, injured, or infected with Escherichia coli—and five days later all the mosquitoes were infected with a different strain of E. coli. We found that an injury or a bacterial infection early in life enhances the ability of mosquitoes to kill bacteria later in life. This protection results in higher mosquito survival and is associated with an increased hemocyte density, altered phagocytic activity by individual hemocytes, and the increased expression of nitric oxide synthase and perhaps prophenoloxidase 6. Protection from a second infection likely occurs because of heightened immune awareness due to an already existing infection instead of memory arising from an earlier, cured infection. This study highlights the dynamic nature of the mosquito immune response and how one infection prepares mosquitoes to survive a subsequent infection.
Collapse
|
6
|
Hillyer JF, Pass G. The Insect Circulatory System: Structure, Function, and Evolution. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:121-143. [PMID: 31585504 DOI: 10.1146/annurev-ento-011019-025003] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Although the insect circulatory system is involved in a multitude of vital physiological processes, it has gone grossly understudied. This review highlights this critical physiological system by detailing the structure and function of the circulatory organs, including the dorsal heart and the accessory pulsatile organs that supply hemolymph to the appendages. It also emphasizes how the circulatory system develops and ages and how, by means of reflex bleeding and functional integration with the immune system, it supports mechanisms for defense against predators and microbial invaders, respectively. Beyond that, this review details evolutionary trends and novelties associated with this system, as well as the ways in which this system also plays critical roles in thermoregulation and tracheal ventilation in high-performance fliers. Finally, this review highlights how novel discoveries could be harnessed for the control of vector-borne diseases and for translational medicine, and it details principal knowledge gaps that necessitate further investigation.
Collapse
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA;
| | - Günther Pass
- Department of Integrative Zoology, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
7
|
Wright NJD. A review of the actions of Nitric Oxide in development and neuronal function in major invertebrate model systems. AIMS Neurosci 2019; 6:146-174. [PMID: 32341974 PMCID: PMC7179362 DOI: 10.3934/neuroscience.2019.3.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
Ever since the late-eighties when endothelium-derived relaxing factor was found to be the gas nitric oxide, endogenous nitric oxide production has been observed in virtually all animal groups tested and additionally in plants, diatoms, slime molds and bacteria. The fact that this new messenger was actually a gas and therefore didn't obey the established rules of neurotransmission made it even more intriguing. In just 30 years there is now too much information for useful comprehensive reviews even if limited to animals alone. Therefore this review attempts to survey the actions of nitric oxide on development and neuronal function in selected major invertebrate models only so allowing some detailed discussion but still covering most of the primary references. Invertebrate model systems have some very useful advantages over more expensive and demanding animal models such as large, easily identifiable neurons and simple circuits in tissues that are typically far easier to keep viable. A table summarizing this information along with the major relevant references has been included for convenience.
Collapse
Affiliation(s)
- Nicholas J D Wright
- Associate professor of pharmacy, Wingate University School of Pharmacy, Wingate, NC28174, USA
| |
Collapse
|
8
|
Imperadore P, Lepore MG, Ponte G, Pflüger HJ, Fiorito G. Neural pathways in the pallial nerve and arm nerve cord revealed by neurobiotin backfilling in the cephalopod mollusk Octopus vulgaris. INVERTEBRATE NEUROSCIENCE 2019; 19:5. [PMID: 31073644 DOI: 10.1007/s10158-019-0225-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/26/2019] [Indexed: 11/29/2022]
Abstract
Here, we report the findings after application of neurobiotin tracing to pallial and stellar nerves in the mantle of the cephalopod mollusk Octopus vulgaris and to the axial nerve cord in its arm. Neurobiotin backfilling is a known technique in other molluscs, but it is applied to octopus for the first time to be best of our knowledge. Different neural tracing techniques have been carried out in cephalopods to study the intricate neural connectivity of their nervous system, but mapping the nervous connections in this taxon is still incomplete, mainly due to the absence of a reliable tracing method allowing whole-mount imaging. In our experiments, neurobiotin backfilling allowed: (1) imaging of large/thick samples (larger than 2 mm) through optical clearing; (2) additional application of immunohistochemistry on the backfilled tissues, allowing identification of neural structures by coupling of a specific antibody. This work opens a series of future studies aimed to the identification of the neural diagram and connectome of octopus nervous system.
Collapse
Affiliation(s)
- Pamela Imperadore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy. .,Association for Cephalopod Research-CephRes, 80133, Naples, Italy.
| | - Maria Grazia Lepore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy.,Instituto de Fisiologıá, Biologıá Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy
| | | | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy
| |
Collapse
|
9
|
Hillyer JF. Insect heart rhythmicity is modulated by evolutionarily conserved neuropeptides and neurotransmitters. CURRENT OPINION IN INSECT SCIENCE 2018; 29:41-48. [PMID: 30551824 DOI: 10.1016/j.cois.2018.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 05/15/2023]
Abstract
Insects utilize an open circulatory system to transport nutrients, waste, hormones and immune factors throughout the hemocoel. The primary organ that drives hemolymph circulation is the dorsal vessel, which is a muscular tube that traverses the length of the body and is divided into an aorta in the head and thorax, and a heart in the abdomen. The dorsal vessel is myogenic, but its rhythmicity is modulated by neuropeptides and neurotransmitters. This review summarizes how neuropeptides such as crustacean cardioactive peptide (CCAP), FMRFamide-like peptides, proctolin, allatotropin and allatostatin modulate the heart contraction rate and the directionality of heart contractions. Likewise, it discusses how neurotransmitters such as serotonin, octopamine, glutamate and nitric oxide influence the heart rate, and how transcriptomic and proteomic approaches are advancing our understanding of insect circulatory physiology. Finally, this review argues that the immune system may modulate heart rhythmicity, and discusses how the myotropic activity of cardioactive factors extends to the accessory pulsatile organs, such as the auxiliary hearts of the antennae.
Collapse
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
10
|
Antemann V, Pass G, Pflüger HJ. Octopaminergic innervation and a neurohaemal release site in the antennal heart of the locust Schistocerca gregaria. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:131-143. [DOI: 10.1007/s00359-017-1213-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/23/2017] [Accepted: 08/26/2017] [Indexed: 02/02/2023]
|
11
|
Stevenson PA, Rillich J. Adding up the odds-Nitric oxide signaling underlies the decision to flee and post-conflict depression of aggression. SCIENCE ADVANCES 2015; 1:e1500060. [PMID: 26601155 PMCID: PMC4643817 DOI: 10.1126/sciadv.1500060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/17/2015] [Indexed: 06/05/2023]
Abstract
Fighting is dangerous, which is why animals choose to flee once the costs outweigh the benefits, but the mechanisms underlying this decision-making process are unknown. By manipulating aggressive signaling and applying nitrergic drugs, we show that the evolutionarily conserved neuromodulator nitric oxide (NO), which has a suppressing effect on aggression in mammals, can play a decisive role. We found that crickets, which exhibit spectacular fighting behavior, flee once the sum of their opponent's aversive actions accrued during fighting exceeds a critical amount. This effect of aversive experience is mediated by the NO signaling pathway. Rather than suppressing aggressive motivation, NO increases susceptibility to aversive stimuli and with it the likelihood to flee. NO's effect is manifested in losers by prolonged avoidance behavior, characteristic for social defeat in numerous species. Intriguingly, fighting experience also induces, via NO, a brief susceptible period to aversive stimuli in winners just after victory. Our findings thus reveal a key role for NO in the mechanism underlying the decision to flee and post-conflict depression in aggressive behavior.
Collapse
Affiliation(s)
- Paul A. Stevenson
- Institute for Biology, Leipzig University, Talstraße 33, 04103 Leipzig, Germany
| | - Jan Rillich
- Institute for Neurobiology, Free University of Berlin, Koenigin-Luise-Straße 28–30, 14195 Berlin, Germany
| |
Collapse
|
12
|
Stevenson PA, Rillich J. The decision to fight or flee - insights into underlying mechanism in crickets. Front Neurosci 2012; 6:118. [PMID: 22936896 PMCID: PMC3424502 DOI: 10.3389/fnins.2012.00118] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 07/20/2012] [Indexed: 11/19/2022] Open
Abstract
Ritualized fighting between conspecifics is an inherently dangerous behavioral strategy, optimized to secure limited resources at minimal cost and risk. To be adaptive, potential rewards, and costs of aggression must be assessed to decide when it would be more opportune to fight or flee. We summarize insights into the proximate mechanisms underlying this decision-making process in field crickets. As in other animals, cricket aggression is enhanced dramatically by motor activity, winning, and the possession of resources. Pharmacological manipulations provide evidence that these cases of experience dependent enhancement of aggression are each mediated by octopamine, the invertebrate counterpart to adrenaline/noradrenaline. The data suggest that both physical exertion and rewarding aspects of experiences can activate the octopaminergic system, which increases the propensity to fight. Octopamine thus represents the motivational component of aggression in insects. For the decision to flee, animals are thought to assess information from agonistic signals exchanged during fighting. Cricket fights conform to the cumulative assessment model, in that they persist in fighting until the sum of their opponent’s actions accumulates to some threshold at which they withdraw. We discuss evidence that serotonin, nitric oxide, and some neuropeptides may promote an insect’s tendency to flee. We propose that the decision to fight or flee in crickets is controlled simply by relative behavioral thresholds. Rewarding experiences increase the propensity to fight to a level determined by the modulatory action of octopamine. The animal will then flee only when the accumulated sum of the opponent’s actions surpasses this level; serotonin and nitric oxide may be involved in this process. This concept is in line with the roles proposed for noradrenaline, serotonin, and nitric oxide in mammals and suggests that basic mechanisms of aggressive modulation may be conserved in phylogeny.
Collapse
|
13
|
The regulation of cardiac activity by nitric oxide (NO) in the Vietnamese stick insect, Baculum extradentatum. Cell Signal 2012; 24:1344-50. [PMID: 22306270 DOI: 10.1016/j.cellsig.2012.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 01/03/2012] [Accepted: 01/19/2012] [Indexed: 11/20/2022]
Abstract
This study examines the role of the unconventional gaseous signaling molecule nitric oxide (NO) on the regulation of heart rate in the Vietnamese stick insect, Baculum extradentatum. Using nicotinamide dinucleotide hydrogen phosphate (NADPH)-diaphorase histochemistry, as well as immunohistochemistry and Western blotting with an antibody against NO synthetase (NOS), we identified the presence of NOS in hemocytes present throughout the lumen of the dorsal vessel. We propose that NO is delivered to heart muscle tissue via hemocytes circulating within the hemolymph. In the present study, stimulation of NO levels by the application of the NO donor MAHMA-NONOate and l-arginine led to a dose-dependent decrease in heart rate. Treatment of tissues with the NOS inhibitor, L-NAME, in equimolar concentrations with l-arginine, led to a recovery of heart rate, without modifying heart rate on its own. Finally guanosine 3',5'-cyclic monophosphate (cGMP) analog, 8-bromo-cGMP, elicited similar inhibitory effects on stick insect heart rate as did the guanylate cyclase activator, YC-1, and the phosphodiesterase inhibitor, dipyridamole, indicating that cGMP is most likely the second messenger in the stick insect NO signaling pathway. Contrary to the cardioexcitatory effect of NO on other insect hearts, we have found that NO inhibits stick insect heart rate independently from any nervous system input, in a similar inhibitory fashion as that of vertebrate hearts.
Collapse
|
14
|
Badawy MA, Mohamed GG, Omar MM, Nassar MM, Kamel AB. Synthesis, spectroscopic and thermal characterization of quinoxaline metal complexes. ACTA ACUST UNITED AC 2010. [DOI: 10.5155/eurjchem.1.4.282-288.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Safdari M, Golmohammadi H. Prediction of n-octanol-water partition coefficient for polychlorinated biphenyls from theoretical molecular descriptors. ACTA ACUST UNITED AC 2010. [DOI: 10.5155/eurjchem.1.4.266-275.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Mohamed GG, Badawy MA, Omar MM, Nassar MM, Kamel AB. Synthesis, spectroscopic, thermal and biological activity studies on triazine metal complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2010; 77:773-781. [PMID: 20850376 DOI: 10.1016/j.saa.2010.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/05/2010] [Accepted: 08/03/2010] [Indexed: 05/29/2023]
Abstract
The coordination behaviour of the triazine ligand with NNO donation sites, derived from 3-benzyl-7-hydrazinyl-4H-[1,3,4]thiadiazolo[2,3c][1,2,4]triazin-4-one (HL), towards some metal ions namely Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) are reported. The metal complexes are characterized based on elemental analyses, IR, (1)H NMR, solid reflectance, magnetic moment, molar conductance and thermal analyses (TG, DTG and DTA). The ionization constants of the organic ligand under investigation as well as the stability constants of its metal chelates are calculated spectrophotometrically at 25°C. The chelates are found to have octahedral geometrical structures. The ligand (HL) and its binary chelates are subjected to thermal analyses (TG, DTG and DTA) and the different activation thermodynamic parameters are calculated from their corresponding DTG curves to throw more light on the nature of changes accompanying the thermal decomposition process of these compounds. The synthesized ligand and its metal complexes were found to have biological activity against the desert locust Schistocerca gregaria (Forsk.) (Orthoptera - Acrididae) and its adult longevities.
Collapse
Affiliation(s)
- Gehad G Mohamed
- Chemistry Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.
| | | | | | | | | |
Collapse
|
17
|
Omar MM, Mohamed GG, Badawy MA, Nassar MM, Kamel AB. Synthesis, Spectroscopic, and Thermal Characterization of Thiazole Metal Complexes: Biological Activity Studies. ACTA ACUST UNITED AC 2010. [DOI: 10.1080/15533174.2010.509300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- M. M. Omar
- a Chemistry Department, Faculty of Science , Cairo University , Giza, Egypt
| | - G. G. Mohamed
- a Chemistry Department, Faculty of Science , Cairo University , Giza, Egypt
| | - M. A. Badawy
- a Chemistry Department, Faculty of Science , Cairo University , Giza, Egypt
| | - M. M. Nassar
- b Insecticides Department, Faculty of Science , Cairo University , Giza, Egypt
| | - A. B. Kamel
- a Chemistry Department, Faculty of Science , Cairo University , Giza, Egypt
| |
Collapse
|
18
|
Rodgers CI, Armstrong GAB, Robertson RM. Coma in response to environmental stress in the locust: a model for cortical spreading depression. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:980-990. [PMID: 20361971 DOI: 10.1016/j.jinsphys.2010.03.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/19/2010] [Accepted: 03/22/2010] [Indexed: 05/29/2023]
Abstract
Spreading depression (SD) is an interesting and important phenomenon due to its role in mammalian pathologies such as migraine, seizures, and stroke. Until recently investigations of the mechanisms involved in SD have mostly utilized mammalian cortical tissue, however we have discovered that SD-like events occur in the CNS of an invertebrate model, Locusta migratoria. Locusts enter comas in response to stress during which neural and muscular systems shut down until the stress is removed, and this is believed to be an adaptive strategy to survive extreme environmental conditions. During stress-induced comas SD-like events occur in the locust metathoracic ganglion (MTG) that closely resemble cortical SD (CSD) in many respects, including mechanism of induction, extracellular potassium ion changes, and propagation in areas equivalent to mammalian grey matter. In this review we describe the generation of comas and the associated SD-like events in the locust, provide a description of the similarities to CSD, and show how they can be manipulated both by stress preconditioning and pharmacologically. We also suggest that locust SD-like events are adaptive by conserving energy and preventing cellular damage, and we provide a model for the mechanism of SD onset and recovery in the locust nervous system.
Collapse
Affiliation(s)
- Corinne I Rodgers
- Department of Biology, Queen's University, Biosciences Complex, Kingston, Ontario, Canada.
| | | | | |
Collapse
|
19
|
Weinrich A, Kunst M, Wirmer A, Holstein GR, Heinrich R. Suppression of grasshopper sound production by nitric oxide-releasing neurons of the central complex. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:763-76. [PMID: 18574586 PMCID: PMC2494575 DOI: 10.1007/s00359-008-0347-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/27/2008] [Accepted: 05/28/2008] [Indexed: 12/21/2022]
Abstract
The central complex of acridid grasshoppers integrates sensory information pertinent to reproduction-related acoustic communication. Activation of nitric oxide (NO)/cyclic GMP-signaling by injection of NO donors into the central complex of restrained Chorthippus biguttulus females suppresses muscarine-stimulated sound production. In contrast, sound production is released by aminoguanidine (AG)-mediated inhibition of nitric oxide synthase (NOS) in the central body, suggesting a basal release of NO that suppresses singing in this situation. Using anti-citrulline immunocytochemistry to detect recent NO production, subtypes of columnar neurons with somata located in the pars intercerebralis and tangential neurons with somata in the ventro-median protocerebrum were distinctly labeled. Their arborizations in the central body upper division overlap with expression patterns for NOS and with the site of injection where NO donors suppress sound production. Systemic application of AG increases the responsiveness of unrestrained females to male calling songs. Identical treatment with the NOS inhibitor that increased male song-stimulated sound production in females induced a marked reduction of citrulline accumulation in central complex columnar and tangential neurons. We conclude that behavioral situations that are unfavorable for sound production (like being restrained) activate NOS-expressing central body neurons to release NO and elevate the behavioral threshold for sound production in female grasshoppers.
Collapse
Affiliation(s)
- Anja Weinrich
- Department of Neurobiology, Institute of Zoology, University of Göttingen, Berliner Strasse 28, 37073, Göttingen, Germany
| | | | | | | | | |
Collapse
|
20
|
Newland PL, Yates P. Nitrergic modulation of an oviposition digging rhythm in locusts. ACTA ACUST UNITED AC 2008; 210:4448-56. [PMID: 18055633 DOI: 10.1242/jeb.010009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In locusts, a central pattern generator underlies the rhythmic movements of the ovipositor valves that serve to drive the abdomen into damp soil in order to lay eggs. We have investigated the role of nitric oxide (NO) in the control of this oviposition digging rhythm. NO increases the frequency of the rhythm by acting via sGC to elevate cGMP, which in turn acts via PKG. Increasing exogenous NO levels using the NO donors SNAP and PAPANONOate increased the cycle frequency of the fictive digging rhythm, as did increasing endogenous NO by bath application of the substrate for NOS, l-arginine. On the other hand, application of the NO scavenger PTIO decreased the cycle frequency, indicating that NO must normally exert a continuous and dynamic role on the central pattern generator underlying the oviposition rhythm. Inhibiting the main molecular target of NO, soluble guanylate cyclase, with ODQ reduced the cycle frequency of the rhythm, suggesting that NO mediated its effects via sGC and cyclic GMP. Further evidence for this was produced by bath application of 8-Br-cGMP, which increased the frequency of the rhythm. Bath application of the generic protein kinase inhibitor and a selective PKG inhibitor, H-7 and KT-5823, respectively, reduced the frequency of the rhythm, suggesting that PKG acted as a target for cGMP. Thus, we conclude that NO plays a key role in regulating the frequency of the central pattern generator controlling rhythmic egg-laying movements in locusts by acting via sGC/cGMP-PKG.
Collapse
Affiliation(s)
- Philip L Newland
- School of Biological Sciences, Biomedical Science Building, University of Southampton, Bassett Crescent East, Southampton, UK.
| | | |
Collapse
|