1
|
Namazi M, Eftekhar SP, Mosaed R, Shiralizadeh Dini S, Hazrati E. Pulmonary Hypertension and Right Ventricle: A Pathophysiological Insight. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2024; 18:11795468241274744. [PMID: 39257563 PMCID: PMC11384539 DOI: 10.1177/11795468241274744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/21/2024] [Indexed: 09/12/2024]
Abstract
Background Pulmonary hypertension (PH) is a pulmonary vascular disease characterized by elevated pulmonary vascular pressure. Long-term PH, irrespective of its etiology, leads to increased right ventricular (RV) pressure, RV hypertrophy, and ultimately, RV failure. Main body Research indicates that RV failure secondary to hypertrophy remains the primary cause of mortality in pulmonary arterial hypertension (PAH). However, the impact of PH on RV structure and function under increased overload remains incompletely understood. Several mechanisms have been proposed, including extracellular remodeling, RV hypertrophy, metabolic disturbances, inflammation, apoptosis, autophagy, endothelial-to-mesenchymal transition, neurohormonal dysregulation, capillary rarefaction, and ischemia. Conclusions Studies have demonstrated the significant role of oxidative stress in the development of RV failure. Understanding the interplay among these mechanisms is crucial for the prevention and management of RV failure in patients with PH.
Collapse
Affiliation(s)
- Mehrshad Namazi
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
- Clinical Biomechanics and Ergonomics Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Seyed Parsa Eftekhar
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Mosaed
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | | | - Ebrahim Hazrati
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Ginting Munte FA, Elen E, Lelya O, Rudiktyo E, Prakoso R, Lilyasari O. Right ventricular fibrosis in adults with uncorrected secundum atrial septal defect and pulmonary hypertension: a cardiovascular magnetic resonance study with late gadolinium enhancement, native T1 and extracellular volume. Front Cardiovasc Med 2024; 11:1395382. [PMID: 38873272 PMCID: PMC11169901 DOI: 10.3389/fcvm.2024.1395382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Right ventricular (RV) fibrosis represents both adaptive and maladaptive responses to the overloaded RV condition. Its role in pulmonary hypertension (PH) associated with secundum atrial septal defect (ASD), which is the most common adult congenital heart disease (CHD), remains poorly understood. Methods We enrolled 65 participants aged ≥18 years old with uncorrected secundum ASD who had undergone clinically indicated right heart catheterization (RHC), divided into the non-PH group (n = 7), PH group (n = 42), and Eisenmenger syndrome (ES) group (n = 16). We conducted cardiovascular magnetic resonance (CMR) studies with late gadolinium enhancement (LGE) imaging, native T1 mapping, and extracellular volume (ECV) measurement to evaluate the extent and clinical correlates of RV fibrosis. Results LGE was present in 94% of the population and 86% of the non-PH group, mostly located at the right ventricular insertion point (RVIP) regions. LGE in the septal and inferior RV region was predominantly observed in the ES group compared to the other groups (p = 0.031 and p < 0.001, respectively). The mean LGE scores in the ES and PH groups were significantly higher than those in the non-PH group (3.38 ± 0.96 vs. 2.74 ± 1.04 vs. 1.57 ± 0.79; p = 0.001). The ES and PH groups had significantly higher degrees of interstitial RV fibrosis compared to those in the non-PH group, indicated by native T1 (1,199.9 ± 68.9 ms vs. 1,131.4 ± 47.8 ms vs. 1,105.4 ± 44.0 ms; p < 0.001) and ECV (43.6 ± 6.6% vs. 39.5 ± 4.9% vs. 39.4 ± 5.8%; p = 0.037). Additionally, native T1 significantly correlated with pulmonary vascular resistance (r = 0.708, p < 0.001), RV ejection fraction (r = -0.468, p < 0.001) and peripheral oxygen saturation (r = -0.410, p = 0.001). Conclusion In patients with uncorrected secundum ASD, RV fibrosis may occur before the development of PH and progressively intensify alongside the progression of PH severity. A higher degree of RV fibrosis, derived from CMR imaging, correlates with worse hemodynamics, RV dysfunction, and poorer clinical conditions.
Collapse
Affiliation(s)
- Fatwiadi Apulita Ginting Munte
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Elen Elen
- Division of Cardiovascular Imaging and Nuclear Cardiology, Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Olfi Lelya
- Division of Pediatric Cardiology and Congenital Heart Disease, Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Estu Rudiktyo
- Division of Echocardiography, Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Radityo Prakoso
- Division of Pediatric Cardiology and Congenital Heart Disease, Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Oktavia Lilyasari
- Division of Pediatric Cardiology and Congenital Heart Disease, Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| |
Collapse
|
3
|
Chalise U, Hale TM. Fibroblasts under pressure: cardiac fibroblast responses to hypertension and antihypertensive therapies. Am J Physiol Heart Circ Physiol 2024; 326:H223-H237. [PMID: 37999643 PMCID: PMC11219059 DOI: 10.1152/ajpheart.00401.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Approximately 50% of Americans have hypertension, which significantly increases the risk of heart failure. In response to increased peripheral resistance in hypertension, intensified mechanical stretch in the myocardium induces cardiomyocyte hypertrophy and fibroblast activation to withstand increased pressure overload. This changes the structure and function of the heart, leading to pathological cardiac remodeling and eventual progression to heart failure. In the presence of hypertensive stimuli, cardiac fibroblasts activate and differentiate to myofibroblast phenotype capable of enhanced extracellular matrix secretion in coordination with other cell types, mainly cardiomyocytes. Both systemic and local renin-angiotensin-aldosterone system activation lead to increased angiotensin II stimulation of fibroblasts. Angiotensin II directly activates fibrotic signaling such as transforming growth factor β/SMAD and mitogen-activated protein kinase (MAPK) signaling to produce extracellular matrix comprised of collagens and matricellular proteins. With the advent of single-cell RNA sequencing techniques, heterogeneity in fibroblast populations has been identified in the left ventricle in models of hypertension and pressure overload. The various clusters of fibroblasts reveal a range of phenotypes and activation states. Select antihypertensive therapies have been shown to be effective in limiting fibrosis, with some having direct actions on cardiac fibroblasts. The present review focuses on the fibroblast-specific changes that occur in response to hypertension and pressure overload, the knowledge gained from single-cell analyses, and the effect of antihypertensive therapies. Understanding the dynamics of hypertensive fibroblast populations and their similarities and differences by sex is crucial for the advent of new targets and personalized medicine.
Collapse
Affiliation(s)
- Upendra Chalise
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota, United States
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona, College of Medicine-Phoenix, Phoenix, Arizona, United States
| |
Collapse
|
4
|
Gong L, Si MS. SLIT3-mediated fibroblast signaling: a promising target for antifibrotic therapies. Am J Physiol Heart Circ Physiol 2023; 325:H1400-H1411. [PMID: 37830982 DOI: 10.1152/ajpheart.00216.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
The SLIT family (SLIT1-3) of highly conserved glycoproteins was originally identified as ligands for the Roundabout (ROBO) family of single-pass transmembrane receptors, serving to provide repulsive axon guidance cues in the nervous system. Intriguingly, studies involving SLIT3 mutant mice suggest that SLIT3 might have crucial biological functions outside the neural context. Although these mutant mice display no noticeable neurological abnormalities, they present pronounced connective tissue defects, including congenital central diaphragmatic hernia, membranous ventricular septal defect, and osteopenia. We recently hypothesized that the phenotype observed in SLIT3-deficient mice may be tied to abnormalities in fibrillar collagen-rich connective tissue. Further research by our group indicates that both SLIT3 and its primary receptor, ROBO1, are expressed in fibrillar collagen-producing cells across various nonneural tissues. Global and constitutive SLIT3 deficiency not only reduces the synthesis and content of fibrillar collagen in various organs but also alleviates pressure overload-induced fibrosis in both the left and right ventricles. This review delves into the known phenotypes of SLIT3 mutants and the debated role of SLIT3 in vasculature and bone. Present evidence hints at SLIT3 acting as an autocrine regulator of fibrillar collagen synthesis, suggesting it as a potential antifibrotic treatment. However, the precise pathway and mechanisms through which SLIT3 regulates fibrillar collagen synthesis remain uncertain, presenting an intriguing avenue for future research.
Collapse
Affiliation(s)
- Lianghui Gong
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Ming-Sing Si
- Division of Cardiac Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| |
Collapse
|
5
|
Gu Y, Han K, Zhang Z, Zhao Z, Yan C, Wang L, Fang W. 68Ga-FAPI PET/CT for molecular assessment of fibroblast activation in right heart in pulmonary arterial hypertension: a single-center, pilot study. J Nucl Cardiol 2023; 30:495-503. [PMID: 35322381 DOI: 10.1007/s12350-022-02952-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Positron emission tomography (PET) imaging with radiolabeled fibroblasts activation protein inhibitor (FAPI) provides the opportunity to directly visualize fibrosis. This study aimed to investigate the feasibility of 68Ga-FAPI PET imaging in assessing right ventricular (RV) fibrotic remodeling and the relationship between FAPI uptake with parameters of pulmonary hemodynamics and cardiac function in pulmonary arterial hypertension (PAH) patients. METHODS In this pilot study, sixteen PAH patients were enrolled to participate in cardiac 68Ga-FAPI PET/CT imaging. All patients underwent right heart catheterization and echocardiography for assessment of pulmonary hemodynamics and cardiac function within seven days. Cardiac FAPI uptake was visually assessed and quantified as maximum standardized uptake value (SUVmax). RESULTS Twelve PAH patients exhibited FAPI uptake in RV free wall and insertion point. The overall activity of FAPI accumulated in the RV free wall (SUVmax: 2.5 ± 1.8, P < 0.001) and insertion point (SUVmax:2.5 ± 1.7, P < 0.001) was significantly upregulated compared to left ventricle (SUVmax:1.5 ± 0.5). Patients with tricuspid annular plane systolic excursion (TAPSE) < 17 mm presented significantly higher uptake than those with TAPSE ≥ 17 mm in both RV free wall (SUVmax: 3.4 ± 1.9 vs 1.7 ± 1.1, P = 0.010) and insertion point (SUVmax: 3.4 ± 1.9 vs 1.6 ± 0.7, P = 0.028), indicating RV uptake of FAPI was associated with RV dysfunction. There was significant positive correlation between cardiac FAPI uptake and total pulmonary resistance and the level of N-terminal pro b-type natriuretic peptide. CONCLUSIONS 68Ga-FAPI PET/CT imaging is feasible to directly visualize fibrotic remodeling of RV in patients with PAH.
Collapse
Affiliation(s)
- Yufan Gu
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, 167 Beilishi Road, Beijing, 100037, China
| | - Kai Han
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, 167 Beilishi Road, Beijing, 100037, China
| | - Zongyao Zhang
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, 167 Beilishi Road, Beijing, 100037, China
| | - Zuoquan Zhao
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, 167 Beilishi Road, Beijing, 100037, China
| | - Chaowu Yan
- Department of Structural Heart Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Wang
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, 167 Beilishi Road, Beijing, 100037, China.
| | - Wei Fang
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, 167 Beilishi Road, Beijing, 100037, China
| |
Collapse
|
6
|
Carver W, Fix E, Fix C, Fan D, Chakrabarti M, Azhar M. Effects of emodin, a plant-derived anthraquinone, on TGF-β1-induced cardiac fibroblast activation and function. J Cell Physiol 2021; 236:7440-7449. [PMID: 34041746 PMCID: PMC8530838 DOI: 10.1002/jcp.30416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Cardiac fibrosis accompanies a number of pathological conditions and results in altered myocardial structure, biomechanical properties and function. The signaling networks leading to fibrosis are complex, contributing to the general lack of progress in identifying effective therapeutic approaches to prevent or reverse this condition. Several studies have shown protective effects of emodin, a plant-derived anthraquinone, in animal models of fibrosis. A number of questions remain regarding the mechanisms whereby emodin impacts fibrosis. Transforming growth factor beta 1 (TGF-β1) is a potent stimulus of fibrosis and fibroblast activation. In the present study, experiments were performed to evaluate the effects of emodin on activation and function of cardiac fibroblasts following treatment with TGF-β1. We demonstrate that emodin attenuates TGF-β1-induced fibroblast activation and collagen accumulation in vitro. Emodin also inhibits activation of several canonical (SMAD2/3) and noncanonical (Erk1/2) TGF-β signaling pathways, while activating the p38 pathway. These results suggest that emodin may provide an effective therapeutic agent for fibrosis that functions via specific TGF-β signaling pathways.
Collapse
Affiliation(s)
- Wayne Carver
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Ethan Fix
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Charity Fix
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Mrinmay Chakrabarti
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Mohamad Azhar
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| |
Collapse
|
7
|
Rap1a Regulates Cardiac Fibroblast Contraction of 3D Diabetic Collagen Matrices by Increased Activation of the AGE/RAGE Cascade. Cells 2021; 10:cells10061286. [PMID: 34067282 PMCID: PMC8224555 DOI: 10.3390/cells10061286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular disease is a common diabetic complication that can arise when cardiac fibroblasts transition into myofibroblasts. Myofibroblast transition can be induced by advanced glycated end products (AGEs) present in the extracellular matrix (ECM) activating RAGE (receptor for advanced glycated end products) to elicit intracellular signaling. The levels of AGEs are higher under diabetic conditions due to the hyperglycemic conditions present in diabetics. AGE/RAGE signaling has been shown to alter protein expression and ROS production in cardiac fibroblasts, resulting in changes in cellular function, such as migration and contraction. Recently, a small GTPase, Rap1a, has been identified to overlap the AGE/RAGE signaling cascade and mediate changes in protein expression. While Rap1a has been shown to impact AGE/RAGE-induced protein expression, there are currently no data examining the impact Rap1a has on AGE/RAGE-induced cardiac fibroblast function. Therefore, we aimed to determine the impact of Rap1a on AGE/RAGE-mediated cardiac fibroblast contraction, as well as the influence isolated diabetic ECM has on facilitating these effects. In order to address this idea, genetically different cardiac fibroblasts were embedded in 3D collagen matrices consisting of collagen isolated from either non-diabetic of diabetic mice. Fibroblasts were treated with EPAC and/or exogenous AGEs, which was followed by assessment of matrix contraction, protein expression (α-SMA, SOD-1, and SOD-2), and hydrogen peroxide production. The results showed Rap1a overlaps the AGE/RAGE cascade to increase the myofibroblast population and generation of ROS production. The increase in myofibroblasts and oxidative stress appeared to contribute to increased matrix contraction, which was further exacerbated by diabetic conditions. Based off these results, we determined that Rap1a was essential in mediating the response of cardiac fibroblasts to AGEs within diabetic collagen.
Collapse
|
8
|
Llucià-Valldeperas A, van Wezenbeek J, Goumans MJ, de Man FS. The battle of new biomarkers for right heart failure in pulmonary hypertension: is the queen of hearts NT-proBNP defeated at last? Eur Respir J 2021; 57:57/4/2004277. [PMID: 33795356 DOI: 10.1183/13993003.04277-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Aida Llucià-Valldeperas
- Dept of Pulmonary Medicine, PHEniX laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Authors contributed equally
| | - Jessie van Wezenbeek
- Dept of Pulmonary Medicine, PHEniX laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Authors contributed equally
| | | | - Frances Sarah de Man
- Dept of Pulmonary Medicine, PHEniX laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Hypoxia and its preconditioning on cardiac and vascular remodelling in experimental animals. Respir Physiol Neurobiol 2020; 285:103588. [PMID: 33253893 DOI: 10.1016/j.resp.2020.103588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/28/2020] [Accepted: 11/12/2020] [Indexed: 11/21/2022]
Abstract
Since oxygen (O2) is indispensable for mammalian life, every cell in the body is endowed with mechanisms to detect and to respond to changes in the O2 levels in the microenvironment. The heart and the brain are the two most vital, life-supporting organs requiring a continuous supply of O2 to sustain their high metabolic rate. On being challenged with hypoxia, maintenance of O2 supply to these organs even at the cost of others becomes a priority. This review describes the cardiovascular, skeletal muscle vascular, pulmonary vascular and cerebrovascular remodelling in face of chronic mild hypoxia exposure and the underlying mechanisms, with special reference to the role of oxidative stress, hypoxia signalling, autonomic nervous mechanisms. The significance of the normalized wall index (NWI) in assessing the remodelling of the vessels particularly of the intramyocardial coronary artery has been underscored. The review also highlights the basic concepts of hypoxic preconditioning and the subsequent protection of the brain against an acute ischemic insult in preclinical studies hinting towards its possible therapeutic potential in the management of ischemic stroke.
Collapse
|
10
|
Saraswati S, Lietman CD, Li B, Mathew S, Zent R, Young PP. Small proline-rich repeat 3 is a novel coordinator of PDGFRβ and integrin β1 crosstalk to augment proliferation and matrix synthesis by cardiac fibroblasts. FASEB J 2020; 34:7885-7904. [PMID: 32297675 PMCID: PMC7302973 DOI: 10.1096/fj.201902815r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/04/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022]
Abstract
Nearly 6 million Americans suffer from heart failure. Increased fibrosis contributes to functional decline of the heart that leads to heart failure. Previously, we identified a mechanosensitive protein, small proline‐rich repeat 3 (SPRR3), in vascular smooth muscle cells of atheromas. In this study, we demonstrate SPRR3 expression in cardiac fibroblasts which is induced in activated fibroblasts following pressure‐induced heart failure. Sprr3 deletion in mice showed preserved cardiac function and reduced interstitial fibrosis in vivo and reduced fibroblast proliferation and collagen expression in vitro. SPRR3 loss resulted in reduced activation of Akt, FAK, ERK, and p38 signaling pathways, which are coordinately regulated by integrins and growth factors. SPRR3 deletion did not impede integrin‐associated functions including cell adhesion, migration, or contraction. SPRR3 loss resulted in reduced activation of PDGFRβ in fibroblasts. This was not due to the reduced PDGFRβ expression levels or decreased binding of the PDGF ligand to PDGFRβ. SPRR3 facilitated the association of integrin β1 with PDGFRβ and subsequently fibroblast proliferation, suggesting a role in PDGFRβ‐Integrin synergy. We postulate that SPRR3 may function as a conduit for the coordinated activation of PDGFRβ by integrin β1, leading to augmentation of fibroblast proliferation and matrix synthesis downstream of biomechanical and growth factor signals.
Collapse
Affiliation(s)
- Sarika Saraswati
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Caressa D Lietman
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bin Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sijo Mathew
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pampee P Young
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,American Red Cross, Biomedical Division, Washington, DC, USA
| |
Collapse
|
11
|
Burr SD, Stewart JA. Extracellular matrix components isolated from diabetic mice alter cardiac fibroblast function through the AGE/RAGE signaling cascade. Life Sci 2020; 250:117569. [PMID: 32201277 DOI: 10.1016/j.lfs.2020.117569] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022]
Abstract
Individuals suffering from diabetes have an increased risk of developing cardiovascular complications such as heart failure. Heart failure can be a result of the stiffening of the left ventricle, which occurs when cardiac fibroblasts become "active" and begin to remodel the extracellular matrix (ECM). Fibroblast "activation" can be triggered by the AGE/RAGE signaling cascade. Advanced Glycation End products (AGEs) are produced and accumulate in the ECM over time in a healthy individual, but under hyperglycemic conditions, this process is accelerated. In this study, we investigated how the presence of AGEs in either non-diabetic or diabetic ECM affected fibroblast-mediated matrix remodeling. In order to address this question, diabetic and non-diabetic fibroblasts were embedded in 3D matrices composed of collagen isolated from either non-diabetic or diabetic mice. Fibroblast function was assessed using gel contraction, migration, and protein expression. Non-diabetic fibroblasts displayed similar gel contraction to diabetic cells when embedded in diabetic collagen. Thus, suggesting the diabetic ECM can alter fibroblast function from an "inactive" to "active" state. Addition of AGEs increase the AGE/RAGE cascade leading to increased gel contraction, whereas inhibiting the cascade resulted in little or no gel contraction. These results indicated 1) the ECM from diabetic and non-diabetic mice differ from one another, 2) diabetic ECM can impact fibroblast function and shift them toward an "active" state, and 3) that fibroblasts can modify the ECM through activation of the AGE/RAGE signaling cascade. These results suggested the importance of understanding the impact diabetes has on the ECM and fibroblast function.
Collapse
Affiliation(s)
- Stephanie D Burr
- Dept. of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, United States of America.
| | - James A Stewart
- Dept. of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, United States of America.
| |
Collapse
|
12
|
Huston JH, Brittain EL, Robbins IM. Pulmonary Hypertension and Right Ventricular Failure: Lung Transplant Versus Heart-Lung Transplant. Cardiol Clin 2020; 38:269-281. [PMID: 32284103 DOI: 10.1016/j.ccl.2020.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pulmonary arterial hypertension is a highly morbid disease with limited treatment options that improve survival and currently the only curative treatment is transplantation. There is a small body of literature comparing the efficacy of lung and heart-lung transplantation in this population. The bulk of evidence suggests that most patients with severe right ventricular failure undergoing transplant will have recovery of right ventricular function after lung transplantation. Existing data suggest that, in the absence of complex congenital heart disease or significant left ventricular dysfunction, double-lung transplant is the surgical procedure of choice.
Collapse
Affiliation(s)
- Jessica H Huston
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, 1215 21st Avenue South, Suite 5037, Nashville, TN 37232, USA.
| | - Evan L Brittain
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 300A, Nashville, TN 37203, USA
| | - Ivan M Robbins
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, T1218 MCN, Nashville, TN, USA
| |
Collapse
|
13
|
Burr SD, Harmon MB, Jr JAS. The Impact of Diabetic Conditions and AGE/RAGE Signaling on Cardiac Fibroblast Migration. Front Cell Dev Biol 2020; 8:112. [PMID: 32158758 PMCID: PMC7052116 DOI: 10.3389/fcell.2020.00112] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetic individuals have an increased risk for developing cardiovascular disease due to stiffening of the left ventricle (LV), which is thought to occur, in part, by increased AGE/RAGE signaling inducing fibroblast differentiation. Advanced glycated end-products (AGEs) accumulate within the body over time, and under hyperglycemic conditions, the formation and accumulation of AGEs is accelerated. AGEs exert their effect by binding to their receptor (RAGE) and can induce myofibroblast differentiation, leading to increased cell migration. Previous studies have focused on fibroblast migration during wound healing, in which diabetics have impaired fibroblast migration compared to healthy individuals. However, the impact of diabetic conditions as well as AGE/RAGE signaling has not been extensively studied in cardiac fibroblasts. Therefore, the goal of this study was to determine how the AGE/RAGE signaling pathway impacts cell migration in non-diabetic and diabetic cardiac fibroblasts. Cardiac fibroblasts were isolated from non-diabetic and diabetic mice with and without functional RAGE and used to perform a migration assay. Cardiac fibroblasts were plated on plastic, non-diabetic, or diabetic collagen, and when confluency was reached, a line of migration was generated by scratching the plate and followed by treatment with pharmacological agents that modify AGE/RAGE signaling. Modification of the AGE/RAGE signaling cascade was done with ERK1/2 and PKC-ζ inhibitors as well as treatment with exogenous AGEs. Diabetic fibroblasts displayed an increase in migration compared to non-diabetic fibroblasts whereas inhibiting the AGE/RAGE signaling pathway resulted in a significant increase in migration. The results indicate that the AGE/RAGE signaling cascade causes a decrease in cardiac fibroblast migration and altering the pathway will produce alterations in cardiac fibroblast migration.
Collapse
Affiliation(s)
- Stephanie D Burr
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS, United States
| | - Mallory B Harmon
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS, United States
| | - James A Stewart Jr
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS, United States
| |
Collapse
|
14
|
Connexin43 expression in bone marrow derived cells contributes to the electrophysiological properties of cardiac scar tissue. Sci Rep 2020; 10:2617. [PMID: 32054938 PMCID: PMC7018966 DOI: 10.1038/s41598-020-59449-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/29/2020] [Indexed: 11/26/2022] Open
Abstract
Cardiac pathologies associated with arrhythmic activity are often accompanied by inflammation. The contribution of inflammatory cells to the electrophysiological properties of injured myocardium is unknown. Myocardial scar cell types and intercellular contacts were analyzed using a three-dimensional reconstruction from serial blockface scanning electron microscopy data. Three distinct cell populations were identified: inflammatory, fibroblastic and endocardial cells. While individual fibroblastic cells interface with a greater number of cells, inflammatory cells have the largest contact area suggesting a role in establishing intercellular electrical connections in scar tissue. Optical mapping was used to study the electrophysiological properties of scars in fetal liver chimeric mice generated using connexin43 knockout donors (bmpKO). Voltage changes were elicited in response to applied current pulses. Isopotential maps showed a steeper pattern of decay with distance from the electrode in scars compared with uninjured regions, suggesting reduced electrical coupling. The tissue decay constant, defined as the distance voltage reaches 37% of the amplitude at the edge of the scar, was 0.48 ± 0.04 mm (n = 11) in the scar of the bmpCTL group and decreased 37.5% in the bmpKO group (n = 10). Together these data demonstrate inflammatory cells significantly contribute to scar electrophysiology through coupling mediated at least partially by connexin43 expression.
Collapse
|
15
|
Oatmen KE, Cull E, Spinale FG. Heart failure as interstitial cancer: emergence of a malignant fibroblast phenotype. Nat Rev Cardiol 2019; 17:523-531. [DOI: 10.1038/s41569-019-0286-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
|
16
|
Abstract
The role of right ventricular (RV) fibrosis in pulmonary hypertension (PH) remains a subject of ongoing discussion. Alterations of the collagen network of the extracellular matrix may help prevent ventricular dilatation in the pressure-overloaded RV. At the same time, fibrosis impairs cardiac function, and a growing body of experimental data suggests that fibrosis plays a crucial role in the development of RV failure. In idiopathic pulmonary arterial hypertension and chronic thromboembolic PH, the RV is exposed to a ≈5 times increased afterload, which makes these conditions excellent models for studying the impact of pressure overload on RV structure. With this review, we present clinical evidence of RV fibrosis in idiopathic pulmonary arterial hypertension and chronic thromboembolic PH, explore the correlation between fibrosis and RV function, and discuss the clinical relevance of RV fibrosis in patients with PH. We postulate that RV fibrosis has a dual role in patients with pressure-overloaded RVs of idiopathic pulmonary arterial hypertension and chronic thromboembolic PH: as part of an adaptive response to prevent cardiomyocyte overstretch and to maintain RV shape for optimal function, and as part of a maladaptive response that increases diastolic stiffness, perturbs cardiomyocyte excitation-contraction coupling, and disrupts the coordination of myocardial contraction. Finally, we discuss potential novel therapeutic strategies and describe more sensitive techniques to quantify RV fibrosis, which may be used to clarify the causal relation between RV fibrosis and RV function in future research.
Collapse
Affiliation(s)
| | | | | | - Frances S de Man
- Amsterdam UMC, Vrije Universiteit, The Netherlands (A.V.N., F.S.d.M)
| |
Collapse
|
17
|
Liu QH, Qiao X, Zhang LJ, Wang J, Zhang L, Zhai XW, Ren XZ, Li Y, Cao XN, Feng QL, Cao JM, Wu BW. I K1 Channel Agonist Zacopride Alleviates Cardiac Hypertrophy and Failure via Alterations in Calcium Dyshomeostasis and Electrical Remodeling in Rats. Front Pharmacol 2019; 10:929. [PMID: 31507422 PMCID: PMC6718093 DOI: 10.3389/fphar.2019.00929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/22/2019] [Indexed: 01/08/2023] Open
Abstract
Intracellular Ca2+ overload, prolongation of the action potential duration (APD), and downregulation of inward rectifier potassium (IK1) channel are hallmarks of electrical remodeling in cardiac hypertrophy and heart failure (HF). We hypothesized that enhancement of IK1 currents is a compensation for IK1 deficit and a novel modulation for cardiac Ca2+ homeostasis and pathological remodeling. In adult Sprague-Dawley (SD) rats in vivo, cardiac hypertrophy was induced by isoproterenol (Iso) injection (i.p., 3 mg/kg/d) for 3, 10, and 30 days. Neonatal rat ventricular myocytes (NRVMs) were isolated from 1 to 3 days SD rat pups and treated with 1 μmol/L Iso for 24 h in vitro. The effects of zacopride, a selective IK1/Kir2.1 channel agonist, on cardiac remodeling/hypertrophy were observed in the settings of 15 μg/kg in vivo and 1 μmol/L in vitro. After exposing to Iso for 3 days and 10 days, rat hearts showed distinct concentric hypertrophy and fibrosis and enhanced pumping function (P < 0.01 or P < 0.05), then progressed to dilatation and dysfunction post 30 days. Compared with the age-matched control, cardiomyocytes exhibited higher cytosolic Ca2+ (P < 0.01 or P < 0.05) and lower SR Ca2+ content (P < 0.01 or P < 0.05) all through 3, 10, and 30 days of Iso infusion. The expressions of Kir2.1 and SERCA2 were downregulated, while p-CaMKII, p-RyR2, and cleaved caspase-3 were upregulated. Iso-induced electrophysiological abnormalities were also manifested with resting potential (RP) depolarization (P < 0.01), APD prolongation (P < 0.01) in adult cardiomyocytes, and calcium overload in cultured NRVMs (P < 0.01). Zacopride treatment effectively retarded myocardial hypertrophy and fibrosis, preserved the expression of Kir2.1 and some key players in Ca2+ homeostasis, normalized the RP (P < 0.05), and abbreviated APD (P < 0.01), thus lowered cytosolic [Ca2 +]i (P < 0.01 or P < 0.05). IK1channel blocker BaCl2 or chloroquine largely reversed the cardioprotection of zacopride. We conclude that cardiac electrical remodeling is concurrent with structural remodeling. By enhancing cardiac IK1, zacopride prevents Iso-induced electrical remodeling around intracellular Ca2+ overload, thereby attenuates cardiac structural disorder and dysfunction. Early electrical interventions may provide protection on cardiac remodeling.
Collapse
Affiliation(s)
- Qing-Hua Liu
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Xi Qiao
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Li-Jun Zhang
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Jin Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Li Zhang
- Clinical Laboratory, Children's Hospital of Shanxi, Taiyuan, China
| | - Xu-Wen Zhai
- Clinical Skills Teaching Simulation Hospital, Shanxi Medical University, Taiyuan, China
| | - Xiao-Ze Ren
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yu Li
- Department of Internal Medicine, The Hospital of Beijing Sports University, Beijing, China
| | - Xiao-Na Cao
- Department of Internal Medicine, The Hospital of Beijing Sports University, Beijing, China
| | - Qi-Long Feng
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Bo-Wei Wu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
18
|
Al-Mohanna F. The Cardiokines. ENDOCRINOLOGY OF THE HEART IN HEALTH AND DISEASE 2017:87-114. [DOI: 10.1016/b978-0-12-803111-7.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Hale TM. Persistent phenotypic shift in cardiac fibroblasts: impact of transient renin angiotensin system inhibition. J Mol Cell Cardiol 2015; 93:125-32. [PMID: 26631495 DOI: 10.1016/j.yjmcc.2015.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022]
Abstract
Fibrotic cardiac remodeling ultimately leads to heart failure - a debilitating and costly condition. Select antihypertensive agents have been effective in reducing or slowing the development of cardiac fibrosis. Moreover, some experimental studies have shown that the reduction in fibrosis induced by these agents persists long after stopping treatment. What has not been as well investigated is whether this transient treatment results in a protection against future fibrotic cardiac remodeling. In the present review, previously published studies are re-examined to assess whether the relative percent increase in collagen deposition over an off-treatment period is attenuated, relative to control, following transient antihypertensive treatment in young or adult rats. Present findings suggest that transient inhibition of the renin angiotensin system (RAS) not only produces a sustained reduction in cardiac fibrosis, but also results in a degree of protection against future collagen deposition. In addition, prior transient RAS inhibition appears to alter the cardiac fibroblast phenotype such that these cells show a muted response to myocardial injury - namely reduced proliferation, chemokine release, and collagen deposition. This review puts forth several potential mechanisms underlying this long-term cardiac protection that is afforded by transient RAS inhibition. Specifically, fibroblast phenotypic change, cardiac fibroblast apoptosis, sustained suppression of the RAS, persistent reduction in left ventricular hypertrophy, and persistent reduction in arterial pressure are each discussed. Identifying the mechanisms ultimately responsible for this change in cardiac fibroblast response to injury, hypertension, and aging may reveal novel targets for therapy.
Collapse
Affiliation(s)
- Taben M Hale
- Department of Basic Medical Sciences, University of Arizona, College of Medicine - Phoenix, 425 N 5th St, ABC1, Rm 327, USA.
| |
Collapse
|
20
|
Zhao J, Randive R, Stewart JA. Molecular mechanisms of AGE/RAGE-mediated fibrosis in the diabetic heart. World J Diabetes 2014; 5:860-867. [PMID: 25512788 PMCID: PMC4265872 DOI: 10.4239/wjd.v5.i6.860] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/23/2014] [Accepted: 11/03/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic hyperglycemia is one of the main characteristics of diabetes. Persistent exposure to elevated glucose levels has been recognized as one of the major causal factors of diabetic complications. In pathologies, like type 2 diabetes mellitus (T2DM), mechanical and biochemical stimuli activate profibrotic signaling cascades resulting in myocardial fibrosis and subsequent impaired cardiac performance due to ventricular stiffness. High levels of glucose nonenzymatically react with long-lived proteins, such as collagen, to form advanced glycation end products (AGEs). AGE-modified collagen increase matrix stiffness making it resistant to hydrolytic turnover, resulting in an accumulation of extracellular matrix (ECM) proteins. AGEs account for many of the diabetic cardiovascular complications through their engagement of the receptor for AGE (RAGE). AGE/RAGE activation stimulates the secretion of numerous profibrotic growth factors, promotes increased collagen deposition leading to tissue fibrosis, as well as increased RAGE expression. To date, the AGE/RAGE cascade is not fully understood. In this review, we will discuss one of the major fibrotic signaling pathways, the AGE/RAGE signaling cascade, as well as propose an alternate pathway via Rap1a that may offer insight into cardiovascular ECM remodeling in T2DM. In a series of studies, we demonstrate a role for Rap1a in the regulation of fibrosis and myofibroblast differentiation in isolated diabetic and non-diabetic fibroblasts. While these studies are still in a preliminary stage, inhibiting Rap1a protein expression appears to down-regulate the molecular switch used to activate the ζ isotype of protein kinase C thereby promote AGE/RAGE-mediated fibrosis.
Collapse
|
21
|
Goldsmith EC, Bradshaw AD, Zile MR, Spinale FG. Myocardial fibroblast-matrix interactions and potential therapeutic targets. J Mol Cell Cardiol 2014; 70:92-9. [PMID: 24472826 PMCID: PMC4005609 DOI: 10.1016/j.yjmcc.2014.01.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/18/2014] [Accepted: 01/20/2014] [Indexed: 01/18/2023]
Abstract
The cardiac extracellular matrix (ECM) is a dynamic structure, adapting to physiological and pathological stresses placed on the myocardium. Deposition and organization of the matrix fall under the purview of cardiac fibroblasts. While often overlooked compared to myocytes, fibroblasts play a critical role in maintaining ECM homeostasis under normal conditions and in response to pathological stimuli assume an activated, myofibroblast phenotype associated with excessive collagen accumulation contributing to impaired cardiac function. Complete appreciation of fibroblast function is hampered by the lack of fibroblast-specific reagents and the heterogeneity of fibroblast precursors. This is further complicated by our ability to dissect the role of myofibroblasts versus fibroblasts in myocardial in remodeling. This review highlights critical points in the regulation of collagen deposition by fibroblasts, the current panel of molecular tools used to identify fibroblasts and the role of fibroblast-matrix interactions in fibroblast function and differentiation into the myofibroblast phenotype. The clinical potential of exploiting differences between fibroblasts and myofibroblasts and using them to target specific fibroblast populations is also discussed. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium."
Collapse
Affiliation(s)
- Edie C Goldsmith
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, USA.
| | - Amy D Bradshaw
- Ralph H. Johnson Department of Veteran's Affairs Medical Center, Charleston, SC, USA; Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Michael R Zile
- Ralph H. Johnson Department of Veteran's Affairs Medical Center, Charleston, SC, USA; Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Francis G Spinale
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, USA; Cardiovascular Translational Research Center, University of South Carolina School of Medicine, USA; WJB Dorn Veteran Affairs Medical Center, Columbia, SC, USA
| |
Collapse
|
22
|
Barnes J, Pat B, Chen YW, Powell PC, Bradley WE, Zheng J, Karki A, Cui X, Guichard J, Wei CC, Collawn J, Dell'Italia LJ. Whole-genome profiling highlights the molecular complexity underlying eccentric cardiac hypertrophy. Ther Adv Cardiovasc Dis 2014; 8:97-118. [PMID: 24692245 DOI: 10.1177/1753944714527490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Heart failure is typically preceded by myocardial hypertrophy and remodeling, which can be concentric due to pressure overload (PO), or eccentric because of volume overload (VO). The molecular mechanisms that underlie these differing patterns of hypertrophy are distinct and have yet to be fully elucidated. Thus, the goal of this work is to identify novel therapeutic targets for cardiovascular conditions marked by hypertrophy that have previously been resistant to medical treatment, such as a pure VO. METHODS Concentric or eccentric hypertrophy was induced in rats for 2 weeks with transverse aortic constriction (TAC) or aortocaval fistula (ACF), respectively. Hemodynamic and echocardiographic analysis were used to assess the development of left ventricular (LV) hypertrophy and functional differences between groups. Changes in gene expression were determined by microarray and further characterized with Ingenuity Pathway Analysis. RESULTS Both models of hypertrophy increased LV mass. Rats with TAC demonstrated concentric LV remodeling while rats with ACF exhibited eccentric LV remodeling. Microarray analysis associated eccentric remodeling with a more extensive alteration of gene expression compared with concentric remodeling. Rats with VO had a marked activation of extracellular matrix genes, promotion of cell cycle genes, downregulation of genes associated with oxidative metabolism, and dysregulation of genes critical to cardiac contractile function. Rats with PO demonstrated similar categorical changes, but with the involvement of fewer individual genes. CONCLUSIONS Our results indicate that eccentric remodeling is a far more complex process than concentric remodeling. This study highlights the importance of several key biological functions early in the course of VO, including regulation of matrix, metabolism, cell proliferation, and contractile function. Thus, the results of this analysis will inform the ongoing search for new treatments to prevent the progression to heart failure in VO.
Collapse
Affiliation(s)
- Justin Barnes
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USADepartment of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Betty Pat
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yuan-Wen Chen
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Pamela C Powell
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wayne E Bradley
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Junying Zheng
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amrit Karki
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xiangqin Cui
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jason Guichard
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USADepartment of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chih-Chang Wei
- Birmingham Department of Veteran Affairs, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
23
|
Sullivan KE, Black LD. The role of cardiac fibroblasts in extracellular matrix-mediated signaling during normal and pathological cardiac development. J Biomech Eng 2014; 135:71001. [PMID: 23720014 DOI: 10.1115/1.4024349] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/30/2013] [Indexed: 01/18/2023]
Abstract
The extracellular matrix is no longer considered a static support structure for cells but a dynamic signaling network with the power to influence cell, tissue, and whole organ physiology. In the myocardium, cardiac fibroblasts are the primary cell type responsible for the synthesis, deposition, and degradation of matrix proteins, and they therefore play a critical role in the development and maintenance of functional heart tissue. This review will summarize the extensive research conducted in vivo and in vitro, demonstrating the influence of both physical and chemical stimuli on cardiac fibroblasts and how these interactions impact both the extracellular matrix and, by extension, cardiomyocytes. This work is of considerable significance, given that cardiovascular diseases are marked by extensive remodeling of the extracellular matrix, which ultimately impairs the functional capacity of the heart. We seek to summarize the unique role of cardiac fibroblasts in normal cardiac development and the most prevalent cardiac pathologies, including congenital heart defects, hypertension, hypertrophy, and the remodeled heart following myocardial infarction. We will conclude by identifying existing holes in the research that, if answered, have the potential to dramatically improve current therapeutic strategies for the repair and regeneration of damaged myocardium via mechanotransductive signaling.
Collapse
|
24
|
Membrane ERα attenuates myocardial fibrosis via RhoA/ROCK-mediated actin remodeling in ovariectomized female infarcted rats. J Mol Med (Berl) 2013; 92:43-51. [DOI: 10.1007/s00109-013-1103-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 10/21/2013] [Accepted: 10/30/2013] [Indexed: 10/26/2022]
|
25
|
Hutchinson KR, Lord CK, West TA, Stewart JA. Cardiac fibroblast-dependent extracellular matrix accumulation is associated with diastolic stiffness in type 2 diabetes. PLoS One 2013; 8:e72080. [PMID: 23991045 PMCID: PMC3749105 DOI: 10.1371/journal.pone.0072080] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 07/05/2013] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular complications are a leading cause of death in patients with type 2 diabetes mellitus (T2DM). Diastolic dysfunction is one of the earliest manifestations of diabetes-induced changes in left ventricular (LV) function, and results from a reduced rate of relaxation and increased stiffness. The mechanisms responsible for increased stiffness are not completely understood. Chronic hyperglycemia, advanced glycation endproducts (AGEs), and increased levels of proinflammatory and profibrotic cytokines are molecular pathways known to be involved in regulating extracellular matrix (ECM) synthesis and accumulation resulting in increased LV diastolic stiffness. Experiments were conducted using a genetically-induced mouse model of T2DM generated by a point mutation in the leptin receptor resulting in nonfunctional leptin receptors (db/db murine model). This study correlated changes in LV ECM and stiffness with alterations in basal activation of signaling cascades and expression of profibrotic markers within primary cultures of cardiac fibroblasts from diabetic (db/db) mice with nondiabetic (db/wt) littermates as controls. Primary cultures of cardiac fibrobroblasts were maintained in 25 mM glucose (hyperglycemic-HG; diabetic db/db) media or 5 mM glucose (normoglycemic-NG, nondiabetic db/wt) media. The cells then underwent a 24-hour exposure to their opposite (NG; diabetic db/db) media or 5 mM glucose (HG, nondiabetic db/wt) media. Protein analysis demonstrated significantly increased expression of type I collagen, TIMP-2, TGF-β, PAI-1 and RAGE in diabetic db/db cells as compared to nondiabetic db/wt, independent of glucose media concentration. This pattern of protein expression was associated with increased LV collagen accumulation, myocardial stiffness and LV diastolic dysfunction. Isolated diabetic db/db fibroblasts were phenotypically distinct from nondiabetic db/wt fibroblasts and exhibited a profibrotic phenotype in normoglycemic conditions.
Collapse
Affiliation(s)
- Kirk R. Hutchinson
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - C. Kevin Lord
- Feik School of Pharmacy, University of the Incarnate Word, San Antonio, Texas, United States of America
| | - T. Aaron West
- Center for Cardiovascular and Pulmonary Research, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - James A. Stewart
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, United States of America
| |
Collapse
|
26
|
Janicki JS, Spinale FG, Levick SP. Gender differences in non-ischemic myocardial remodeling: are they due to estrogen modulation of cardiac mast cells and/or membrane type 1 matrix metalloproteinase. Pflugers Arch 2013; 465:687-97. [PMID: 23417570 DOI: 10.1007/s00424-013-1229-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/14/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
This review is focused on gender differences in cardiac remodeling secondary to sustained increases in cardiac volume (VO) and generated pressure (PO). Estrogen has been shown to favorably alter the course of VO-induced remodeling. That is, the VO-induced increased extracellular matrix proteolytic activity and mast cell degranulation responsible for the adverse cardiac remodeling in males and ovariectomized rodents do not occur in intact premenopausal females. While less is known regarding the mechanisms responsible for female cardioprotection in PO-induced stress, gender differences in remodeling have been reported indicating the ability of premenopausal females to adequately compensate. In view of the fact that, in male mice with PO, mast cells have been shown to play a role in the adverse remodeling suggests favorable estrogen modification of mast cell phenotype may also be responsible for cardioprotection in females with PO. Thus, while evidence is accumulating regarding premenopausal females being cardioprotected, there remains the need for in-depth studies to identify critical downstream molecular targets that are under the regulation of estrogen and relevant to cardiac remodeling. Such studies would result in the development of therapy which provides cardioprotection while avoiding the adverse effects of systemic estrogen delivery.
Collapse
Affiliation(s)
- Joseph S Janicki
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| | | | | |
Collapse
|
27
|
Fowlkes V, Clark J, Fix C, Law BA, Morales MO, Qiao X, Ako-Asare K, Goldsmith JG, Carver W, Murray DB, Goldsmith EC. Type II diabetes promotes a myofibroblast phenotype in cardiac fibroblasts. Life Sci 2013; 92:669-76. [PMID: 23333820 DOI: 10.1016/j.lfs.2013.01.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 12/07/2012] [Accepted: 01/06/2013] [Indexed: 02/06/2023]
Abstract
AIMS Cardiovascular disease is the leading cause of death for individuals diagnosed with type II diabetes mellitus (DM). Changes in cardiac function, left ventricular wall thickness and fibrosis have all been described in patients and animal models of diabetes; however, the factors mediating increased matrix deposition remain unclear. The goal of this study was to evaluate whether cardiac fibroblast function is altered in a rat model of type II DM. MAIN METHODS Cardiac fibroblasts were isolated from 14 week old Zucker diabetic and lean control (LC) adult male rat hearts. Fibroblasts were examined for their ability to remodel 3-dimensional collagen matrices, their adhesion, migration and proliferation on collagen and changes in gene expression associated with collagen remodeling. KEY FINDINGS Cardiac fibroblasts from diabetic animals demonstrated significantly greater ability to contract 3-dimensional collagen matrices compared to cardiac fibroblasts from LC animals. The enhanced contractile behavior was associated with an increase in diabetic fibroblast proliferation and elevated expression of α-smooth muscle actin and type I collagen, suggesting the transformation of diabetic fibroblasts into a myofibroblast phenotype. SIGNIFICANCE Cardiac fibrosis is a common complication in diabetic cardiomyopathy which may contribute to the observed cardiac dysfunction associated with this disease. Identifying and understanding the changes in fibroblast behavior which contribute to the increased deposition of collagen and other matrix proteins may provide novel therapeutic targets for reducing the devastating effects of diabetes on the heart.
Collapse
Affiliation(s)
- Vennece Fowlkes
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Goldsmith EC, Bradshaw AD, Spinale FG. Cellular mechanisms of tissue fibrosis. 2. Contributory pathways leading to myocardial fibrosis: moving beyond collagen expression. Am J Physiol Cell Physiol 2012; 304:C393-402. [PMID: 23174564 DOI: 10.1152/ajpcell.00347.2012] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
While the term "fibrosis" can be misleading in terms of the complex patterns and processes of myocardial extracellular matrix (ECM) remodeling, fibrillar collagen accumulation is a common consequence of relevant pathophysiological stimuli, such as pressure overload (PO) and myocardial infarction (MI). Fibrillar collagen accumulation in both PO and MI is predicated on a number of diverse cellular and extracellular events, which include changes in fibroblast phenotype (transdifferentiation), posttranslational processing and assembly, and finally, degradation. The expansion of a population of transformed fibroblasts/myofibroblasts is a significant cellular event with respect to ECM remodeling in both PO and MI. The concept that this cellular expansion within the myocardial ECM may be due, at least in part, to endothelial-mesenchymal transformation and thereby not dissimilar to events observed in cancer progression holds intriguing future possibilities. Studies regarding determinants of procollagen processing, such as procollagen C-endopeptidase enhancer (PCOLCE), and collagen assembly, such as the secreted protein acidic and rich in cysteine (SPARC), have identified potential new targets for modifying the fibrotic response in both PO and MI. Finally, the transmembrane matrix metalloproteinases, such as MMP-14, underscore the diversity and complexity of this ECM proteolytic family as this protease can degrade the ECM as well as induce a profibrotic response. The growing recognition that the myocardial ECM is a dynamic entity containing a diversity of matricellular and nonstructural proteins as well as proteases and that the fibrillar collagens can change in structure and content in a rapid temporal fashion has opened up new avenues for modulating what was once considered an irreversible event--myocardial fibrosis.
Collapse
Affiliation(s)
- Edie C Goldsmith
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina 29208, USA
| | | | | |
Collapse
|
29
|
Balasubramanian S, Quinones L, Kasiganesan H, Zhang Y, Pleasant DL, Sundararaj KP, Zile MR, Bradshaw AD, Kuppuswamy D. β3 integrin in cardiac fibroblast is critical for extracellular matrix accumulation during pressure overload hypertrophy in mouse. PLoS One 2012; 7:e45076. [PMID: 22984613 PMCID: PMC3440340 DOI: 10.1371/journal.pone.0045076] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 08/16/2012] [Indexed: 12/22/2022] Open
Abstract
The adhesion receptor β3 integrin regulates diverse cellular functions in various tissues. As β3 integrin has been implicated in extracellular matrix (ECM) remodeling, we sought to explore the role of β3 integrin in cardiac fibrosis by using wild type (WT) and β3 integrin null (β3-/-) mice for in vivo pressure overload (PO) and in vitro primary cardiac fibroblast phenotypic studies. Compared to WT mice, β3-/- mice upon pressure overload hypertrophy for 4 wk by transverse aortic constriction (TAC) showed a substantially reduced accumulation of interstitial fibronectin and collagen. Moreover, pressure overloaded LV from β3-/- mice exhibited reduced levels of both fibroblast proliferation and fibroblast-specific protein-1 (FSP1) expression in early time points of PO. To test if the observed impairment of ECM accumulation in β3-/- mice was due to compromised cardiac fibroblast function, we analyzed primary cardiac fibroblasts from WT and β3-/- mice for adhesion to ECM proteins, cell spreading, proliferation, and migration in response to platelet derived growth factor-BB (PDGF, a growth factor known to promote fibrosis) stimulation. Our results showed that β3-/- cardiac fibroblasts exhibited a significant reduction in cell-matrix adhesion, cell spreading, proliferation and migration. In addition, the activation of PDGF receptor associated tyrosine kinase and non-receptor tyrosine kinase Pyk2, upon PDGF stimulation were impaired in β3-/- cells. Adenoviral expression of a dominant negative form of Pyk2 (Y402F) resulted in reduced accumulation of fibronectin. These results indicate that β3 integrin-mediated Pyk2 signaling in cardiac fibroblasts plays a critical role in PO-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Sundaravadivel Balasubramanian
- Cardiology Division, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Lakeya Quinones
- Cardiology Division, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Harinath Kasiganesan
- Cardiology Division, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Yuhua Zhang
- Cardiology Division, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Dorea L. Pleasant
- Cardiology Division, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kamala P. Sundararaj
- Cardiology Division, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Michael R. Zile
- Cardiology Division, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - Amy D. Bradshaw
- Cardiology Division, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - Dhandapani Kuppuswamy
- Cardiology Division, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
30
|
Souders CA, Borg TK, Banerjee I, Baudino TA. Pressure overload induces early morphological changes in the heart. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1226-35. [PMID: 22954422 DOI: 10.1016/j.ajpath.2012.06.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 06/08/2012] [Accepted: 06/20/2012] [Indexed: 12/19/2022]
Abstract
Cardiac hypertrophy, whether pathological or physiological, induces a variety of additional morphological and physiological changes in the heart, including altered contractility and hemodynamics. Events exacerbating these changes are documented during later stages of hypertrophy (usually termed pathological hypertrophy). Few studies document the morphological and physiological changes during early physiological hypertrophy. We define acute cardiac remodeling events in response to transverse aortic constriction (TAC), including temporal changes in hypertrophy, collagen deposition, capillary density, and the cell populations responsible for these changes. Cardiac hypertrophy induced by TAC in mice was detected 2 days after surgery (as measured by heart weight, myocyte width, and wall thickness) and peaked by day 7. Picrosirius staining revealed increased collagen deposition 7 days after TAC; immunostaining and flow cytometry indicated a concurrent increase in fibroblasts. The findings correlated with angiogenesis in TAC hearts; a decrease in capillary density was observed at day 2, with recovery to sham-surgery levels by day 7. Increased pericyte levels, which were observed 2 days after TAC, may mediate this angiogenic transition. Gene expression suggests a coordinated response in growth, extracellular matrix, and angiogenic factors to mediate the observed morphological changes. Our data demonstrate that morphological changes in response to cardiovascular injury occur rapidly, and the present findings allow correlation of specific events that facilitate these changes.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Aorta, Thoracic/surgery
- Cardiomegaly/pathology
- Cardiomegaly/physiopathology
- Cell Proliferation
- Collagen/metabolism
- Constriction, Pathologic
- Disease Models, Animal
- Extracellular Matrix/metabolism
- Fluorescent Antibody Technique
- Gene Expression Regulation
- Male
- Mice
- Mice, Inbred C57BL
- Myocardium/pathology
- Myocardium/ultrastructure
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Staining and Labeling
- Ventricular Remodeling
Collapse
Affiliation(s)
- Colby A Souders
- Department of Medicine, Cardiovascular Research Institute, Texas A&M Health Science Center, Temple, Texas 76504, USA
| | | | | | | |
Collapse
|
31
|
Baicu CF, Li J, Zhang Y, Kasiganesan H, Cooper G, Zile MR, Bradshaw AD. Time course of right ventricular pressure-overload induced myocardial fibrosis: relationship to changes in fibroblast postsynthetic procollagen processing. Am J Physiol Heart Circ Physiol 2012; 303:H1128-34. [PMID: 22942178 DOI: 10.1152/ajpheart.00482.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Myocardial fibrillar collagen is considered an important determinant of increased ventricular stiffness in pressure-overload (PO)-induced cardiac hypertrophy. Chronic PO was created in feline right ventricles (RV) by pulmonary artery banding (PAB) to define the time course of changes in fibrillar collagen content after PO using a nonrodent model and to determine whether this time course was dependent on changes in fibroblast function. Total, soluble, and insoluble collagen (hydroxyproline), collagen volume fraction (CVF), and RV end-diastolic pressure were assessed 2 days and 1, 2, 4, and 10 wk following PAB. Fibroblast function was assessed by quantitating the product of postsynthetic processing, insoluble collagen, and levels of SPARC (secreted protein acidic and rich in cysteine), a protein that affects procollagen processing. RV hypertrophic growth was complete 2 wk after PAB. Changes in RV collagen content did not follow the same time course. Two weeks after PAB, there were elevations in total collagen (control RV: 8.84 ± 1.03 mg/g vs. 2-wk PAB: 11.50 ± 0.78 mg/g); however, increased insoluble fibrillar collagen, as measured by CVF, was not detected until 4 wk after PAB (control RV CVF: 1.39 ± 0.25% vs. 4-wk PAB: 4.18 ± 0.87%). RV end-diastolic pressure was unchanged at 2 wk, but increased until 4 wk after PAB. RV fibroblasts isolated after 2-wk PAB had no changes in either insoluble collagen or SPARC expression; however, increases in insoluble collagen and in levels of SPARC were detected in RV fibroblasts from 4-wk PAB. Therefore, the time course of PO-induced RV hypertrophy differs significantly from myocardial fibrosis and diastolic dysfunction. These temporal differences appear dependent on changes in fibroblast function.
Collapse
Affiliation(s)
- Catalin F Baicu
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Martin TP, Robinson E, Harvey AP, MacDonald M, Grieve DJ, Paul A, Currie S. Surgical optimization and characterization of a minimally invasive aortic banding procedure to induce cardiac hypertrophy in mice. Exp Physiol 2012; 97:822-32. [PMID: 22447975 DOI: 10.1113/expphysiol.2012.065573] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Left ventricular pressure overload in response to aortic banding is an invaluable model for studying progression of cardiac hypertrophy and transition to heart failure. Traditional aortic banding has recently been superceded by minimally invasive transverse aortic banding (MTAB), which does not require ventilation so is less technically challenging. Although the MTAB approach is superior, few laboratories have documented success, and minimal information on the model is available. The aim of this study was to optimize conditions for MTAB and to characterize the development and progression of cardiac hypertrophy. Isofluorane proved the most suitable anaesthetic for MTAB surgery in mice, and 1 week after surgery the MTAB animals showed significant increases in systolic blood pressure (MTAB 110 ± 6 mmHg versus sham 78 ± 3 mmHg, n = 7, P < 0.0001) and heart weight to body weight ratio (MTAB 6.2 ± 0.2 versus sham 5.1 ± 0.1, n = 12, P < 0.001), together with systolic (e.g. fractional shortening, MTAB 31.7 ± 1% versus sham 36.6 ± 1.4%, P = 0.01) and diastolic dysfunction (e.g. left ventricular end-diastolic pressure, MTAB 12.7 ± 1.0 mmHg versus sham 6.7 ± 0.8 mmHg, P < 0.001). Leucocyte infiltration to the heart was evident after 1 week in MTAB hearts, signifying an inflammatory response. More pronounced remodelling was observed 4 weeks postsurgery (heart weight to body weight ratio, MTAB 9.1 ± 0.6 versus sham 4.6 ± 0.04, n = 10, P < 0.0001) and fractional shortening was further decreased (MTAB 24.3 ± 2.5% versus sham 43.6 ± 1.7%, n = 10, P = 0.003), together with a significant increase in cardiac fibrosis and further cardiac inflammation. Our findings demonstrate that MTAB is a relevant experimental model for studying development and progression of cardiac hypertrophy, which will be highly valuable for future studies examining potential novel therapeutic interventions in this setting.
Collapse
Affiliation(s)
- Tamara P Martin
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
Zhu J, Carver W. Effects of interleukin-33 on cardiac fibroblast gene expression and activity. Cytokine 2012; 58:368-79. [PMID: 22445500 DOI: 10.1016/j.cyto.2012.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 01/26/2012] [Accepted: 02/15/2012] [Indexed: 01/01/2023]
Abstract
Interleukin-33 (IL-33) is a recently described member of the interleukin-1 (IL-1) family. It is produced by diverse cell types in response to a variety of stresses including hemorrhage and increased mechanical load. Though only relatively recently discovered, IL-33 has been shown to participate in several pathological processes including promoting type 2 T helper cell-associated autoimmune diseases. In contrast, IL-33 has been also found to have protective effects in cardiovascular diseases. Recent studies have illustrated that IL-33 attenuates cardiac fibrosis induced by increased cardiovascular load in mice (transaortic constriction). Since cardiac fibrosis is largely dependent on increased production of extracellular matrix by cardiac fibroblasts, we hypothesized that IL-33 directly inhibits pro-fibrotic activities of these cells. Experiments have been carried out with isolated rat cardiac fibroblasts to evaluate the effects of IL-33 on the modulation of cardiac fibroblast gene expression and function to test this hypothesis. The expression of the IL-33 receptor, interleukin-1 receptor-like 1 (ST2), was detected at the mRNA and protein levels in isolated adult rat cardiac fibroblasts. Subsequently, the effects of IL-33 treatment (0-100 ng/ml) on the expression of extracellular matrix proteins and pro-inflammatory cytokines/chemokines were examined as well as the effects on rat cardiac fibroblast activities including proliferation, collagen gel contraction and migration. While IL-33 did not directly inhibit collagen I and collagen III production, it yielded a dose-dependent increase in the expression of interleukin-6 and monocyte chemotactic protein-1. Treatment of rat cardiac fibroblasts with IL-33 also impaired the migratory activity of these cells. Further experiments illustrated that IL-33 rapidly activated multiple signaling pathways including extracellular signal-regulated kinases, p38 mitogen-activated protein kinase, c-Jun N-terminal kinases and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) in a dose-dependent manner. Experiments were carried out with pharmacological inhibitors to determine the role of specific signaling pathways in the response of fibroblasts to IL-33. These experiments illustrated that the activation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinases are critical to the increased production of interleukin-6 and monocyte chemotactic protein-1 in response to IL-33. These studies suggest that IL-33 has an important role in the modulation of fibroblast function and gene expression. Surprisingly, IL-33 had no effect on the expression of genes encoding extracellular matrix components or on proliferation, markers typical of fibrosis. The major effects of IL-33 detected in these studies included inhibition of cell migration and activation of cytokine/chemokine expression. The previously reported inhibition of cardiac fibrosis may include more complicated mechanisms that involve other cardiac cell types. Future studies aimed at determining the effects of IL-33 on other cardiac cell types are warranted.
Collapse
Affiliation(s)
- Jinyu Zhu
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29208, USA.
| | | |
Collapse
|
34
|
Nagalla KT, Gole M, Claudino MA, Gardner JD, Murray DB. Alteration in myocardial prostaglandin D synthase expression in pressure overload-induced left ventricular remodeling in rats. Exp Biol Med (Maywood) 2012; 237:24-30. [PMID: 22228706 DOI: 10.1258/ebm.2011.011180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We hypothesized that acute pharmacological blockade of cyclooxygenase-2 (COX-2) using nimesulide (Nime) would prevent maladaptive changes in left ventricular (LV) structure and function secondary to abdominal aortic coarctation-induced pressure overload (PO). In vivo LV chamber dimension and function were assessed by pressure/volume admittance catheter at 14 days' postsurgery in three groups (n ≥ 6/group): sham-operated (Sham); untreated PO; and selective COX-2 inhibitor nimesulide-treated PO (PO + Nime; 25 mg/kg/d). Treatment was initiated 24 h prior to surgical induction of PO. Relative to Sham, there was a marked increase in LV mass index in the PO groups (2.2 ± 0.01 mg/g versus 2.9 ± 0.10 mg/g Sham versus PO, PO+Nime: 2.5 ± 0.03 mg/g). End diastolic volume, an indicator of chamber size, was significantly decreased in the PO animals compared with Sham (202 ± 17μL versus 143 ± 16 μL Sham versus PO, PO + Nime: 226 ± 9 μL). Collagen levels in PO rats assessed by hydroxyproline analysis were significantly elevated relative to Sham values. Nimesulide treatment attenuated: (1) the increase in LV mass index; (2) the reduction in end diastolic volume; and (3) the PO-induced increase in myocardial collagen. In summary, acute COX-2 inhibition with nimesulide attenuated the maladaptive changes in the LV after PO. Acknowledging the clinical failure of chronic COX-2 inhibitor use, we propose that acute treatment with COX-2 inhibition during the initial stages of cardiac remodeling can be beneficial in maintaining the normal cardiac structure and function during PO.
Collapse
Affiliation(s)
- Krishna T Nagalla
- Department of Pharmacology, University of Mississippi, University, MS 38677, USA
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Abstract
The focus of this review is on translational studies utilizing large-animal models and clinical studies that provide fundamental insight into cellular and extracellular pathways contributing to post-myocardial infarction (MI) left ventricle (LV) remodeling. Specifically, both large-animal and clinical studies have examined the potential role of endogenous and exogenous stem cells to alter the course of LV remodeling. Interestingly, there have been alterations in LV remodeling with stem cell treatment despite a lack of long-term cell engraftment. The translation of the full potential of stem cell treatments to clinical studies has yet to be realized. The modulation of proteolytic pathways that contribute to the post-MI remodeling process has also been examined. On the basis of recent large-animal studies, there appears to be a relationship between stem cell treatment post-MI and the modification of proteolytic pathways, generating the hypothesis that stem cells leave an echo effect that moderates LV remodeling.
Collapse
Affiliation(s)
- Jennifer A Dixon
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, 29425, USA
| | | |
Collapse
|
37
|
Schram K, Ganguly R, No EK, Fang X, Thong FSL, Sweeney G. Regulation of MT1-MMP and MMP-2 by leptin in cardiac fibroblasts involves Rho/ROCK-dependent actin cytoskeletal reorganization and leads to enhanced cell migration. Endocrinology 2011; 152:2037-47. [PMID: 21385940 DOI: 10.1210/en.2010-1166] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Altered leptin action has been implicated in the pathophysiology of heart failure in obesity, a hallmark of which is extracellular matrix remodeling. Here, we characterize the direct influence of leptin on matrix metalloproteinase (MMP) activity in primary adult rat cardiac fibroblasts and focus on elucidating the molecular mechanisms responsible. Leptin increased expression and cell surface localization of membrane type 1 (MT1)-MMP, measured by cell surface biotinylation assay and antibody-based colorimetric detection of an exofacial epitope in intact cells. Coimmunoprecipitation analysis showed that leptin also induced the formation of a cluster of differentiation 44/MT1-MMP complex. Qualitative analysis using rhodamine-conjugated phalloidin immunofluorescence indicated that leptin stimulated actin cytoskeletal reorganization and enhanced stress fiber formation. Hence, we analyzed activation of Ras homolog gene family (Rho), member A GTPase activity and found a rapid increase in response to leptin that corresponded with increased phosphorylation of cofilin. Quantitative analysis of cytoskeleton reorganization upon separation of globular and filamentous actin by differential centrifugation confirmed the significant increase in filamentous to globular actin ratio in response to leptin, which was prevented by pharmacological inhibition of Rho (C3 transferase) or its downstream effector kinase Rho-associated coiled-coil-forming protein kinase (ROCK) (Y-27632). Inhibition of Rho or ROCK also attenuated leptin-stimulated increases in cell surface MT1-MMP content. Pro-MMP-2 is a known MT1-MMP substrate, and we observed that enhanced cell surface MT1-MMP in response to leptin resulted in enhanced extracellular activation of pro-MMP-2 measured by gelatin zymography, which was again attenuated by inhibition of Rho or ROCK. Using wound scratch assays, we observed enhanced cell migration, but not proliferation, measured by 5-bromo2'-deoxy-uridine incorporation, in response to leptin, again via a Rho-dependent signaling mechanism. Our results suggest that leptin regulates myocardial matrix remodeling by regulating the cell surface localization of MT1-MMP in adult cardiac fibroblasts via Rho/ROCK-dependent actin cytoskeleton reorganization. Subsequent pro-MMP-2 activation then contributes to stimulation of cell migration.
Collapse
Affiliation(s)
- Kristin Schram
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|