1
|
Liu J, Tian J, Xie R, Chen L. CK2 inhibitor DMAT ameliorates spinal cord injury by increasing autophagy and inducing anti-inflammatory microglial polarization. Neurosci Lett 2023; 805:137222. [PMID: 37019269 DOI: 10.1016/j.neulet.2023.137222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Spinal cord injury (SCI) is a destructive and disabling nerve injury from which complete recovery has not yet been achieved due to complex pathology. Casein kinase II (CK2) is a pleiotropic serine/threonine protein kinase that plays an essential role in the nervous system. This study aimed to investigate the role of CK2 in SCI to understand the pathogenesis of SCI and explore new therapeutic methods. The SCI rat model of C5 unilateral clamp was established by modified clamp method in male adult SD rats. Then, CK2 inhibitor DMAT was used to treat SCI rats, and the behaviour, pathological changes in the spinal cord and microglial polarization were analysed. Additionally, the effects of DMAT on the polarization and autophagy of microglial BV-2 cells were investigated in vitro, and the effects of BV-2 polarization on spinal cord neuronal cells were analysed by Transwell coculture. Results showed that DMAT significantly increased the BBB score, improved histopathological injury, decreased the expression of inflammatory cytokines, and promoted M2 polarization of microglia in SCI rats. In vitro experiments further confirmed that DMAT could promote the polarization of BV-2 to the M2 type, promote autophagy, and reverse the LPS-induced decline in cell viability and increase in apoptosis of neuronal cells. The use of 3-MA confirmed that autophagy plays an important role in DMAT promoting M2 polarization of BV-2 to improve neuronal cell viability. In conclusion, CK2 inhibitor DMAT improved SCI by inducing anti-inflammatory polarization of microglia through autophagy and is a potential therapeutic target for SCI.
Collapse
|
2
|
Koronkiewicz M, Kazimierczuk Z, Orzeszko A. Antitumor activity of the protein kinase inhibitor 1-(β-D-2'-deoxyribofuranosyl)-4,5,6,7-tetrabromo- 1H-benzimidazole in breast cancer cell lines. BMC Cancer 2022; 22:1069. [PMID: 36243702 PMCID: PMC9571492 DOI: 10.1186/s12885-022-10156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background The protein kinases CK2 and PIM-1 are involved in cell proliferation and survival, the cell cycle, and drug resistance, and they are found overexpressed in virtually all types of human cancer, including breast cancer. In this study, we investigated the antitumor activity of a deoxynucleoside derivative, the protein kinase inhibitor compound 1-(β-D-2′-deoxyribofuranosyl)-4,5,6,7-tetrabromo-1H-benzimidazole (K164, also termed TDB), inter alia CK2 and PIM-1, on breast cancer cell lines (MDA-MB-231, MCF-7, and SK-BR-3). Methods An evaluation of the cytotoxic and proapoptotic effects, mitochondrial membrane potential (ΔΨm), and cell cycle progression was performed using an MTT assay, flow cytometry, and microscopic analysis. The Western blotting method was used to analyze the level of proteins important for the survival of breast cancer cells and proteins phosphorylated by the CK2 and PIM-1 kinases. Results The examined compound demonstrated the inhibition of cell viability in all the tested cell lines and apoptotic activity, especially in the MCF-7 and SK-BR-3 cells. Changes in the mitochondrial membrane potential (ΔΨm), cell cycle progression, and the level of the proteins studied were also observed. Conclusions The investigated CK2 and PIM-1 kinase inhibitor K164 is a promising compound that can be considered a potential agent in targeted therapy in selected types of breast cancer; therefore, further research is necessary. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10156-8.
Collapse
Affiliation(s)
- Mirosława Koronkiewicz
- Department of Biomedical Research, National Medicines Institute, Chełmska St. 30/34, 00-725, Warsaw, Poland.
| | - Zygmunt Kazimierczuk
- Institute of Chemistry, Warsaw University of Life Sciences, Nowoursynowska St. 159C, 02-787, Warsaw, Poland
| | - Andrzej Orzeszko
- Institute of Chemistry, Warsaw University of Life Sciences, Nowoursynowska St. 159C, 02-787, Warsaw, Poland
| |
Collapse
|
3
|
Baier A, Szyszka R. CK2 and protein kinases of the CK1 superfamily as targets for neurodegenerative disorders. Front Mol Biosci 2022; 9:916063. [PMID: 36275622 PMCID: PMC9582958 DOI: 10.3389/fmolb.2022.916063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Casein kinases are involved in a variety of signaling pathways, and also in inflammation, cancer, and neurological diseases. Therefore, they are regarded as potential therapeutic targets for drug design. Recent studies have highlighted the importance of the casein kinase 1 superfamily as well as protein kinase CK2 in the development of several neurodegenerative pathologies, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. CK1 kinases and their closely related tau tubulin kinases as well as CK2 are found to be overexpressed in the mammalian brain. Numerous substrates have been detected which play crucial roles in neuronal and synaptic network functions and activities. The development of new substances for the treatment of these pathologies is in high demand. The impact of these kinases in the progress of neurodegenerative disorders, their bona fide substrates, and numerous natural and synthetic compounds which are able to inhibit CK1, TTBK, and CK2 are discussed in this review.
Collapse
Affiliation(s)
- Andrea Baier
- Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Ryszard Szyszka
- Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
4
|
Pucko EB, Ostrowski RP. Inhibiting CK2 among Promising Therapeutic Strategies for Gliomas and Several Other Neoplasms. Pharmaceutics 2022; 14:331. [PMID: 35214064 PMCID: PMC8877581 DOI: 10.3390/pharmaceutics14020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
In gliomas, casein kinase 2 (CK2) plays a dominant role in cell survival and tumour invasiveness and is upregulated in many brain tumours. Among CK2 inhibitors, benzimidazole and isothiourea derivatives hold a dominant position. While targeting glioma tumour cells, they show limited toxicity towards normal cells. Research in recent years has shown that these compounds can be suitable as components of combined therapies with hyperbaric oxygenation. Such a combination increases the susceptibility of glioma tumour cells to cell death via apoptosis. Moreover, researchers planning on using any other antiglioma investigational pharmaceutics may want to consider using these agents in combination with CK2 inhibitors. However, different compounds are not equally effective when in such combination. More research is needed to elucidate the mechanism of treatment and optimize the treatment regimen. In addition, the role of CK2 in gliomagenesis and maintenance seems to have been challenged recently, as some compounds structurally similar to CK2 inhibitors do not inhibit CK2 while still being effective at reducing glioma viability and invasion. Furthermore, some newly developed inhibitors specific for CK2 do not appear to have strong anticancer properties. Further experimental and clinical studies of these inhibitors and combined therapies are warranted.
Collapse
Affiliation(s)
| | - Robert P. Ostrowski
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland;
| |
Collapse
|
5
|
Rybaczek D. Hydroxyurea-induced replication stress causes poly(ADP-ribose) polymerase-2 accumulation and changes its intranuclear location in root meristems of Vicia faba. JOURNAL OF PLANT PHYSIOLOGY 2016; 198:89-102. [PMID: 27155387 DOI: 10.1016/j.jplph.2016.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
Replication stress induced by 24 and 48h exposure to 2.5mM hydroxyurea (HU) increased the activity of poly(ADP-ribose) polymerase-2 (PARP-2; EC 2.4.2.30) in root meristem cells of Vicia faba. An increase in the number of PARP-2 foci was accompanied by their delocalization from peripheral areas to the interior of the nucleus. Our results indicate that the increase in PARP-2 was connected with an increase in S139-phosphorylated H2AX histones. The findings suggest the possible role of PARP-2 in replication stress. We also confirm that the intranuclear location of PARP-2 depends on the duration of HU-induced replication stress, confirming the role of PARP-2 as an indicator of stress intensity. Finally, we conclude that the more intense the HU-mediated replication stress, the greater the probability of PARP-2 activation or H2AXS139 phosphorylation, but also the greater the chance of increasing the efficiency of repair processes and a return to normal cell cycle progression.
Collapse
Affiliation(s)
- Dorota Rybaczek
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90236 Łódź, Poland.
| |
Collapse
|
6
|
Abstract
INTRODUCTION The conventional term 'casein kinase' (CK) denotes three classes of kinases - CK1, CK2 and Golgi-CK (G-CK)/Fam20C (family with sequence similarity 20, member C) - sharing the ability to phoshorylate casein in vitro, but otherwise unrelated to each other. All CKs have been reported to be implicated in human diseases, and reviews individually dealing with the druggability of CK1 and CK2 are available. Our aim is to provide a comparative analysis of the three classes of CKs as therapeutic targets. AREAS COVERED CK2 is the CK for which implication in neoplasia is best documented, with the survival of cancer cells often relying on its overexpression. An ample variety of cell-permeable CK2 inhibitors have been developed, with a couple of these now in clinical trials. Isoform-specific CK1 inhibitors that are expected to play a beneficial role in oncology and neurodegeneration have been also developed. In contrast, the pathogenic potential of G-CK/Fam20C is caused by its loss of function. Activators of Fam20C, notably sphingolipids and their analogs, may prove beneficial in this respect. EXPERT OPINION Optimization of CK2 and CK1 inhibitors will prove useful to develop new therapeutic strategies for treating cancer and neurodegenerative disorders, while the design of potent activators of G-CK/Fam20C will provide a new tool in the fields of bio-mineralization and hypophosphatemic diseases.
Collapse
Affiliation(s)
- Giorgio Cozza
- a 1 University of Padova, Department of Biomedical Sciences , Via Ugo Bassi 58B, 35131 Padova, Italy
| | - Lorenzo A Pinna
- a 1 University of Padova, Department of Biomedical Sciences , Via Ugo Bassi 58B, 35131 Padova, Italy .,b 2 University of Padova, Department of Biomedical Sciences and CNR Institute of Neurosciences , Padova, Italy ;
| |
Collapse
|
7
|
Rybaczek D. Ultrastructural changes associated with the induction of premature chromosome condensation in Vicia faba root meristem cells. PLANT CELL REPORTS 2014; 33:1547-1564. [PMID: 24898011 PMCID: PMC4133037 DOI: 10.1007/s00299-014-1637-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
PCC induction is regulated by several signaling pathways, and all observed effects associated with PCC induction are strongly dependent on the mechanism of action of each PCC inducer used. Electron microscopic observations of cells with symptoms of premature chromosome condensation (PCC) showed that the interphase chromatin and mitotic chromosomes differed with respect to a chemical compound inducing PCC. Induction of this process under the influence of hydroxyurea and caffeine as well as hydroxyurea and sodium metavanadate led to a slight decrease in interphase chromatin condensation and the formation of chromosomes with a considerably loosened structure in comparison with the control. Incubation in the mixture of hydroxyurea and 2-aminopurine brought about clear chromatin dispersion in interphase and very strong mitotic chromosome condensation. Electron microscopic examinations also revealed the characteristic features of the structural organization of cytoplasm of Vicia faba root meristems, which seemed to be dependent on the type of the PCC inducer used. The presence of the following was observed: (i) large plastids filled with starch grains (caffeine), (ii) mitochondria and plastids of electron dense matrix with dilated invaginations of their internal membranes (2-aminopurine), and (iii) large mitochondria of electron clear matrix and plastids containing protein crystals in their interior (sodium metavanadate). Moreover, since caffeine causes either the most effective loosening of chromatin fibrils (within the prematurely condensed chromosomes) or induction of starch formation (in the plastids surrounding the nuclei), this may be a proof that demonstrates the existence of a link between physical accessibility to chromatin and the effectiveness of cellular signaling (e.g., phosphothreonine-connected).
Collapse
Affiliation(s)
- Dorota Rybaczek
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Lodz, Poland,
| |
Collapse
|
8
|
Nardo T, Micalizzi G, Vicinanza R, De Iuliis F, Taglieri L, Scarpa S. Adhesion to type V collagen enhances staurosporine-induced apoptosis of adrenocortical cancer cells. Tumour Biol 2014; 35:9949-55. [PMID: 25004807 DOI: 10.1007/s13277-014-2281-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/24/2014] [Indexed: 11/28/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare and aggressive tumor characterized by poor prognosis and resistance to conventional chemotherapy. Many chemotherapy agents act determining apoptosis, therefore, studying the responsiveness of ACC to apoptosis inducing molecules, can help to identify possible conditions to promote cancer cell death. Tumor progression is strictly related to the interaction between cancer cells and stroma; yet, extracellular matrix remodeling regulates tumor cell proliferation and apoptosis. At this purpose, we have studied staurosporine-induced apoptosis of ACC cell line H295R adherent to different extracellular matrix molecules. H295R cells grown on plastic showed a low responsiveness to staurosporine, with an apoptotic rate of 24 %, as compared to breast cancer MCF7 cells, with an apoptotic rate of 60 %. The adhesion of H295R cells to type V collagen induced a significant increase of apoptosis up to 52 %; this effect was inhibited by anti-integrin alpha2 antibody. At the same time, the adhesion of H295R cells on polylysine, matrigel, lamimin, fibronectin, and type I-III collagens didn't modify staurosporine-induced apoptosis. Staurosporine-treated H295R cells showed an increase of PARP cleavage and of annexin-V expression, when adherent to type V collagen. Yet, staurosporine induced Akt and Erk activation on H295R cells: the adhesion on type V collagen didn't modify Akt activation, while determined a dramatic inhibition of Erk activation. The described data demonstrate that the adhesion to type V collagen specifically increases the responsiveness of ACC cells to staurosporine-induced apoptosis and that this is probably obtained through the inhibition of Erk activation.
Collapse
Affiliation(s)
- Tiziana Nardo
- Experimental Medicine Department, Sapienza University of Rome, 00161, Rome, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Modified tetrahalogenated benzimidazoles with CK2 inhibitory activity are active against human prostate cancer cells LNCaP in vitro. Bioorg Med Chem 2012; 20:4390-6. [DOI: 10.1016/j.bmc.2012.05.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 05/09/2012] [Accepted: 05/16/2012] [Indexed: 12/11/2022]
|
10
|
Feng D, Welker S, Körbel C, Rudzitis-Auth J, Menger MD, Montenarh M, Laschke MW. Protein kinase CK2 is a regulator of angiogenesis in endometriotic lesions. Angiogenesis 2012; 15:243-52. [DOI: 10.1007/s10456-012-9256-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 02/09/2012] [Indexed: 12/23/2022]
|
11
|
WACHTER J, NEUREITER D, ALINGER B, PICHLER M, FUEREDER J, OBERDANNER C, Di FAZIO P, OCKER M, BERR F, KIESSLICH T. Influence of five potential anticancer drugs on wnt pathway and cell survival in human biliary tract cancer cells. Int J Biol Sci 2012; 8:15-29. [PMID: 22211101 PMCID: PMC3226029 DOI: 10.7150/ijbs.8.15] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/21/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The role of Wnt signalling in carcinogenesis suggests compounds targeting this pathway as potential anti-cancer drugs. Several studies report activation of Wnt signalling in biliary tract cancer (BTC) thus rendering Wnt inhibitory drugs as potential candidates for targeted therapy of this highly chemoresistant disease. METHODS In this study we analysed five compounds with suggested inhibitory effects on Wnt signalling (DMAT, FH535, myricetin, quercetin, and TBB) for their cytotoxic efficiency, mode of cell death, time- and cell line-dependent characteristics as well as their effects on Wnt pathway activity in nine different BTC cell lines. RESULTS Exposure of cancer cells to different concentrations of the compounds results in a clear dose-dependent reduction of viability for all drugs in the order FH535 > DMAT > TBB > myricetin > quercetin. The first three substances show high cytotoxicity in all tested cell lines, cause a direct cytotoxic effect by induction of apoptosis and inhibit pathway-specific signal transduction in a Wnt transcription factor reporter activity assay. Selected target genes such as growth-promoting cyclin D1 and the cell cycle progression inhibitor p27 are down- and up-regulated after treatment, respectively. CONCLUSIONS Taken together, these data demonstrate that the small molecular weight inhibitors DMAT, F535 and TBB have a considerable cytotoxic and possibly Wnt-specific effect on BTC cell lines in vitro. Further in vivo investigation of these drugs as well as of new Wnt inhibitors may provide a promising approach for targeted therapy of this difficult-to-treat tumour.
Collapse
Affiliation(s)
- Julia WACHTER
- 1. Department of Internal Medicine I, Paracelsus Medical University / Salzburger Landeskliniken (SALK), Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Daniel NEUREITER
- 2. Institute of Pathology, Paracelsus Medical University / Salzburger Landeskliniken (SALK), Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Beate ALINGER
- 2. Institute of Pathology, Paracelsus Medical University / Salzburger Landeskliniken (SALK), Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Martin PICHLER
- 3. Division of Oncology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Julia FUEREDER
- 1. Department of Internal Medicine I, Paracelsus Medical University / Salzburger Landeskliniken (SALK), Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | | | - Pietro Di FAZIO
- 5. Institute for Surgical Research, Philipps-University Marburg, Baldingerstrasse, 35033 Marburg, Germany
| | - Matthias OCKER
- 5. Institute for Surgical Research, Philipps-University Marburg, Baldingerstrasse, 35033 Marburg, Germany
| | - Frieder BERR
- 1. Department of Internal Medicine I, Paracelsus Medical University / Salzburger Landeskliniken (SALK), Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Tobias KIESSLICH
- 1. Department of Internal Medicine I, Paracelsus Medical University / Salzburger Landeskliniken (SALK), Muellner Hauptstrasse 48, 5020 Salzburg, Austria
- 2. Institute of Pathology, Paracelsus Medical University / Salzburger Landeskliniken (SALK), Muellner Hauptstrasse 48, 5020 Salzburg, Austria
- ✉ Corresponding author: Tobias KIESSLICH, Department of Internal Medicine I, Paracelsus Medical University / SALK, Muellner Hauptstrasse 48, 5020 Salzburg, Austria. Tel: ++43 662 448258346, Fax: ++43 662 44824837,
| |
Collapse
|
12
|
Trembley JH, Unger GM, Korman VL, Tobolt DK, Kazimierczuk Z, Pinna LA, Kren BT, Ahmed K. Nanoencapsulated anti-CK2 small molecule drug or siRNA specifically targets malignant cancer but not benign cells. Cancer Lett 2011; 315:48-58. [PMID: 22050909 DOI: 10.1016/j.canlet.2011.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/06/2011] [Indexed: 12/19/2022]
Abstract
CK2, a pleiotropic Ser/Thr kinase, is an important target for cancer therapy. We tested our novel tenfibgen-based nanocapsule for delivery of the inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT) and an siRNA directed against both CK2α and α' catalytic subunits to prostate cancer cells. We present data on the TBG nanocapsule itself and on CK2 inhibition or downregulation in treated cells, including effects on Nuclear Factor-kappa B (NF-κB) p65. By direct comparison of two CK2-directed cargos, our data provide proof that the TBG encapsulation design for delivery of drugs specifically to cancer cells has strong potential for small molecule- and nucleic acid-based cancer therapy.
Collapse
|