1
|
Hidalgo-Sánchez M, Sánchez-Guardado L, Rodríguez-León J, Francisco-Morcillo J. The role of FGF15/FGF19 in the development of the central nervous system, eyes and inner ears in vertebrates. Tissue Cell 2024; 91:102619. [PMID: 39579736 DOI: 10.1016/j.tice.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Fibroblast growth factor 19 (FGF19), and its rodent ortholog FGF15, is a member of a FGF subfamily directly involved in metabolism, acting in an endocrine way. During embryonic development, FGF15/FGF19 also functions as a paracrine or autocrine factor, regulating key events in a large number of organs. In this sense, the Fgf15/Fgf19 genes control the correct development of the brain, eye, inner ear, heart, pharyngeal pouches, tail bud and limbs, among other organs, as well as muscle growth in adulthood. These growth factors show relevant differences according to molecular structures, signalling pathway and function. Moreover, their expression patterns are highly dynamic at different stages of development, in particular in the central nervous system. The difficulty in understanding the action of these genes increases when comparing their expression patterns and regulatory mechanisms between different groups of vertebrates. The present review will address the expression patterns and functions of the Fgf15/Fgf19 genes at different stages of vertebrate embryonic development, with special attention to the regulation of the early specification, cell differentiation, and morphogenesis of the central nervous system and some sensory organs such as eye and inner ear. The most relevant anatomical aspects related to the structures analysed have also been considered in detail to provide an understandable context for the molecular and cellular studies shown.
Collapse
Affiliation(s)
- Matías Hidalgo-Sánchez
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain.
| | - Luis Sánchez-Guardado
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía Humana, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| |
Collapse
|
2
|
Bourdon G, Chevaleyre C, Estienne A, Péchoux C, Bourgeais J, Hérault O, Ba M, Ramé C, Dupont J, Ducluzeau PH, Froment P. The hepatokine FGF21 stopped lipogenesis and reduced testosterone production in mLTC-1 Leydig Cell Line. Mol Cell Endocrinol 2024; 594:112350. [PMID: 39233040 DOI: 10.1016/j.mce.2024.112350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/05/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Beyond their link to metabolic issues like type 2 diabetes, factors like lifestyle, environment, and excess weight may also influence fertility. Fibroblast growth factor 21 (FGF21), a liver-derived hormone linked to energy balance, has recently emerged as a potential player in female mammalian reproduction. In male, only two studies have described potential effects of FGF21 on fertility. A recent study has described a negative correlation observed in obese patients presenting a low testosterone level associated with elevated FGF21 plasma levels. To investigate the role of FGF21 in steroidogenesis, we have studied the involvement of FGF21 in lipid and steroid activity by Leydig cells. Leydig cell model expressed all FGF21 receptors and β-Klotho cofactor as determined by RT-qPCR and by western-blot. Cultured mLTC-1 Leydig cell line exposed to increasing FGF21 concentration induced phosphorylation (Ser 473) of Akt and modified the CREB factor activity, suggesting the functionality of the FGF21 pathway. FGF21 consequences on mLTC-1 Leydig cells are inhibition of the lipid synthesis, leading to a reduction in the content of lipid droplets. The drop in lipid synthesis is associated with a reduction in the amount of lipids (mainly PUFA, cholesterol esterified, and triglycerides) as measured by lipidomic approach. The main consequence is to reduce the quantity of cholesterol, the steroid precursor, in mLTC-1 Leydig cells and is associated with a low production in testosterone. The decrease in androgens was also associated with a reduction in the steroid enzyme genes expression, which are under the control of CREB activity, and present a lower activity due to low cAMP intracellular levels. In vivo, steroid production was lowering after FGF21 administration in adult male mice associated to a decrease in progressive motility and velocity of sperm. In addition, these experimental data are reinforced by a data mining analysis focused on "gonad" terms in 1,319,905 article references showing the link already described between FGF21 with the fatty acids pathways, cholesterol storage, and steroid production. In conclusion, we demonstrated that Leydig cells in the testes present a functional FGF21 pathway, which regulates lipid metabolism and steroid function. In mLTC-1 Leydig cells, FGF21 reduced cholesterol, PUFA content, and testosterone production. Finally, this work highlighted that the hepatokine FGF21 could have a negative impact on androgen synthesis and testicular activity.
Collapse
Affiliation(s)
- Guillaume Bourdon
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Claire Chevaleyre
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Anthony Estienne
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Jérôme Bourgeais
- INSERM UMR 1069 N2C, Team LNOx, Tours University, 37000, Tours, France
| | - Olivier Hérault
- INSERM UMR 1069 N2C, Team LNOx, Tours University, 37000, Tours, France
| | - Mouhamadou Ba
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France; Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, 78350, Jouy-en-Josas, France
| | - Christelle Ramé
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Joëlle Dupont
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Pierre-Henri Ducluzeau
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Internal Medicine Department, Unit of Endocrinology, CHRU Tours, F-37044, Tours, France
| | - Pascal Froment
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.
| |
Collapse
|
3
|
Chankamngoen W, Thammayon N, Suntornsaratoon P, Nammultriputtar K, Kitiyanant N, Donpromma N, Chaichanan J, Supcharoen P, Teerapo K, Teerapornpuntakit J, Rodrat M, Panupinthu N, Svasti S, Wongdee K, Charoenphandhu N. Fibroblast growth factor-21 potentiates the stimulatory effects of 1,25-dihydroxyvitamin D 3 on transepithelial calcium transport and TRPV6 Ca 2+ channel expression. Biochem Biophys Res Commun 2024; 733:150429. [PMID: 39053106 DOI: 10.1016/j.bbrc.2024.150429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Fibroblast growth factor (FGF)-21 is a salient liver-derived endocrine regulator for metabolism of glucose and triglyceride as well as bone remodeling. Previously, certain peptides in the FGF family have been shown to modulate calcium absorption across the intestinal epithelia. Since FGF21 receptor, i.e., FGF receptor-1, is abundantly expressed in the enterocytes, there was a possibility that FGF21 might exert direct actions on the intestine. Herein, a large-scale production of recombinant FGF21 at the multi-gram level was developed in order to minimize variations among various batches. In the oral glucose tolerance test, recombinant FGF21 was found to reduce plasma glucose levels in mice fed high-fat diet. A series of experiments applying radioactive tracer 45Ca in Ussing chamber showed that FGF21 potentiated the stimulatory effect of low-dose 1,25-dihydroxyvitamin D3 [10 nM 1,25(OH)2D3] on the transepithelial calcium transport across intestinal epithelium-like Caco-2 monolayer. FGF21 + 1,25(OH)2D3 also decreased transepithelial resistance, but had no effect on epithelial potential difference or short-circuit current. Furthermore, 1,25(OH)2D3 alone upregulated the Caco-2 mRNA expression of the major apical calcium channels, i.e., transient receptor potential vanilloid subfamily member 6 (TRPV6), which was further elevated by a combination of FGF21 and 1,25(OH)2D3, consistent with the upregulated TRPV6 protein expression in enterocytes of FGF21-treated mice. However, FGF21 was without effects on the mRNA expression of voltage-gated calcium channel 1.3, calbindin-D9k, plasma membrane Ca2+-ATPase 1b, claudin-12 or claudin-15. In conclusion, FGF21 did exert a direct action on the intestinal epithelial cells by potentiating the 1,25(OH)2D3-enhanced calcium transport, presumably through the upregulation of TRPV6 expression.
Collapse
Affiliation(s)
- Wasutorn Chankamngoen
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nithipak Thammayon
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Panan Suntornsaratoon
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ketsaraporn Nammultriputtar
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narisorn Kitiyanant
- Center for Advanced Therapeutics (CAT), Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Natthida Donpromma
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Center for Advanced Therapeutics (CAT), Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Jirapan Chaichanan
- Establishment of Mahidol University Bio-industrial Development Center, Mahidol University, Nakhon Pathom, Thailand
| | - Promsup Supcharoen
- Mahidol University Frontier Research Facility (MU-FRF), Mahidol University, Nakhon Pathom, Thailand
| | - Kittitat Teerapo
- Mahidol University Frontier Research Facility (MU-FRF), Mahidol University, Nakhon Pathom, Thailand
| | | | - Mayuree Rodrat
- Center for Advanced Therapeutics (CAT), Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Nattapon Panupinthu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Kannikar Wongdee
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand.
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand.
| |
Collapse
|
4
|
Lin TK, Huang CR, Lin KJ, Hsieh YH, Chen SD, Lin YC, Chao AC, Yang DI. Potential Roles of Hypoxia-Inducible Factor-1 in Alzheimer's Disease: Beneficial or Detrimental? Antioxidants (Basel) 2024; 13:1378. [PMID: 39594520 PMCID: PMC11591038 DOI: 10.3390/antiox13111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The major pathological characteristics of Alzheimer's disease (AD) include senile plaques and neurofibrillary tangles (NFTs), which are mainly composed of aggregated amyloid-beta (Aβ) peptide and hyperphosphorylated tau protein, respectively. The excessive production of reactive oxygen species (ROS) and neuroinflammation are crucial contributing factors to the pathological mechanisms of AD. Hypoxia-inducible factor-1 (HIF-1) is a transcription factor critical for tissue adaption to low-oxygen tension. Growing evidence has suggested HIF-1 as a potential therapeutic target for AD; conversely, other experimental findings indicate that HIF-1 induction contributes to AD pathogenesis. These previous findings thus point to the complex, even contradictory, roles of HIF-1 in AD. In this review, we first introduce the general pathogenic mechanisms of AD as well as the potential pathophysiological roles of HIF-1 in cancer, immunity, and oxidative stress. Based on current experimental evidence in the literature, we then discuss the possible beneficial as well as detrimental mechanisms of HIF-1 in AD; these sections also include the summaries of multiple chemical reagents and proteins that have been shown to exert beneficial effects in AD via either the induction or inhibition of HIF-1.
Collapse
Affiliation(s)
- Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Chi-Ren Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Kai-Jung Lin
- Department of Family Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan;
| | - Yi-Heng Hsieh
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
| | - Yi-Chun Lin
- Department of Neurology, Taipei City Hospital Renai Branch, Taipei 106243, Taiwan;
| | - A-Ching Chao
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Department of Neurology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Sports Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Ding-I Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
5
|
Trusz GJ. Fibroblast growth factor 21. Differentiation 2024; 139:100793. [PMID: 38991938 DOI: 10.1016/j.diff.2024.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Fibroblast growth factor 21 (FGF21) belongs to the FGF19 subfamily and acts systemically, playing a key role in inter-organ crosstalk. Ranging from metabolism, reproduction, and immunity, FGF21 is a pleiotropic hormone which contributes to various physiological processes. Although most of its production across species stems from hepatic tissues, expression of FGF21 in mice has also been identified in adipose tissue, thymus, heart, pancreas, and skeletal muscle. Elevated FGF21 levels are affiliated with various diseases and conditions, such as obesity, type 2 diabetes, preeclampsia, as well as cancer. Murine knockout models are viable and show modest weight gain, while overexpression and gain-of-function models display resistance to weight gain, altered bone volume, and enhanced immunity. In addition, FGF21-based therapies are at the forefront of biopharmaceutical strategies aimed at treating metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Guillaume J Trusz
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
6
|
Chau PK, Ryan E, Dalen KT, Haugen F. Timing of acute cold exposure determines UCP1 and FGF21 expression - Possible interactions between the thermal environment, thermoregulatory responses, and peripheral clocks. J Therm Biol 2024; 124:103938. [PMID: 39142264 DOI: 10.1016/j.jtherbio.2024.103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/26/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
Thermoregulation is synchronized across the circadian cycle to uphold thermal homeostasis. To test if time-of-day matters for the response to environmental cold exposure, mice were acclimated to thermoneutrality (27 °C) for 2 months were subjected acutely (8 h) to cold ambient conditions (15 °C), whereas controls were maintained at thermoneutral conditions. The thermal exposure was tested in separate groups (N = 8) at three distinct time-of-day periods: in the LIGHT phase (L); the DARK phase (D); and a mix of the two (D + L). The magnitude of UCP1 protein and mRNA induction in brown adipose tissue (BAT) in response to acute cold exposure was time-of-day sensitive, peaking in LIGHT, whereas lower induction levels were observed in D + L, and DARK. Plasma levels of FGF21 were induced 3-fold by acute cold exposure at LIGHT and D + L, compared to the time-matched thermoneutral controls, whereas cold in DARK did not cause a significant increase of FGF21 plasma levels. Cold exposure affected, in BAT, the temporal mRNA expression patterns of core circadian clock components: Bmal1, Clock, Per1, Per3, Cry1, Cry2 Nr1d1, and Nr1d2, but in the liver, none of the transcripts were modified. Behavioral assessment using the Thermal Gradient Test (TGT) showed that acute cold exposure reduced cold sensitivity in D + L, but not in DARK. RNA-seq analyses of somatosensory neurons in DRG highlighted the role of the core circadian components in these cells, as well as transcriptional changes due to acute cold exposure. This elucidates the sensory system as a gauge and potential regulator of thermoregulatory responses based on circadian physiology. In conclusion, acute cold exposure elicits time-of-day specific effects on thermoregulatory pathways, which may involve underlying changes in thermal perception. These results have implications for efforts aimed at reducing risks associated with the organization of shift work in cold environments.
Collapse
Affiliation(s)
- Phong Kt Chau
- Division of Work Psychology and Physiology, National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Elin Ryan
- Division of Work Psychology and Physiology, National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Knut Tomas Dalen
- Department of Nutrition and Norwegian Transgenic Center, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Fred Haugen
- Division of Work Psychology and Physiology, National Institute of Occupational Health (STAMI), Oslo, Norway.
| |
Collapse
|
7
|
Krzyscik MA, Karl K, Dudeja P, Krejci P, Hristova K. Quantitative and qualitative differences in the activation of a fibroblast growth factor receptor by different FGF ligands. Cytokine Growth Factor Rev 2024; 78:77-84. [PMID: 39043538 PMCID: PMC11389727 DOI: 10.1016/j.cytogfr.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024]
Abstract
The FGF system is the most complex of all receptor tyrosine kinase signaling networks with 18 FGF ligands and four FGFRs that deliver morphogenic signals to pattern most embryonic structures. Even when a single FGFR is expressed in the tissue, different FGFs can trigger dramatically different biological responses via this receptor. Here we show both quantitative and qualitative differences in the signaling of one of the FGF receptors, FGFR1c, in response to different FGFs. We provide an overview of the recent discovery that FGFs engage in biased signaling via FGFR1c. We discuss the concept of ligand bias, which represents qualitative differences in signaling as it is a measure of differential ligand preferences for different downstream responses. We show how FGF ligand bias manifests in functional data in cultured chondrocyte cells. We argue that FGF-ligand bias contributes substantially to FGF-driven developmental processes, along with known differences in FGF expression levels, FGF-FGFR binding coefficients and differences in FGF stability in vivo.
Collapse
Affiliation(s)
- Mateusz A Krzyscik
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kelly Karl
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pooja Dudeja
- Department of Biology, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 65691, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 65691, Czech Republic; Institute of Animal Physiology and Genetics of the CAS, Brno 60200, Czech Republic
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
8
|
Ghanem M, Archer G, Crestani B, Mailleux AA. The endocrine FGFs axis: A systemic anti-fibrotic response that could prevent pulmonary fibrogenesis? Pharmacol Ther 2024; 259:108669. [PMID: 38795981 DOI: 10.1016/j.pharmthera.2024.108669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/22/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease for which therapeutic options are limited, with an unmet need to identify new therapeutic targets. IPF is thought to be the consequence of repeated microlesions of the alveolar epithelium, leading to aberrant epithelial-mesenchymal communication and the accumulation of extracellular matrix proteins. The reactivation of developmental pathways, such as Fibroblast Growth Factors (FGFs), is a well-described mechanism during lung fibrogenesis. Secreted FGFs with local paracrine effects can either exert an anti-fibrotic or a pro-fibrotic action during this pathological process through their FGF receptors (FGFRs) and heparan sulfate residues as co-receptors. Among FGFs, endocrine FGFs (FGF29, FGF21, and FGF23) play a central role in the control of metabolism and tissue homeostasis. They are characterized by a low affinity for heparan sulfate, present in the cell vicinity, allowing them to have endocrine activity. Nevertheless, their interaction with FGFRs requires the presence of mandatory co-receptors, alpha and beta Klotho proteins (KLA and KLB). Endocrine FGFs are of growing interest for their anti-fibrotic action during liver, kidney, or myocardial fibrosis. Innovative therapies based on FGF19 or FGF21 analogs are currently being studied in humans during liver fibrosis. Recent data report a similar anti-fibrotic action of endocrine FGFs in the lung, suggesting a systemic regulation of the pulmonary fibrotic process. In this review, we summarize the current knowledge on the protective effect of endocrine FGFs during the fibrotic processes, with a focus on pulmonary fibrosis.
Collapse
Affiliation(s)
- Mada Ghanem
- Université Paris Cité, Inserm, Physiopathologie et Épidémiologie des Maladies Respiratoires, F-75018 Paris, France
| | - Gabrielle Archer
- Université Paris Cité, Inserm, Physiopathologie et Épidémiologie des Maladies Respiratoires, F-75018 Paris, France
| | - Bruno Crestani
- Université Paris Cité, Inserm, Physiopathologie et Épidémiologie des Maladies Respiratoires, F-75018 Paris, France; Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, FHU APOLLO, Paris, France
| | - Arnaud A Mailleux
- Université Paris Cité, Inserm, Physiopathologie et Épidémiologie des Maladies Respiratoires, F-75018 Paris, France.
| |
Collapse
|
9
|
Mensah IK, Gowher H. Signaling Pathways Governing Cardiomyocyte Differentiation. Genes (Basel) 2024; 15:798. [PMID: 38927734 PMCID: PMC11202427 DOI: 10.3390/genes15060798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiomyocytes are the largest cell type that make up the heart and confer beating activity to the heart. The proper differentiation of cardiomyocytes relies on the efficient transmission and perception of differentiation cues from several signaling pathways that influence cardiomyocyte-specific gene expression programs. Signaling pathways also mediate intercellular communications to promote proper cardiomyocyte differentiation. We have reviewed the major signaling pathways involved in cardiomyocyte differentiation, including the BMP, Notch, sonic hedgehog, Hippo, and Wnt signaling pathways. Additionally, we highlight the differences between different cardiomyocyte cell lines and the use of these signaling pathways in the differentiation of cardiomyocytes from stem cells. Finally, we conclude by discussing open questions and current gaps in knowledge about the in vitro differentiation of cardiomyocytes and propose new avenues of research to fill those gaps.
Collapse
Affiliation(s)
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
Saito M, Nishi H, Takahashi SI, Hakuno F, Miyata I. Growth hormone resistance induced by amino acid deprivation in fao cells is independent of FGF21. Biochem Biophys Res Commun 2024; 709:149811. [PMID: 38569244 DOI: 10.1016/j.bbrc.2024.149811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Adequate dietary intake of amino acids is imperative for normal animal growth. Our previous work using rat hepatocarcinoma Fao cells demonstrated that growth hormone (GH) resistance, coupled with a concurrent reduction in insulin-like growth factor 1 (Igf1) mRNA levels, may underlie the growth retardation associated with a low-protein diet (LPD). In this study, we investigated whether FGF21 contributes to liver GH resistance in Fao rat hepatoma cells under amino acid deprivation conditions. Mice subjected to an LPD exhibited growth retardation, compromised GH signaling in the liver, and decreased blood IGF-1 levels compared with those on a control diet. To assess the potential involvement of fibroblast growth factor (FGF) 21, produced in response to amino acid deficiency, in the development of GH resistance, we examined GH signaling and Igf1 mRNA levels in Fao cells cultured in amino acid-deprived medium. Despite the inhibition of Fgf21 expression by the integrated stress response inhibitor, an inhibitor of the eukaryotic initiation factor 2-activating transcription factor 4 pathway, GH resistance persisted in response to amino acid deprivation. Additionally, the introduction of FGF21 into the control medium did not impair either GH signaling or GH-induced Igf1 transcription. These data suggest that, in Fao cells, amino acid deprivation induces GH resistance independently of FGF21 activity. By shedding light on the mechanisms behind growth retardation-associated GH resistance linked to amino acid deficiencies, our findings provide valuable insights for clinicians in formulating effective treatment strategies for individuals facing these challenges.
Collapse
Affiliation(s)
- Maki Saito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan; Department of Pediatrics, Jikei University School of Medicine, Japan
| | - Hiroki Nishi
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Fumihiko Hakuno
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan.
| | - Ichiro Miyata
- Department of Pediatrics, Jikei University School of Medicine, Japan
| |
Collapse
|
11
|
Bozadjieva-Kramer N, Shin JH, Li Z, Rupp AC, Miller N, Kernodle S, Lanthier N, Henry P, Seshadri N, Myronovych A, MacDougald OA, O’Rourke RW, Kohli R, Burant CF, Rothberg AE, Seeley RJ. Intestinal FGF15 regulates bile acid and cholesterol metabolism but not glucose and energy balance. JCI Insight 2024; 9:e174164. [PMID: 38587078 PMCID: PMC11128213 DOI: 10.1172/jci.insight.174164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/21/2024] [Indexed: 04/09/2024] Open
Abstract
Fibroblast growth factor 15/19 (FGF15/19, mouse/human ortholog) is expressed in the ileal enterocytes of the small intestine and released postprandially in response to bile acid absorption. Previous reports of FGF15-/- mice have limited our understanding of gut-specific FGF15's role in metabolism. Therefore, we studied the role of endogenous gut-derived FGF15 in bile acid, cholesterol, glucose, and energy balance. We found that circulating levels of FGF19 were reduced in individuals with obesity and comorbidities, such as type 2 diabetes and metabolic dysfunction-associated fatty liver disease. Gene expression analysis of ileal FGF15-positive cells revealed differential expression during the obesogenic state. We fed standard chow or a high-fat metabolic dysfunction-associated steatohepatitis-inducing diet to control and intestine-derived FGF15-knockout (FGF15INT-KO) mice. Control and FGF15INT-KO mice gained similar body weight and adiposity and did not show genotype-specific differences in glucose, mixed meal, pyruvate, and glycerol tolerance. FGF15INT-KO mice had increased systemic bile acid levels but decreased cholesterol levels, pointing to a primary role for gut-derived FGF15 in regulating bile acid and cholesterol metabolism when exposed to obesogenic diet. These studies show that intestinal FGF15 plays a specific role in bile acid and cholesterol metabolism regulation but is not essential for energy and glucose balance.
Collapse
Affiliation(s)
- Nadejda Bozadjieva-Kramer
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
- Department of Surgery and
| | | | - Ziru Li
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, USA
| | - Alan C. Rupp
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole Miller
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Nicolas Lanthier
- Hepato-Gastroenterology Department, Saint-Luc University Clinics, and
- Laboratory of Hepatology and Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Paulina Henry
- Pathological Anatomy Department, Institute of Pathology and Genetics, Gosselies, Belgium
| | | | | | - Ormond A. MacDougald
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert W. O’Rourke
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
- Department of Surgery and
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Charles F. Burant
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Amy E. Rothberg
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
12
|
Wang H, Qi LL, Shema C, Jiang KY, Ren P, Wang H, Wang L. Advances in the role and mechanism of fibroblasts in fracture healing. Front Endocrinol (Lausanne) 2024; 15:1350958. [PMID: 38469138 PMCID: PMC10925620 DOI: 10.3389/fendo.2024.1350958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/01/2024] [Indexed: 03/13/2024] Open
Abstract
With the development of social population ageing, bone fracture has become a global public health problem due to its high morbidity, disability and mortality. Fracture healing is a complex phenomenon involving the coordinated participation of immigration, differentiation and proliferation of inflammatory cells, angioblasts, fibroblasts, chondroblasts and osteoblasts which synthesize and release bioactive substances of extracellular matrix components, Mortality caused by age-related bone fractures or osteoporosis is steadily increasing worldwide as the population ages. Fibroblasts play an important role in the process of fracture healing. However, it is not clear how the growth factors and extracellular matrix stiffness of the bone-regeneration microenvironment affects the function of osteoblasts and fibroblasts in healing process. Therefore, this article focuses on the role of fibroblasts in the process of fracture healing and mechanisms of research progress.
Collapse
Affiliation(s)
- Hui Wang
- Department of Orthopedics, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li-li Qi
- Experimental Center for Teaching of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Clement Shema
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- International Education College of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kui-ying Jiang
- National Demonstration Center for Experimental Basic Medical Education, Capital Medical University, Beijing, China
| | - Ping Ren
- Experimental Center for Teaching of Hebei Medical University, Shijiazhuang, Hebei, China
| | - He Wang
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lei Wang
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, Hebei, China
| |
Collapse
|
13
|
Niida T, Yuki H, Suzuki K, Kinoshita D, Fujimoto D, Nakajima A, McNulty I, Lee H, Tanriverdi K, Nakamura S, Jang IK. Proteomics associated with coronary high-risk plaques by optical coherence tomography. J Thromb Thrombolysis 2024; 57:204-211. [PMID: 38296868 DOI: 10.1007/s11239-023-02938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 02/02/2024]
Abstract
Biomarkers are widely used for the diagnosis and monitoring of cardiovascular disease. However, markers for coronary high-risk plaques have not been identified. The aim of this study was to identify proteins specific to coronary high-risk plaques. Fifty-one patients (71.2 ± 11.1 years, male: 66.7%) who underwent intracoronary optical coherence tomography imaging and provided blood specimens for proteomic analysis were prospectively enrolled. A total of 1470 plasma proteins were analyzed per patient using the Olink® Explore 1536 Reagent Kit. In patients with thin-cap fibroatheroma, the protein expression of Calretinin (CALB2), Corticoliberin (CRH) and Alkaline phosphatase, placental type (ALPP) were significantly increased, while the expression of Neuroplastin (NPTN), Folate receptor gamma (FOLR3) and Serpin A12 (SERPINA12) were significantly decreased. In patients with macrophage infiltration, the protein expressions of Fatty acid-binding protein, intestinal (FABP2), and Fibroblast growth factor 21 (FGF21) were significantly decreased. In patients with lipid-rich plaques, the protein expression of Interleukin-17 C (IL17C) was significantly increased, while the expression of Fc receptor-like protein 3 (FCRL3) was significantly decreased. These proteins might be useful markers in identifying patients with coronary high-risk plaques. Clinical Trial Registration: https://www.umin.ac.jp/ctr/ , UMIN000041692.
Collapse
Affiliation(s)
- Takayuki Niida
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Haruhito Yuki
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keishi Suzuki
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daisuke Kinoshita
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daichi Fujimoto
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Akihiro Nakajima
- Interventional Cardiology Unit, New Tokyo Hospital, Chiba, Japan
| | - Iris McNulty
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kahraman Tanriverdi
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sunao Nakamura
- Interventional Cardiology Unit, New Tokyo Hospital, Chiba, Japan
| | - Ik-Kyung Jang
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Allan and Gill Gray Professor of Medicine, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, GRB 800, Boston, MA, 02114, USA.
| |
Collapse
|
14
|
Zhao Y, Zhao H, Li L, Yu S, Liu M, Jiang L. Ceramide on the road to insulin resistance and immunometabolic disorders in transition dairy cows: driver or passenger? Front Immunol 2024; 14:1321597. [PMID: 38274826 PMCID: PMC10808295 DOI: 10.3389/fimmu.2023.1321597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Dairy cows must undergo profound metabolic and endocrine adaptations during their transition period to meet the nutrient requirements of the developing fetus, parturition, and the onset of lactation. Insulin resistance in extrahepatic tissues is a critical component of homeorhetic adaptations in periparturient dairy cows. However, due to increased energy demands at calving that are not followed by a concomitant increase in dry matter intake, body stores are mobilized, and the risk of metabolic disorders dramatically increases. Sphingolipid ceramides involved in multiple vital biological processes, such as proliferation, differentiation, apoptosis, and inflammation. Three typical pathways generate ceramide, and many factors contribute to its production as part of the cell's stress response. Based on lipidomic profiling, there has generally been an association between increased ceramide content and various disease outcomes in rodents. Emerging evidence shows that ceramides might play crucial roles in the adaptive metabolic alterations accompanying the initiation of lactation in dairy cows. A series of studies also revealed a negative association between circulating ceramides and systemic insulin sensitivity in dairy cows experiencing severe negative energy balance. Whether ceramide acts as a driver or passenger in the metabolic stress of periparturient dairy cows is an unknown but exciting topic. In the present review, we discuss the potential roles of ceramides in various metabolic dysfunctions and the impacts of their perturbations. We also discuss how this novel class of bioactive sphingolipids has drawn interest in extrahepatic tissue insulin resistance and immunometabolic disorders in transition dairy cows. We also discuss the possible use of ceramide as a new biomarker for predicting metabolic diseases in cows and highlight the remaining problems.
Collapse
Affiliation(s)
| | | | | | | | | | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
15
|
Li SY, Zhao N, Wei D, Pu N, Hao XN, Huang JM, Peng GH, Tao Y. Ferroptosis in the ageing retina: A malevolent fire of diabetic retinopathy. Ageing Res Rev 2024; 93:102142. [PMID: 38030091 DOI: 10.1016/j.arr.2023.102142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Ageing retina is prone to ferroptosis due to the iron accumulation and impaired efficiency of intracellular antioxidant defense system. Ferroptosis acts as a cell death modality that is characterized by the iron-dependent accumulation of lipid peroxidation. Ferroptosis is distinctively different from other types of regulated cell death (RCD) at the morphological, biochemical, and genetic levels. Diabetic retinopathy (DR) is a common microvascular complication of diabetes. Its prevalence and severity increase progressively with age. Recent reports have shown that ferroptosis is implicated in the pathophysiology of DR. Under hyperglycemia condition, the endothelial cell and retinal pigment epithelium (RPE) cell will undergo ferroptosis, which contributes to the increased vascular permeability and the disrupted blood retinal barrier (BRB). The underlying etiology of DR can be attributed to the impaired BRB integrity and subsequent damages of the neurovascular units. In the absence of timely intervention, the compromised BRB can ultimately cause profound visual impairments. In particular, the ageing retina is vulnerable to ferroptosis, and hyperglycemia will accelerate the progression of this pathological process. In this article, we discuss the contributory role of ferroptosis in DR pathogenesis, and summarize recent therapeutic trials that targeting the ferroptosis. Further study on the ferroptosis mediated damage would enrich our knowledge of DR pathology, and promote the development of clinical treatment for this degenerative retinopathy.
Collapse
Affiliation(s)
- Si-Yu Li
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Na Zhao
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Dong Wei
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Ning Pu
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xiao-Na Hao
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Jie-Min Huang
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Guang-Hua Peng
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| | - Ye Tao
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
16
|
Zhou H, Xu H, Gong J, Li Z, Sun X. High Circulating FGF-23 and Its Relationship with Severity of Spinal Involvement in Diffuse Idiopathic Skeletal Hyperostosis. Calcif Tissue Int 2023; 113:526-531. [PMID: 37725126 DOI: 10.1007/s00223-023-01134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
The primary objective of this study was to determine the role of fibroblast growth factor 23 (FGF-23) in the pathogenesis of diffuse idiopathic skeletal hyperostosis (DISH). A total of 61 patients with DISH and 61 age- and sex-matched control patients without DISH were included in this study. The serum FGF-23, creatinine, inorganic phosphate, calcium, albumin, albumin-adjusted calcium and alkaline phosphatase, and C-reactive protein were assessed in both groups. Based on the extent of ossification, DISH group was further divided into T-DISH and L-DISH subgroups. Data were comparatively analyzed between DISH and Non-DISH groups and among T-DISH, L-DISH, and Non-DISH groups, respectively. Besides, the number of ossification segments of all DISH patients was quantified and the correlation between the number of ossification segments and the serum concentration of FGF-23 was analyzed. The results revealed that serum FGF-23 was significantly higher in DISH group than in Non-DISH group, regardless of gender. Interestingly, serum Pi was significantly lower in DISH group than in Non-DISH group. Moreover, a significant difference in serum FGF-23 among T-DISH, L-DISH, and Non-DISH groups was also observed. In contrast to Non-DISH group, both T-DISH and L-DISH subgroups displayed significantly higher serum FGF-23 level. Although the mean value was relatively higher in L-DISH subgroup, no statistically significant difference was found between T-DISH and L-DISH subgroups. In addition, a moderately positive correlation was identified between the number of ossification segments and the serum level of FGF-23. It can be concluded that serum FGF-23 could serve as a positive biomarker for DISH and may play a significant role in ectopic ossification in DISH.
Collapse
Affiliation(s)
- Haicheng Zhou
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, 210008, China
| | - Hongpan Xu
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Zhongshan Road 321, Nanjing, 210008, China
| | - Jianmin Gong
- College of Life Science, Yangtze University, Jingzhou, China
| | - Zhiyang Li
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Zhongshan Road 321, Nanjing, 210008, China.
| | - Xu Sun
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, 210008, China.
| |
Collapse
|
17
|
Fu X, Wang Y, Zhao F, Cui R, Xie W, Liu Q, Yang W. Shared biological mechanisms of depression and obesity: focus on adipokines and lipokines. Aging (Albany NY) 2023; 15:5917-5950. [PMID: 37387537 PMCID: PMC10333059 DOI: 10.18632/aging.204847] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
Depression and obesity are both common disorders currently affecting public health, frequently occurring simultaneously within individuals, and the relationship between these disorders is bidirectional. The association between obesity and depression is highly co-morbid and tends to significantly exacerbate metabolic and related depressive symptoms. However, the neural mechanism under the mutual control of obesity and depression is largely inscrutable. This review focuses particularly on alterations in systems that may mechanistically explain the in vivo homeostatic regulation of the obesity and depression link, such as immune-inflammatory activation, gut microbiota, neuroplasticity, HPA axis dysregulation as well as neuroendocrine regulators of energy metabolism including adipocytokines and lipokines. In addition, the review summarizes potential and future treatments for obesity and depression and raises several questions that need to be answered in future research. This review will provide a comprehensive description and localization of the biological connection between obesity and depression to better understand the co-morbidity of obesity and depression.
Collapse
Affiliation(s)
- Xiying Fu
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun 130041, P.R. China
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Yicun Wang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Ranji Cui
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Wei Xie
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Qianqian Liu
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Wei Yang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
- Department of Neurology, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| |
Collapse
|
18
|
Fuiten AM, Yoshimoto Y, Shukunami C, Stadler HS. Digits in a dish: An in vitro system to assess the molecular genetics of hand/foot development at single-cell resolution. Front Cell Dev Biol 2023; 11:1135025. [PMID: 36994104 PMCID: PMC10040768 DOI: 10.3389/fcell.2023.1135025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
In vitro models allow for the study of developmental processes outside of the embryo. To gain access to the cells mediating digit and joint development, we identified a unique property of undifferentiated mesenchyme isolated from the distal early autopod to autonomously re-assemble forming multiple autopod structures including: digits, interdigital tissues, joints, muscles and tendons. Single-cell transcriptomic analysis of these developing structures revealed distinct cell clusters that express canonical markers of distal limb development including: Col2a1, Col10a1, and Sp7 (phalanx formation), Thbs2 and Col1a1 (perichondrium), Gdf5, Wnt5a, and Jun (joint interzone), Aldh1a2 and Msx1 (interdigital tissues), Myod1 (muscle progenitors), Prg4 (articular perichondrium/articular cartilage), and Scx and Tnmd (tenocytes/tendons). Analysis of the gene expression patterns for these signature genes indicates that developmental timing and tissue-specific localization were also recapitulated in a manner similar to the initiation and maturation of the developing murine autopod. Finally, the in vitro digit system also recapitulates congenital malformations associated with genetic mutations as in vitro cultures of Hoxa13 mutant mesenchyme produced defects present in Hoxa13 mutant autopods including digit fusions, reduced phalangeal segment numbers, and poor mesenchymal condensation. These findings demonstrate the robustness of the in vitro digit system to recapitulate digit and joint development. As an in vitro model of murine digit and joint development, this innovative system will provide access to the developing limb tissues facilitating studies to discern how digit and articular joint formation is initiated and how undifferentiated mesenchyme is patterned to establish individual digit morphologies. The in vitro digit system also provides a platform to rapidly evaluate treatments aimed at stimulating the repair or regeneration of mammalian digits impacted by congenital malformation, injury, or disease.
Collapse
Affiliation(s)
- Allison M. Fuiten
- Research Center, Shriners Children’s, Portland, OR, United States
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, United States
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - H. Scott Stadler
- Research Center, Shriners Children’s, Portland, OR, United States
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, United States
- *Correspondence: H. Scott Stadler,
| |
Collapse
|
19
|
Tian H, Zhang S, Liu Y, Wu Y, Zhang D. Fibroblast Growth Factors for Nonalcoholic Fatty Liver Disease: Opportunities and Challenges. Int J Mol Sci 2023; 24:ijms24054583. [PMID: 36902015 PMCID: PMC10003526 DOI: 10.3390/ijms24054583] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), a chronic condition associated with metabolic dysfunction and obesity, has reached epidemic proportions worldwide. Although early NAFLD can be treated with lifestyle changes, the treatment of advanced liver pathology, such as nonalcoholic steatohepatitis (NASH), remains a challenge. There are currently no FDA-approved drugs for NAFLD. Fibroblast growth factors (FGFs) play essential roles in lipid and carbohydrate metabolism and have recently emerged as promising therapeutic agents for metabolic diseases. Among them, endocrine members (FGF19 and FGF21) and classical members (FGF1 and FGF4) are key regulators of energy metabolism. FGF-based therapies have shown therapeutic benefits in patients with NAFLD, and substantial progress has recently been made in clinical trials. These FGF analogs are effective in alleviating steatosis, liver inflammation, and fibrosis. In this review, we describe the biology of four metabolism-related FGFs (FGF19, FGF21, FGF1, and FGF4) and their basic action mechanisms, and then summarize recent advances in the biopharmaceutical development of FGF-based therapies for patients with NAFLD.
Collapse
Affiliation(s)
- Haoyu Tian
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Shuairan Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ying Liu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Yifan Wu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Dianbao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
- Correspondence: or
| |
Collapse
|
20
|
Lin D, Sun Q, Liu Z, Pan J, Zhu J, Wang S, Jia S, Zheng M, Li X, Gong F. Gut microbiota and bile acids partially mediate the improvement of fibroblast growth factor 21 on methionine-choline-deficient diet-induced non-alcoholic fatty liver disease mice. Free Radic Biol Med 2023; 195:199-218. [PMID: 36586452 DOI: 10.1016/j.freeradbiomed.2022.12.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, inflammation, and fibrosis, as well as gut dysbiosis. Fibroblast growth factor 21 (FGF21), which regulates glucose and lipid metabolism, has been proven to have a good effect on NAFLD. However, the modulating process between FGF21 and gut microbiota remains unclear in treating NAFLD. Here, the fecal microbiota composition of 30 patients with NAFLD who had undergone liver biopsy and 29 matched healthy participants were studied, together with the fecal bile acid (BA) profile. Treatment with FGF21 was given in methionine-choline-deficient (MCD) diet-induced NAFLD model C57BL/6 mice. An antibiotic cocktail and fecal microbiota transplantation were used to further confirm the benefits of FGF21 that were partially attributable to the change in gut microbiota. Patients with NAFLD had higher serum FGF21 levels and dysregulated fecal microbiota compositions and fecal BA profiles. In NAFLD mice, FGF21 significantly reduced steatohepatitis and collagen deposition in vivo and restored intestinal structure. FGF21 treatment also changed gut microbiota composition and regulated dysbiosis in BA metabolism. After treatment with an antibiotic cocktail, FGF21 partially alleviated hepatic and intestinal damage in NAFLD mice. Furthermore, fecal microbiota transplantation from FGF21-treated mice showed benefits similar to FGF21 therapy. The improvement using FGF21 in MCD diet-induced NAFLD mice is partially mediated via gut microbiota and BA. Gut microbiota-regulated BA metabolism may be a potential target of FGF21 in improving NAFLD.
Collapse
Affiliation(s)
- Danfeng Lin
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qiyan Sun
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhaoyang Liu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiaxuan Pan
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jing Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shangwen Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Sining Jia
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Minghua Zheng
- Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Xiaokun Li
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Fanghua Gong
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
21
|
Di Ciaula A, Bonfrate L, Baj J, Khalil M, Garruti G, Stellaard F, Wang HH, Wang DQH, Portincasa P. Recent Advances in the Digestive, Metabolic and Therapeutic Effects of Farnesoid X Receptor and Fibroblast Growth Factor 19: From Cholesterol to Bile Acid Signaling. Nutrients 2022; 14:nu14234950. [PMID: 36500979 PMCID: PMC9738051 DOI: 10.3390/nu14234950] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Bile acids (BA) are amphiphilic molecules synthesized in the liver (primary BA) starting from cholesterol. In the small intestine, BA act as strong detergents for emulsification, solubilization and absorption of dietary fat, cholesterol, and lipid-soluble vitamins. Primary BA escaping the active ileal re-absorption undergo the microbiota-dependent biotransformation to secondary BA in the colon, and passive diffusion into the portal vein towards the liver. BA also act as signaling molecules able to play a systemic role in a variety of metabolic functions, mainly through the activation of nuclear and membrane-associated receptors in the intestine, gallbladder, and liver. BA homeostasis is tightly controlled by a complex interplay with the nuclear receptor farnesoid X receptor (FXR), the enterokine hormone fibroblast growth factor 15 (FGF15) or the human ortholog FGF19 (FGF19). Circulating FGF19 to the FGFR4/β-Klotho receptor causes smooth muscle relaxation and refilling of the gallbladder. In the liver the binding activates the FXR-small heterodimer partner (SHP) pathway. This step suppresses the unnecessary BA synthesis and promotes the continuous enterohepatic circulation of BAs. Besides BA homeostasis, the BA-FXR-FGF19 axis governs several metabolic processes, hepatic protein, and glycogen synthesis, without inducing lipogenesis. These pathways can be disrupted in cholestasis, nonalcoholic fatty liver disease, and hepatocellular carcinoma. Thus, targeting FXR activity can represent a novel therapeutic approach for the prevention and the treatment of liver and metabolic diseases.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-059 Lublin, Poland
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Frans Stellaard
- Institute of Clinical Chemistry and Clinical Pharmacology, Venusberg-Campus 1, University Hospital Bonn, 53127 Bonn, Germany
| | - Helen H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
- Correspondence: ; Tel.: +39-328-4687215
| |
Collapse
|
22
|
Ding H, Zhang Y, Ma X, Zhang Z, Xu Q, Liu C, Li B, Dong S, Li L, Zhu J, Zhong M, Zhang G. Bariatric surgery for diabetic comorbidities: A focus on hepatic, cardiac and renal fibrosis. Front Pharmacol 2022; 13:1016635. [PMID: 36339532 PMCID: PMC9634081 DOI: 10.3389/fphar.2022.1016635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/06/2022] [Indexed: 07/29/2024] Open
Abstract
Continuously rising trends in diabetes render this disease spectrum an epidemic proportion worldwide. As the disease progresses, the pathological effects of diabetes may impair the normal function of several vital organs, eventually leading to increase the risk of other diabetic comorbidities with advanced fibrosis such as non-alcoholic fatty liver disease, diabetic cardiomyopathy, and diabetic kidney disease. Currently, lifestyle changes and drug therapies of hypoglycemic and lipid-lowering are effective in improving multi-organ function, but therapeutic efficacy is difficult to maintain due to poor compliance and drug reactions. Bariatric surgery, including sleeve gastrectomy and Roux-en-Y gastric bypass surgery, has shown better results in terms of prognosis for diabetes through long-term follow-up. Moreover, bariatric surgery has significant long-term benefits on the function of the heart, liver, kidneys, and other organs through mechanisms associated with reversal of tissue fibrosis. The aim of this review is to describe the impact of type 2 diabetes mellitus on hepatic, cardiac and renal fibrosis and to summarize the potential mechanisms by which bariatric surgery improves multiple organ function, particularly reversal of fibrosis.
Collapse
Affiliation(s)
- Huanxin Ding
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Yun Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xiaomin Ma
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Zhongwen Zhang
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Qian Xu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Chuxuan Liu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Bingjun Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Shuohui Dong
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Linchuan Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Jiankang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Mingwei Zhong
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Guangyong Zhang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
23
|
Bzdega K, Karolak JA. Phenotypic spectrum of FGF10-related disorders: a systematic review. PeerJ 2022; 10:e14003. [PMID: 36124135 PMCID: PMC9482362 DOI: 10.7717/peerj.14003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/13/2022] [Indexed: 01/19/2023] Open
Abstract
FGF10, as an FGFR2b-specific ligand, plays a crucial role during cell proliferation, multi-organ development, and tissue injury repair. The developmental importance of FGF10 has been emphasized by the identification of FGF10 abnormalities in human congenital disorders affecting different organs and systems. Single-nucleotide variants in FGF10 or FGF10-involving copy-number variant deletions have been reported in families with lacrimo-auriculo-dento-digital syndrome, aplasia of the lacrimal and salivary glands, or lethal lung developmental disorders. Abnormalities involving FGF10 have also been implicated in cleft lip and palate, myopia, or congenital heart disease. However, the exact developmental role of FGF10 and large phenotypic heterogeneity associated with FGF10 disruption remain incompletely understood. Here, we review human and animal studies and summarize the data on FGF10 mechanism of action, expression, multi-organ function, as well as its variants and their usefulness for clinicians and researchers.
Collapse
|
24
|
Niazi SA, Bakhsh A. Association between Endodontic Infection, Its Treatment and Systemic Health: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:931. [PMID: 35888650 PMCID: PMC9319780 DOI: 10.3390/medicina58070931] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023]
Abstract
The 'Focal Infection Era in Dentistry' in the late 19th and early 20th century resulted in widespread implementation of tooth extraction and limited the progress of endodontics. The theory proposed that bacteria and toxins entrapped in dentinal tubules could disseminate systemically to remote body parts, resulting in many types of degenerative systemic diseases. This theory was eventually refuted due to anecdotal evidence. However, lately there has been increased interest in investigating whether endodontic disease could have an impact on general health. There are reviews that have previously been carried out on this subject, but as new data have emerged since then, this review aims to appraise the available literature investigating the dynamic associations between apical periodontitis, endodontic treatment, and systemic health. The available evidence regarding focal infection theory, bacteraemia and inflammatory markers was appraised. The review also collated the available research arguing the associations of apical periodontitis with cardiovascular diseases, diabetes mellitus, adverse pregnancy outcome and autoimmune disorders, along with the effect of statins and immunomodulators on apical periodontitis prevalence and endodontic treatment prognosis. There is emerging evidence that bacteraemia and low-grade systemic inflammation associated with apical periodontitis may negatively impact systemic health, e.g., development of cardiovascular diseases, adverse pregnancy outcomes, and diabetic metabolic dyscontrol. However, there is limited information supporting the effect of diabetes mellitus or autoimmune disorders on the prevalence and prognosis post endodontic treatment. Furthermore, convincing evidence supports that successful root canal treatment has a beneficial impact on systemic health by reducing the inflammatory burden, thereby dismissing the misconceptions of focal infection theory. Although compelling evidence regarding the association between apical periodontitis and systemic health is present, further high-quality research is required to support and establish the benefits of endodontic treatment on systemic health.
Collapse
Affiliation(s)
- Sadia Ambreen Niazi
- Department of Endodontics, Centre of Oral Clinical & Translational Sciences, Faculty of Dentistry, Oral & Craniofacial Sciences, Guy’s Dental Hospital, King’s College London, London SE1 9RT, UK
| | - Abdulaziz Bakhsh
- Department of Restorative Dentistry, Faculty of Dentistry, Umm Al-Qura University, Makkah 24381, Saudi Arabia;
| |
Collapse
|
25
|
Mohale M, Gundampati RK, Krishnaswamy Suresh Kumar T, Heyes CD. Site-specific labeling and functional efficiencies of human fibroblast growth Factor-1 with a range of fluorescent Dyes in the flexible N-Terminal region and a rigid β-turn region. Anal Biochem 2022; 640:114524. [PMID: 34933004 DOI: 10.1016/j.ab.2021.114524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/08/2021] [Indexed: 11/01/2022]
Abstract
Human fibroblast growth factor-1 (hFGF1) binding to its receptor and heparin play critical roles in cell proliferation, angiogenesis and wound healing but is also implicated in cancer. Fluorescence imaging is a powerful approach to study such protein interactions, but it is not always obvious if the site chosen will be efficiently labeled, often relying on trial-and-error. To provide a more systematic approach towards an efficient site-specific labeling strategy, we labeled two structurally distinct regions of the protein - the flexible N-terminus and a rigid loop. Several dyes were chosen to cover the visible region and to investigate how the structure of the dye affects the labeling efficiency. Flexibility in either the protein labeling site or the dye structure was found to result in high labeling efficiency, but flexibility in both resulted in a significant decrease in labeling efficiency. Conversely, too much rigidity in both can result in dye-protein interactions that can aggregate the protein. Importantly, site-specifically labeling hFGF1 in these regions maintained biological activity. These results could be applicable to other proteins by considering the flexibility of both the protein labeling site and the dye structure.
Collapse
Affiliation(s)
- Mamello Mohale
- Department of Chemistry and Biochemistry, University of Arkansas, 345 N. Campus Drive, Fayetteville, AR, 72701, USA
| | - Ravi Kumar Gundampati
- Department of Chemistry and Biochemistry, University of Arkansas, 345 N. Campus Drive, Fayetteville, AR, 72701, USA
| | | | - Colin D Heyes
- Department of Chemistry and Biochemistry, University of Arkansas, 345 N. Campus Drive, Fayetteville, AR, 72701, USA.
| |
Collapse
|
26
|
Häussler S, Sadri H, Ghaffari MH, Sauerwein H. Symposium review: Adipose tissue endocrinology in the periparturient period of dairy cows. J Dairy Sci 2022; 105:3648-3669. [PMID: 35181138 DOI: 10.3168/jds.2021-21220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Abstract
The involvement of adipose tissue (AT) in metabolism is not limited to energy storage but turned out to be much more complex. We now know that in addition to lipid metabolism, AT is important in glucose homeostasis and AA metabolism and also has a role in inflammatory processes. With the discovery of leptin in 1994, the concept of AT being able to secrete messenger molecules collectively termed as adipokines, and acting in an endo-, para-, and autocrine manner emerged. Moreover, based on its asset of receptors, many stimuli from other tissues reaching AT via the bloodstream can also elicit distinct responses and thus integrate AT as a control element in the regulatory circuits of the whole body's functions. The protein secretome of human differentiated adipocytes was described to comprise more than 400 different proteins. However, in dairy cows, the characterization of the physiological time course of adipokines in AT during the transition from pregnancy to lactation is largely limited to the mRNA level; for the protein level, the analytical methods are limited and available assays often lack sound validation. In addition to proteinaceous adipokines, small compounds such as steroids can also be secreted from AT. Due to the lipophilic nature of steroids, they are stored in AT, but during the past years, AT became also known as being able to metabolize and even to generate steroid hormones de novo. In high-yielding dairy cows, AT is substantially mobilized due to increased energy requirements related to lactation. As to whether the steroidogenic system in AT is affected and may change during the common loss of body fat is largely unknown. Moreover, most research about AT in transition dairy cows is based on subcutaneous AT, whereas other depots have scarcely been investigated. This contribution aims to review the changes in adipokine mRNA and-where available-protein expression with time relative to calving in high-yielding dairy cows at different conditions, including parity, body condition, diet, specific feed supplements, and health disorders. In addition, the review provides insights into steroidogenic pathways in dairy cows AT, and addresses differences between fat depots where possible.
Collapse
Affiliation(s)
- Susanne Häussler
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - Morteza H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
27
|
Lamb CL, Giesy SL, McGuckin MM, Perfield JW, Butterfield A, Moniruzzaman M, Haughey NJ, McFadden JW, Boisclair YR. Fibroblast growth factor-21 improves insulin action in nonlactating ewes. Am J Physiol Regul Integr Comp Physiol 2022; 322:R170-R180. [PMID: 35018810 PMCID: PMC8816633 DOI: 10.1152/ajpregu.00259.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During metabolically demanding physiological states, ruminants and other mammals coordinate nutrient use among tissues by varying the set point of insulin action. This set point is regulated in part by metabolic hormones with some antagonizing (e.g., growth hormone and TNFα) and others potentiating (e.g., adiponectin) insulin action. Fibroblast growth factor-21 (FGF21) was recently identified as a sensitizing hormone in rodent and primate models of defective insulin action. FGF21 administration, however, failed to improve insulin action in dairy cows during the naturally occurring insulin resistance of lactation, raising the possibility that ruminants as a class of animals or lactation as a physiological state are unresponsive to FGF21. To start addressing this question, we asked whether FGF21 could improve insulin action in nonlactating ewes. Gene expression studies showed that the ovine FGF21 system resembles that of other species, with liver as the major site of FGF21 expression and adipose tissue as a target tissue based on high expression of the FGF21 receptor complex and activation of p44/42 extracellular signal-regulated kinase (ERK1/2) following exogenous FGF21 administration. FGF21 treatment for 13 days reduced plasma glucose and insulin over the entire treatment period and improved glucose disposal during a glucose tolerance test. FGF21 increased plasma adiponectin by day 3 of treatment but had no effect on the plasma concentrations of total, C16:0-, or C18:0-ceramide. Overall, these data confirm that the insulin-sensitizing effects of FGF21 are conserved in ruminants and raise the possibility that lactation is an FGF21-resistant state.
Collapse
Affiliation(s)
| | - Sarah L. Giesy
- 1Department of Animal Science, Cornell University, Ithaca, New York
| | | | - James W. Perfield
- 2Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | | | - Mohammed Moniruzzaman
- 3Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Norman J. Haughey
- 3Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | |
Collapse
|
28
|
Francavilla C, O'Brien CS. Fibroblast growth factor receptor signalling dysregulation and targeting in breast cancer. Open Biol 2022; 12:210373. [PMID: 35193394 PMCID: PMC8864352 DOI: 10.1098/rsob.210373] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023] Open
Abstract
Fibroblast Growth Factor Receptor (FGFR) signalling plays a critical role in breast embryonal development, tissue homeostasis, tumorigenesis and metastasis. FGFR, its numerous FGF ligands and signalling partners are often dysregulated in breast cancer progression and are one of the causes of resistance to treatment in breast cancer. Furthermore, FGFR signalling on epithelial cells is affected by signals from the breast microenvironment, therefore increasing the possibility of breast developmental abnormalities or cancer progression. Increasing our understanding of the multi-layered roles of the complex family of FGFRs, their ligands FGFs and their regulatory partners may offer novel treatment strategies for breast cancer patients, as a single agent or rational co-target, which will be explored in depth in this review.
Collapse
Affiliation(s)
- Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester M13 9PT, UK
- The Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK
| | - Ciara S. O'Brien
- The Christie Hospital NHS Foundation Trust, Wilmslow Road, Manchester M20 2BX, UK
- The Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
29
|
The canonical FGF-FGFR signaling system at the molecular level. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2021-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Extracellular signaling molecules, among them the fibroblast growth factors (FGFs), enable cells to communicate with neighboring cells. Such signaling molecules that receive and transmit a signal require specific tyrosine kinase receptors located at the cell surface (fibroblast growth factor receptors, FGFRs). The binding of a signaling molecule to its specific receptor results in receptor dimerization and conformational changes in the cytoplasmic part of the receptor. The conformational changes lead to trans-autophosphorylation of the tyrosine kinase domains of the receptors and subsequently to induction of several downstream signaling pathways and expression of appropriate genes. The signaling pathways activated by FGFs control and coordinate cell behaviors such as cell division, migration, differentiation, and cell death. FGFs and their transmembrane receptors are widely distributed in different tissues and participate in fundamental processes during embryonic, fetal, and adult human life. The human FGF/FGFR family comprises 22 ligands and 4 high affinity receptors. In addition, FGFs bind to low affinity receptors, heparan sulfate proteoglycans at the cell surface. The availability of appropriate ligand/receptor pair, combined with the co-receptor, initiates signaling. Inappropriate FGF/FGFR signaling can cause skeletal disorders, primarily dwarfism, craniofacial malformation syndromes, mood disorders, metabolic disorders, and Kallman syndrome. In addition, aberrations in FGF/FGFR signaling have already been reported in several types of malignant diseases. Knowledge about the molecular mechanisms of FGF/FGFR activation and signaling is necessary to understand the basis of these diseases.
Collapse
|
30
|
Wang WJ, Huang R, Zheng T, Du Q, Yang MN, Xu YJ, Liu X, Tao MY, He H, Fang F, Li F, Fan JG, Zhang J, Briollais L, Ouyang F, Luo ZC. Genome-Wide Placental Gene Methylations in Gestational Diabetes Mellitus, Fetal Growth and Metabolic Health Biomarkers in Cord Blood. Front Endocrinol (Lausanne) 2022; 13:875180. [PMID: 35721735 PMCID: PMC9204344 DOI: 10.3389/fendo.2022.875180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/21/2022] [Indexed: 12/03/2022] Open
Abstract
Gestational diabetes mellitus (GDM) "program" an elevated risk of metabolic syndrome in the offspring. Epigenetic alterations are a suspected mechanism. GDM has been associated with placental DNA methylation changes in some epigenome-wide association studies. It remains unclear which genes or pathways are affected, and whether any placental differential gene methylations are correlated to fetal growth or circulating metabolic health biomarkers. In an epigenome-wide association study using the Infinium MethylationEPIC Beadchip, we sought to identify genome-wide placental differentially methylated genes and enriched pathways in GDM, and to assess the correlations with fetal growth and metabolic health biomarkers in cord blood. The study samples were 30 pairs of term placentas in GDM vs. euglycemic pregnancies (controls) matched by infant sex and gestational age at delivery in the Shanghai Birth Cohort. Cord blood metabolic health biomarkers included insulin, C-peptide, proinsulin, IGF-I, IGF-II, leptin and adiponectin. Adjusting for maternal age, pre-pregnancy BMI, parity, mode of delivery and placental cell type heterogeneity, 256 differentially methylated positions (DMPs,130 hypermethylated and 126 hypomethylated) were detected between GDM and control groups accounting for multiple tests with false discovery rate <0.05 and beta-value difference >0.05. WSCD2 was identified as a differentially methylated gene in both site- and region-level analyses. We validated 7 hypermethylated (CYP1A2, GFRA1, HDAC4, LIMS2, NAV3, PAX6, UPK1B) and 10 hypomethylated (DPP10, CPLX1, CSMD2, GPR133, NRXN1, PCSK9, PENK, PRDM16, PTPRN2, TNXB) genes reported in previous epigenome-wide association studies. We did not find any enriched pathway accounting for multiple tests. DMPs in 11 genes (CYP2D7P1, PCDHB15, ERG, SIRPB1, DKK2, RAPGEF5, CACNA2D4, PCSK9, TSNARE1, CADM2, KCNAB2) were correlated with birth weight (z score) accounting for multiple tests. There were no significant correlations between placental gene methylations and cord blood biomarkers. In conclusions, GDM was associated with DNA methylation changes in a number of placental genes, but these placental gene methylations were uncorrelated to the observed metabolic health biomarkers (fetal growth factors, leptin and adiponectin) in cord blood. We validated 17 differentially methylated placental genes in GDM, and identified 11 differentially methylated genes relevant to fetal growth.
Collapse
Affiliation(s)
- Wen-Juan Wang
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, and Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Lunenfeld-Tanenbaum Research Institute, Prosserman Centre for Population Health Research, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Clinical Skills Center, School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Rong Huang
- Lunenfeld-Tanenbaum Research Institute, Prosserman Centre for Population Health Research, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tao Zheng
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Qinwen Du
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, and Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng-Nan Yang
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, and Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Ya-Jie Xu
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, and Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xin Liu
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, and Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Min-Yi Tao
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, and Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Hua He
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, and Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Fang Fang
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, and Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Fei Li
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, and Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jian-Gao Fan
- Center for Fatty Liver, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, and Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Laurent Briollais
- Lunenfeld-Tanenbaum Research Institute, Prosserman Centre for Population Health Research, Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Fengxiu Ouyang
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, and Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhong-Cheng Luo, ; Fengxiu Ouyang,
| | - Zhong-Cheng Luo
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, and Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Lunenfeld-Tanenbaum Research Institute, Prosserman Centre for Population Health Research, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- *Correspondence: Zhong-Cheng Luo, ; Fengxiu Ouyang,
| |
Collapse
|
31
|
Alber J, Freisinger P, Föller M. The synthesis of fibroblast growth factor 23 is upregulated by homocysteine in UMR106 osteoblast-like cells. Nutrition 2021; 96:111573. [PMID: 35091320 DOI: 10.1016/j.nut.2021.111573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Fibroblast growth factor 23 (FGF23) controls the production and degradation of biologically active vitamin D, 1,25(OH)2D3, and phosphate reabsorption in the kidney as a hormone synthesized by bone cells. Additional paracrine effects in other organs exist as well. As a biomarker, the FGF23 plasma concentration increases in renal and cardiovascular diseases, and is correlated with outcome. The regulation of FGF23 is incompletely understood and dependent on several factors, including oxidative stress. L-homocysteine is an amino acid produced in methionine metabolism, and can be converted into further metabolites depending on the availability of vitamin B. Hyperhomocysteinemia is a potential cardiovascular risk factor. Our study aimed to explore whether homocysteine impacts FGF23 synthesis. METHODS Experiments were performed in UMR106 osteoblast-like cells. Fgf23 gene expression and FGF23 protein concentration were measured by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Oxidative stress was determined by 2',7'-dichlorofluorescein diacetate fluorescence. RESULTS Homocysteine dose-dependently upregulated Fgf23 gene expression and protein synthesis. Moreover, homocysteine imposed oxidative stress on UMR106 cells. The effect of homocysteine on Fgf23 was abrogated by antioxidant ascorbic acid. CONCLUSIONS Homocysteine is a potent stimulator of FGF23 production, an effect at least in part mediated by oxidative stress. The homocysteine-dependent upregulation of FGF23 presumably contributes to its role as a cardiovascular risk factor.
Collapse
Affiliation(s)
- Jana Alber
- University of Hohenheim, Department of Physiology, Stuttgart, Germany
| | - Peter Freisinger
- Kreiskliniken Reutlingen, Department of Pediatrics, Reutlingen, Germany
| | - Michael Föller
- University of Hohenheim, Department of Physiology, Stuttgart, Germany.
| |
Collapse
|
32
|
Zhang J, Liu Q, He J, Li Y. Novel Therapeutic Targets in Liver Fibrosis. Front Mol Biosci 2021; 8:766855. [PMID: 34805276 PMCID: PMC8602792 DOI: 10.3389/fmolb.2021.766855] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
Liver fibrosis is end-stage liver disease that can be rescued. If irritation continues due to viral infection, schistosomiasis and alcoholism, liver fibrosis can progress to liver cirrhosis and even cancer. The US Food and Drug Administration has not approved any drugs that act directly against liver fibrosis. The only treatments currently available are drugs that eliminate pathogenic factors, which show poor efficacy; and liver transplantation, which is expensive. This highlights the importance of clarifying the mechanism of liver fibrosis and searching for new treatments against it. This review summarizes how parenchymal, nonparenchymal cells, inflammatory cells and various processes (liver fibrosis, hepatic stellate cell activation, cell death and proliferation, deposition of extracellular matrix, cell metabolism, inflammation and epigenetics) contribute to liver fibrosis. We highlight discoveries of novel therapeutic targets, which may provide new insights into potential treatments for liver fibrosis.
Collapse
Affiliation(s)
- Jinhang Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
33
|
Farooq M, Khan AW, Kim MS, Choi S. The Role of Fibroblast Growth Factor (FGF) Signaling in Tissue Repair and Regeneration. Cells 2021; 10:cells10113242. [PMID: 34831463 PMCID: PMC8622657 DOI: 10.3390/cells10113242] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a large family of secretory molecules that act through tyrosine kinase receptors known as FGF receptors. They play crucial roles in a wide variety of cellular functions, including cell proliferation, survival, metabolism, morphogenesis, and differentiation, as well as in tissue repair and regeneration. The signaling pathways regulated by FGFs include RAS/mitogen-activated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)–protein kinase B (AKT), phospholipase C gamma (PLCγ), and signal transducer and activator of transcription (STAT). To date, 22 FGFs have been discovered, involved in different functions in the body. Several FGFs directly or indirectly interfere with repair during tissue regeneration, in addition to their critical functions in the maintenance of pluripotency and dedifferentiation of stem cells. In this review, we summarize the roles of FGFs in diverse cellular processes and shed light on the importance of FGF signaling in mechanisms of tissue repair and regeneration.
Collapse
Affiliation(s)
- Mariya Farooq
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.F.); (A.W.K.); (M.S.K.)
| | - Abdul Waheed Khan
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.F.); (A.W.K.); (M.S.K.)
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.F.); (A.W.K.); (M.S.K.)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.F.); (A.W.K.); (M.S.K.)
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
- Correspondence:
| |
Collapse
|
34
|
Cai X, Tao W, Li L. Glioma cell-derived FGF20 suppresses macrophage function by activating β-catenin. Cell Signal 2021; 89:110181. [PMID: 34757019 DOI: 10.1016/j.cellsig.2021.110181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 01/19/2023]
Abstract
Macrophages, which are the main regulators of the tumor-associated microenvironment, play a crucial role in the progression of various tumors. The anti-inflammatory role of β-catenin in macrophages has been extensively studied in recent years. However, the association between macrophages and β-catenin with regards to the development of glioma has not yet been investigated, at least to the best of our knowledge. The present study found that fibroblast growth factor 20 (FGF20), as a paracrine cytokine, was secreted by glioma cells and acted on macrophages. FGF20 treated macrophages exhibited a decreased pro-inflammatory phenotype upon LPS and IFN-γ stimulation, characterized by the decreased the level of M1 macrophage markers and the reduced production of pro-inflammatory cytokines. Mechanistic analysis revealed that FGF20 interacted with FGF receptor 1 isoform of macrophages, and subsequently increased the stability of β-catenin via phosphorylating GSK3β, which suppressed macrophage polarization to the M1-phenotype. Finally, it was found that FGF20 of glioma cells expression was upregulated by the glucocorticoids (GCs) treatment, and decreased FGF20 expression of glioma cells markedly blocked the effects of GCs on the polarization of macrophages. On the whole, the present study demonstrates that FGF20, secreted from glioma cells, participates the GCs regulated macrophage function and exerts anti-inflammatory effects during the treatment of glioma by GCs. Moreover, a molecular link was identified between glioma cells and macrophages, demonstrating that FGF20 modulates the GCs-induced dysfunction of macrophages during glioma development.
Collapse
Affiliation(s)
- Xue Cai
- Department of Emergency, ShengJing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| | - Weichen Tao
- Department of Emergency, ShengJing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Lei Li
- Department of Emergency, ShengJing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| |
Collapse
|
35
|
Activation of activator protein-1-fibroblast growth factor 21 signaling attenuates Cisplatin hepatotoxicity. Biochem Pharmacol 2021; 194:114823. [PMID: 34748822 DOI: 10.1016/j.bcp.2021.114823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022]
Abstract
Fibroblast growth factor (Fgf/FGF) 21, which plays important roles in sugar, lipid and energy metabolism, has been accepted as a mito-stress marker gene. We recently reported that FGF21 expression can be up-regulated via activation of aryl hydrocarbon receptor (AhR) or glucocorticoid receptor (GR) and that FGF21 plays important cytoprotective roles. Cisplatin (cis-diamminedichloroplatinum, CDDP) is a widely used chemotherapeutic drug. Numerous adverse effects including hepatotoxicity have been noted during CDDP therapy. It is known that CDDP can induce mitochondrial dysfunction. The studies were designed to determine the regulation of Fgf/FGF21 expression by CDDP, and to characterize the underlying mechanisms of its regulation, as well as to determine the impact of gain or loss of Fgf/FGF21 function on the progression of CDDP hepatotoxicity. Our results showed that CDDP and phorbol ester induced mRNA and protein expression of Fgf/FGF21 and β-Klotho, two essential components of Fgf21 signaling, in mouse livers and cultured mouse/human hepatocytes. Luciferase reporter assays and ChIP-qPCR assays demonstrated that the cJun-AP-1 activation is responsible for CDDP- and phorbol ester-induced Fgf/FGF21 expression. Such induction is abolished after cotreated with AP-1 inhibitor SR11302. In addition, CDDP produces more severe liver injury in Fgf21-null than wild-type mice. Pre-treatment of GR activator dexamethasone or AhR activator β-Naphthoflavone, both of which can induce Fgf21 expression, attenuated CDDP-induced hepatotoxicity in vivo and in vitro. In conclusion, Fgf/FGF21-β-Klotho signaling can be activated via AP-1 activation. Gain of Fgf/FGF21 function attenuates the progression of CDDP hepatotoxicity, which may be considered clinically to improve CDDP therapy.
Collapse
|
36
|
Ji Y, Lee H, Kaura S, Yip J, Sun H, Guan L, Han W, Ding Y. Effect of Bariatric Surgery on Metabolic Diseases and Underlying Mechanisms. Biomolecules 2021; 11:1582. [PMID: 34827579 PMCID: PMC8615605 DOI: 10.3390/biom11111582] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
Obesity is a highly prevalent public health concern, attributed to multifactorial causes and limited in treatment options. Several comorbidities are closely associated with obesity such as the development of type 2 diabetes mellitus (T2DM), cardiovascular and cerebrovascular diseases, and nonalcoholic fatty liver disease (NAFLD). Bariatric surgery, which can be delivered in multiple forms, has been remarked as an effective treatment to decrease the prevalence of obesity and its associated comorbidities. The different types of bariatric surgery create a variety of new pathways for food to metabolize in the body and truncate the stomach's caliber. As a result, only a small quantity of food is tolerated, and the body mass index noticeably decreases. This review describes the improvements of obesity and its comorbidities following bariatric surgery and their mechanism of improvement. Additionally, endocrine function improvements after bariatric surgery, which contributes to the patients' health improvement, are described, including the role of glucagon-like peptide-1 (GLP-1), fibroblast growth factors 19 and 21 (FGF-19, FGF-21), and pancreatic peptide YY (PYY). Lastly, some of the complications of bariatric surgery, including osteoporosis, iron deficiency/anemia, and diarrhea, as well as their potential mechanisms, are described.
Collapse
Affiliation(s)
- Yu Ji
- Department of General Surgery, Beijing Luhe Clinical Institute, Capital Medical University, Beijing 101149, China;
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.L.); (S.K.); (L.G.); (Y.D.)
- John D. Dingell VA Medical Center, 4646 John R Street (11R), Detroit, MI 48201, USA
| | - Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.L.); (S.K.); (L.G.); (Y.D.)
| | - Shawn Kaura
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.L.); (S.K.); (L.G.); (Y.D.)
| | - James Yip
- Department of General Surgery, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Hao Sun
- Central Laboratory, Beijing Luhe Clinical Institute, Capital Medical University, Beijing 101149, China;
| | - Longfei Guan
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.L.); (S.K.); (L.G.); (Y.D.)
- John D. Dingell VA Medical Center, 4646 John R Street (11R), Detroit, MI 48201, USA
- Department of General Surgery, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Wei Han
- Department of General Surgery, Beijing Luhe Clinical Institute, Capital Medical University, Beijing 101149, China;
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.L.); (S.K.); (L.G.); (Y.D.)
| |
Collapse
|
37
|
Repetto M, Crimini E, Giugliano F, Morganti S, Belli C, Curigliano G. Selective FGFR/FGF pathway inhibitors: inhibition strategies, clinical activities, resistance mutations, and future directions. Expert Rev Clin Pharmacol 2021; 14:1233-1252. [PMID: 34591728 DOI: 10.1080/17512433.2021.1947246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Fibroblast growth factor receptor (FGFR)/fibroblast growth factor (FGF) is a pathway characterized by recurring alterations in cancer. Its dysregulations enhance cancer cell proliferation, survival, migration and invasion, as well as angiogenesis and immune evasion.Areas covered: FGFR/FGF selective inhibitors belong to a broad class of drugs with some being approved for specific indications and others under investigation in ongoing phase I and II clinical trials. In this review, all available clinical data from trials on selective FGFR/FGF inhibitors as well as described resistance mutations and mechanisms are presented. FGFR/FGF pathway inhibitors are classified according to the mechanism they employ to dampen/suppress signaling and to the preferred FGFR binding mode when X-ray crystal structure is available.Expert opinion: Data presented suggests the general actionability of FGFR1,2,3 mutations and fusions across histologies, whereas FGFR1,2,3 amplifications alone are poor predictors of response to tyrosine kinase inhibitors. Overexpression on immunohistochemistry (IHC) of FGF19, the stimulatory ligand of FGFR4, can predict response to FGFR selective inhibitors in hepatocellular carcinoma. Whereas IHC overexpression of FGFR1,2,3 is not sufficient to predict benefit from FGFR inhibitors across solid tumors. FGFR1,2,3 mRNA overexpression can predict response even in absence of structural alteration. Data on resistance mutations suggests the need for new inhibitors to overcome gatekeeper mutations.
Collapse
Affiliation(s)
- Matteo Repetto
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Edoardo Crimini
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Federica Giugliano
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Stefania Morganti
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Carmen Belli
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
38
|
A 5-year-old girl with bony deformities and disproportionate short stature: Answers. Pediatr Nephrol 2021; 36:3117-3121. [PMID: 33730275 DOI: 10.1007/s00467-021-05038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
|
39
|
Finn RS, Kudo M, Cheng AL, Wyrwicz L, Ngan RKC, Blanc JF, Baron AD, Vogel A, Ikeda M, Piscaglia F, Han KH, Qin S, Minoshima Y, Kanekiyo M, Ren M, Dairiki R, Tamai T, Dutcus CE, Ikezawa H, Funahashi Y, Evans TRJ. Pharmacodynamic Biomarkers Predictive of Survival Benefit with Lenvatinib in Unresectable Hepatocellular Carcinoma: From the Phase III REFLECT Study. Clin Cancer Res 2021; 27:4848-4858. [PMID: 34108184 PMCID: PMC9401497 DOI: 10.1158/1078-0432.ccr-20-4219] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/25/2021] [Accepted: 06/02/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE In REFLECT, lenvatinib demonstrated an effect on overall survival (OS) by confirmation of noninferiority to sorafenib in unresectable hepatocellular carcinoma. This analysis assessed correlations between serum or tissue biomarkers and efficacy outcomes from REFLECT. EXPERIMENTAL DESIGN Serum biomarkers (VEGF, ANG2, FGF19, FGF21, and FGF23) were measured by ELISA. Gene expression in tumor tissues was measured by the nCounter PanCancer Pathways Panel. Pharmacodynamic changes in serum biomarker levels from baseline, and associations of clinical outcomes with baseline biomarker levels, were evaluated. RESULTS Four hundred and seven patients were included in the serum analysis set (lenvatinib n = 279, sorafenib n = 128); 58 patients were included in the gene-expression analysis set (lenvatinib n = 34, sorafenib n = 24). Both treatments were associated with increases in VEGF; only lenvatinib was associated with increases in FGF19 and FGF23 at all time points. Lenvatinib-treated responders had greater increases in FGF19 and FGF23 versus nonresponders at cycle 4, day 1 (FGF19: 55.2% vs. 18.3%, P = 0.014; FGF23: 48.4% vs. 16.4%, P = 0.0022, respectively). Higher baseline VEGF, ANG2, and FGF21 correlated with shorter OS in both treatment groups. OS was longer for lenvatinib than sorafenib [median, 10.9 vs. 6.8 months, respectively; HR, 0.53; 95% confidence interval (CI), 0.33-0.85; P-interaction = 0.0397] with higher baseline FGF21. In tumor tissue biomarker analysis, VEGF/FGF-enriched groups showed improved OS with lenvatinib versus the intermediate VEGF/FGF group (HR, 0.39; 95% CI, 0.16-0.91; P = 0.0253). CONCLUSIONS Higher baseline levels of VEGF, FGF21, and ANG2 may be prognostic for shorter OS. Higher baseline FGF21 may be predictive for longer OS with lenvatinib compared with sorafenib, but this needs confirmation.
Collapse
Affiliation(s)
- Richard S Finn
- Division of Hematology/Oncology, Geffen School of Medicine, UCLA Medical Center, Santa Monica, California.
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Ann-Lii Cheng
- National Taiwan University Cancer Center, Taipei, Taiwan
| | - Lucjan Wyrwicz
- Centrum Onkologii-Instytut im., M. Sklodowskiej Curie, Warsaw, Poland
| | | | | | - Ari D Baron
- California Pacific Medical Center, San Francisco, California
| | | | - Masafumi Ikeda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Fabio Piscaglia
- General and University Hospital S. Orsola-Malpighi, Bologna, Italy
| | - Kwang-Hyub Han
- Severance Hospital, Yonsei University, Seoul, South Korea
| | - Shukui Qin
- Nanjing Bayi Hospital, Nanjing, Jiangsu, China
| | | | | | - Min Ren
- Eisai Inc., Woodcliff Lake, New Jersey
| | | | | | | | | | | | | |
Collapse
|
40
|
Roles of the FGF-FGFR Signaling System in Cancer Development and Inflammation. Cells 2021; 10:cells10092231. [PMID: 34571880 PMCID: PMC8471549 DOI: 10.3390/cells10092231] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/28/2022] Open
|
41
|
Hu C, Jia W. Multi-omics profiling: the way towards precision medicine in metabolic diseases. J Mol Cell Biol 2021; 13:mjab051. [PMID: 34406397 PMCID: PMC8697344 DOI: 10.1093/jmcb/mjab051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic diseases including type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and metabolic syndrome (MetS) are alarming health burdens around the world, while therapies for these diseases are far from satisfying as their etiologies are not completely clear yet. T2DM, NAFLD, and MetS are all complex and multifactorial metabolic disorders based on the interactions between genetics and environment. Omics studies such as genetics, transcriptomics, epigenetics, proteomics, and metabolomics are all promising approaches in accurately characterizing these diseases. And the most effective treatments for individuals can be achieved via omics pathways, which is the theme of precision medicine. In this review, we summarized the multi-omics studies of T2DM, NAFLD, and MetS in recent years, provided a theoretical basis for their pathogenesis and the effective prevention and treatment, and highlighted the biomarkers and future strategies for precision medicine.
Collapse
Affiliation(s)
- Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus,
Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth
People's Hospital, Shanghai 200233, China
- Institute for Metabolic Disease, Fengxian Central Hospital, The Third School of
Clinical Medicine, Southern Medical University, Shanghai 201499, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus,
Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth
People's Hospital, Shanghai 200233, China
| |
Collapse
|
42
|
Myers J, Granger LA, Keeton ST, Liu CC, Johnston AN. Quantification of serum fibroblast growth factor-19 concentration in healthy dogs before and after feeding. Am J Vet Res 2021; 82:676-682. [PMID: 34296943 DOI: 10.2460/ajvr.82.8.676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To measure serum fibroblast growth factor-19 (FGF-19) concentration and gallbladder volume in healthy dogs before and after feeding to determine whether serum FGF-19 concentration increases following gallbladder contraction and to assess FGF-19 stability in blood samples kept under different storage conditions after collection in tubes containing no anticoagulant or in serum separator tubes. ANIMALS 10 healthy dogs of various ages and breeds (30 blood samples and 30 gallbladder volume measurements). PROCEDURES Serum FGF-19 concentration was measured with a commercially available ELISA. Gallbladder volume was determined ultrasonographically. Blood samples and gallbladder measurements were obtained from the dogs after food had been withheld for 12 hours (baseline) and at 1 and 3 hours after feeding. The stability of serum FGF-19 was assessed in samples collected in tubes containing no anticoagulant or in serum separator tubes and stored at -80°C for variable intervals or 4°C for 1 or 5 days. RESULTS Serum FGF-19 concentration was significantly increased from baseline at 1 and 3 hours after feeding. There was a significant decrease in gallbladder volume 1 hour after feeding, compared with baseline findings. Regardless of collection tube used, concentrations of FGF-19 in serum obtained from blood samples that were collected and immediately stored at -80°C differed significantly from concentrations in serum obtained from blood samples that had been collected and stored at 4°C for 5 days. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that postprandial gallbladder contraction results in increases of serum FGF-19 concentration in healthy dogs. Assessment of circulating FGF-19 concentration could be used to detect disruptions in the enterohepatic-biliary axis in dogs.
Collapse
Affiliation(s)
- Jillian Myers
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - L Abbigail Granger
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Sarah T Keeton
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Chin-Chi Liu
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Andrea N Johnston
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
43
|
Seitz T, Hellerbrand C. Role of fibroblast growth factor signalling in hepatic fibrosis. Liver Int 2021; 41:1201-1215. [PMID: 33655624 DOI: 10.1111/liv.14863] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
Fibrotic remodelling is a highly conserved protective response to tissue injury and it is essential for the maintenance of structural and functional tissue integrity. Also hepatic fibrosis can be considered as a wound-healing response to liver injury, reflecting a balance between liver repair and scar formation. In contrast, pathological fibrosis corresponds to impaired wound healing. Usually, the liver regenerates after acute injury. However, if the damaging mechanisms persist, the liver reacts with progressive and uncontrolled accumulation of extracellular matrix proteins. Eventually, excessive fibrosis can lead to cirrhosis and hepatic failure. Furthermore, cirrhosis is the major risk factor for the development of hepatocellular cancer (HCC). Therefore, hepatic fibrosis is the most critical pathological factor that determines the morbidity and mortality of patients with chronic liver disease. Still, no effective anti-fibrogenic therapies exist, despite the very high medical need. The regulation of fibroblast growth factor (FGF) signalling is a prerequisite for adequate wound healing, repair and homeostasis in various tissues and organs. The FGF family comprises 22 proteins that can be classified into paracrine, intracrine and endocrine factors. Most FGFs signal through transmembrane tyrosine kinase FGF receptors (FGFRs). Although FGFRs are promising targets for the treatment of HCC, the expression and function of FGFR-ligands in hepatic fibrosis is still poorly understood. This review summarizes the latest advances in our understanding of FGF signalling in hepatic fibrosis. Furthermore, the potential of FGFs as targets for the treatment of hepatic fibrosis and remaining challenges for the field are discussed.
Collapse
Affiliation(s)
- Tatjana Seitz
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
44
|
Hutchings G, Kruszyna Ł, Nawrocki MJ, Strauss E, Bryl R, Spaczyńska J, Perek B, Jemielity M, Mozdziak P, Kempisty B, Nowicki M, Krasiński Z. Molecular Mechanisms Associated with ROS-Dependent Angiogenesis in Lower Extremity Artery Disease. Antioxidants (Basel) 2021; 10:735. [PMID: 34066926 PMCID: PMC8148529 DOI: 10.3390/antiox10050735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Currently, atherosclerosis, which affects the vascular bed of all vital organs and tissues, is considered as a leading cause of death. Most commonly, atherosclerosis involves coronary and peripheral arteries, which results in acute (e.g., myocardial infarction, lower extremities ischemia) or chronic (persistent ischemia leading to severe heart failure) consequences. All of them have a marked unfavorable impact on the quality of life and are associated with increased mortality and morbidity in human populations. Lower extremity artery disease (LEAD, also defined as peripheral artery disease, PAD) refers to atherosclerotic occlusive disease of the lower extremities, where partial or complete obstruction of peripheral arteries is observed. Decreased perfusion can result in ischemic pain, non-healing wounds, and ischemic ulcers, and significantly reduce the quality of life. However, the progressive atherosclerotic changes cause stimulation of tissue response processes, like vessel wall remodeling and neovascularization. These mechanisms of adapting the vascular network to pathological conditions seem to play a key role in reducing the impact of the changes limiting the flow of blood. Neovascularization as a response to ischemia induces sprouting and expansion of the endothelium to repair and grow the vessels of the circulatory system. Neovascularization consists of three different biological processes: vasculogenesis, angiogenesis, and arteriogenesis. Both molecular and environmental factors that may affect the process of development and growth of blood vessels were analyzed. Particular attention was paid to the changes taking place during LEAD. It is important to consider the molecular mechanisms underpinning vessel growth. These mechanisms will also be examined in the context of diseases commonly affecting blood vessel function, or those treatable in part by manipulation of angiogenesis. Furthermore, it may be possible to induce the process of blood vessel development and growth to treat peripheral vascular disease and wound healing. Reactive oxygen species (ROS) play an important role in regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. With regard to the repair processes taking place during diseases such as LEAD, prospective therapeutic methods have been described that could significantly improve the treatment of vessel diseases in the future. Summarizing, regenerative medicine holds the potential to transform the therapeutic methods in heart and vessel diseases treatment.
Collapse
Affiliation(s)
- Greg Hutchings
- The School of Medicine, Medical Sciences and Nutrition, Aberdeen University, Aberdeen AB25 2ZD, UK;
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
| | - Łukasz Kruszyna
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 60-848 Poznan, Poland; (Ł.K.); (E.S.); (Z.K.)
| | - Mariusz J. Nawrocki
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
| | - Ewa Strauss
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 60-848 Poznan, Poland; (Ł.K.); (E.S.); (Z.K.)
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
| | - Julia Spaczyńska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
| | - Bartłomiej Perek
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (B.P.); (M.J.)
| | - Marek Jemielity
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (B.P.); (M.J.)
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Michał Nowicki
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Zbigniew Krasiński
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 60-848 Poznan, Poland; (Ł.K.); (E.S.); (Z.K.)
| |
Collapse
|
45
|
Wang H, Yang J, Zhang K, Liu J, Li Y, Su W, Song N. Advances of Fibroblast Growth Factor/Receptor Signaling Pathway in Hepatocellular Carcinoma and its Pharmacotherapeutic Targets. Front Pharmacol 2021; 12:650388. [PMID: 33935756 PMCID: PMC8082422 DOI: 10.3389/fphar.2021.650388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of primary liver cancer with poor prognosis, and its incidence and mortality rate are increasing worldwide. It is refractory to conventional chemotherapy and radiotherapy owing to its high tumor heterogeneity. Accumulated genetic alterations and aberrant cell signaling pathway have been characterized in HCC. The fibroblast growth factor (FGF) family and their receptors (FGFRs) are involved in diverse biological activities, including embryonic development, proliferation, differentiation, survival, angiogenesis, and migration, etc. Data mining results of The Cancer Genome Atlas demonstrate high levels of FGF and/or FGFR expression in HCC tumors compared with normal tissues. Moreover, substantial evidence indicates that the FGF/FGFR signaling axis plays an important role in various mechanisms that contribute to HCC development. At present, several inhibitors targeting FGF/FGFR, such as multikinase inhibitors, specific FGFR4 inhibitors, and FGF ligand traps, exhibit antitumor activity in preclinical or early development phases in HCC. In this review, we summarize the research progress regarding the molecular implications of FGF/FGFR-mediated signaling and the development of FGFR-targeted therapeutics in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Haijun Wang
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jie Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ke Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jia Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yushan Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Wei Su
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Na Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
46
|
Yan J, Nie Y, Cao J, Luo M, Yan M, Chen Z, He B. The Roles and Pharmacological Effects of FGF21 in Preventing Aging-Associated Metabolic Diseases. Front Cardiovasc Med 2021; 8:655575. [PMID: 33869312 PMCID: PMC8044345 DOI: 10.3389/fcvm.2021.655575] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
With the continuous improvement of living standards but the lack of exercise, aging-associated metabolic diseases such as obesity, type 2 diabetes mellitus (T2DM), and non-alcoholic fatty liver disease (NAFLD) are becoming a lingering dark cloud over society. Studies have found that metabolic disorders are near related to glucose, lipid metabolism, and cellular aging. Fibroblast growth factor 21 (FGF21), a member of the FGFs family, efficiently regulates the homeostasis of metabolism and cellular aging. By activating autophagy genes and improving inflammation, FGF21 indirectly delays cellular aging and directly exerts anti-aging effects by regulating aging genes. FGF21 can also regulate glucose and lipid metabolism by controlling metabolism-related genes, such as adipose triglyceride lipase (ATGL) and acetyl-CoA carboxylase (ACC1). Because FGF21 can regulate metabolism and cellular aging simultaneously, FGF21 analogs and FGF21 receptor agonists are gradually being valued and could become a treatment approach for aging-associated metabolic diseases. However, the mechanism by which FGF21 achieves curative effects is still not known. This review aims to interpret the interactive influence between FGF21, aging, and metabolic diseases and delineate the pharmacology of FGF21, providing theoretical support for further research on FGF21.
Collapse
Affiliation(s)
- Junbin Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Yunmeng Nie
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jielu Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Minmin Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Maoxiang Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Zhiyun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
47
|
Bourdon G, Froment P, Ducluzeau PH. [How a metabolic hormone, FGF21 (fibroblast growth factor 21) impacts reproduction]. Med Sci (Paris) 2021; 37:265-270. [PMID: 33739274 DOI: 10.1051/medsci/2021012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Obesity or insulin resistance are the major non-infectious diseases that continue to progress worldwide. They promote diabetes and cardiovascular diseases, but also lead to a decrease in fertility in both sexes. FGF21, discovered in the 2000s, is a hormone closely linked to the energy status and has the ability to decrease insulin resistance. Its action through the FGFR1c, 3c & 4 receptors modulates tissues involved in energy-related metabolism but also the brain and the gonads. Recent data favor a role of FGF21 in female and male fertility, but raise the question about the role of FGF21 on reproductive function. In this review, we have scanned the different FGF21 actions on the reproductive axis, suggesting a potential therapeutic role in case of infertility.
Collapse
Affiliation(s)
- Guillaume Bourdon
- INRAe UMR85 Physiologie de la reproduction et des comportements, Centre INRAE Val-de-Loire, 37380 Nouzilly, France
| | - Pascal Froment
- INRAe UMR85 Physiologie de la reproduction et des comportements, Centre INRAE Val-de-Loire, 37380 Nouzilly, France
| | - Pierre Henri Ducluzeau
- INRAe UMR85 Physiologie de la reproduction et des comportements, Centre INRAE Val-de-Loire, 37380 Nouzilly, France - Service d'endocrinologie-diabétologie-nutrition, CHU de Tours, 2 boulevard Tonnellé, 37044 Tours Cedex 9, France
| |
Collapse
|
48
|
Liu G, Chen T, Ding Z, Wang Y, Wei Y, Wei X. Inhibition of FGF-FGFR and VEGF-VEGFR signalling in cancer treatment. Cell Prolif 2021; 54:e13009. [PMID: 33655556 PMCID: PMC8016646 DOI: 10.1111/cpr.13009] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
The sites of targeted therapy are limited and need to be expanded. The FGF‐FGFR signalling plays pivotal roles in the oncogenic process, and FGF/FGFR inhibitors are a promising method to treat FGFR‐altered tumours. The VEGF‐VEGFR signalling is the most crucial pathway to induce angiogenesis, and inhibiting this cascade has already got success in treating tumours. While both their efficacy and antitumour spectrum are limited, combining FGF/FGFR inhibitors with VEGF/VEGFR inhibitors are an excellent way to optimize the curative effect and expand the antitumour range because their combination can target both tumour cells and the tumour microenvironment. In addition, biomarkers need to be developed to predict the efficacy, and combination with immune checkpoint inhibitors is a promising direction in the future. The article will discuss the FGF‐FGFR signalling pathway, the VEGF‐VEGFR signalling pathway, the rationale of combining these two signalling pathways and recent small‐molecule FGFR/VEGFR inhibitors based on clinical trials.
Collapse
Affiliation(s)
- Guihong Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Chen
- Cardiology Department, Chengdu NO.7 People's Hospital, Chengdu Tumor Hospital, Chengdu, China
| | - Zhenyu Ding
- Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
49
|
Jiang L, Yin Q, Yang M, Li M, Pan M, Han Y, Zhao Z, Wang Z, Zhu L, Wei Q, Tu Y, Gao M, Liu H, Zhang X, Liu BC, Wang B. Fibroblast Growth Factor 21 Predicts and Promotes Vascular Calcification in Haemodialysis Patients. KIDNEY DISEASES 2021; 7:227-240. [PMID: 34179118 DOI: 10.1159/000512750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/31/2020] [Indexed: 01/02/2023]
Abstract
Background Cardiovascular disease (CVD) is the leading cause of death in haemodialysis (HD) patients. Vascular calcification (VC) is dramatically accelerated and is strongly associated with CVD events and mortality in HD patients. VC coexists with osteoporosis in many studies. Fibroblast growth factor 21 (FGF21) which is known as an adipocytokine is a new hypoglycemic strategy and is inversely related to bone mineral density. Methods To evaluate the contribution of FGF21 to VC in HD patients, we detected circulating FGF21 levels and measured the whole thoracic aorta calcification scores (TACS) and calcification scores of the 3 segments of thoracic aorta, including ascending thoracic aorta (ATACS), aortic arch (AoACS), and descending thoracic aorta (DTACS) of our HD patients in this cross-sectional study. In addition, we pre-incubated human aortic endothelial cells (HAECs) with FGF21 in the presence or absence of parathyroid hormone (PTH) in vitro. Results The median serum FGF21 level in HD patients was 11-fold higher than that in healthy controls. Ln(FGF21) was positively correlated with Ln(TACS+1), Ln(ATACS+1), Ln(AoACS+1), and Ln(DTACS+1), respectively, in HD patients. Serum FGF21 was independently associated with TACS and ATACS, AoACS, and DTACS. FGF21 which was combined with age, calcium, and intact PTH demonstrated a high area under the curve of 0.84 with optimal sensitivity (84%) and specificity (71%) for the prediction of VC in HD patients. Our vitro results showed that FGF21 enhanced the calcification effect of PTH on HAECs by increasing calcium deposition and endothelial-to-mesenchymal transition. Conclusions Circulating FGF21 was notably higher and was a potential predictor and promoter of VC in HD patients.
Collapse
Affiliation(s)
- Liqiong Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China.,Department of Nephrology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qing Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Min Yang
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Min Li
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Mingming Pan
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yuchen Han
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Zhen Zhao
- Department of Radiology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Zhi Wang
- Department of Radiology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Lili Zhu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Qing Wei
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yan Tu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Min Gao
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Hong Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Xiaoliang Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
50
|
Effect of Various Exercise Regimens on Selected Exercise-Induced Cytokines in Healthy People. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031261. [PMID: 33572495 PMCID: PMC7908590 DOI: 10.3390/ijerph18031261] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022]
Abstract
Different forms of physical activity—endurance, resistance or dynamic power—stimulate cytokine release from various tissues to the bloodstream. Receptors for exercise-induced cytokines are present in muscle tissue, adipose tissue, liver, brain, bones, cardiovascular system, immune system, pancreas, and skin. They have autocrine, paracrine and endocrine activities. Many of them regulate the myocyte growth and differentiation necessary for muscle hypertrophy and myogenesis. They also modify energy homeostasis, lipid, carbohydrate, and protein metabolism, regulate inflammation and exchange information (crosstalk) between remote organs. So far, interleukin 6 and irisin have been the best studied exercise-induced cytokines. However, many more can be grouped into myokines, hepatokines and adipomyokines. This review focuses on the less known exercise-induced cytokines such as myostatin, follistatin, decorin, brain-derived neurotrophic factor, fibroblast growth factor 21 and interleukin 15, and their relation to various forms of exercise, i.e., acute vs. chronic, regular training in healthy people.
Collapse
|