1
|
Saito H, Yokoyama T, Nakamuta N, Yamamoto Y. Immunohistochemical distribution of cannabinoid receptor type 1 (CB1) and type 2 (CB2) in the rat carotid body. Acta Histochem 2024; 126:152205. [PMID: 39405990 DOI: 10.1016/j.acthis.2024.152205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/24/2024]
Abstract
The carotid body is a hypoxia-sensitive chemoreceptor that induces sensory long-term facilitation after exposure to chronic intermittent hypoxia. However, the mechanisms underlying synaptic plasticity in the carotid body remain unknown. In the present study, we examined the immunohistochemical distribution of cannabinoid receptor type 1 (CB1) and type 2 (CB2), which are candidate molecules involved in the modulation of synaptic transmission. Dot-like CB1 immunoreactivity was distributed in the perinuclear cytoplasm of chemoreceptor cells immunoreactive for the catecholamine-synthesizing enzymes, tyrosine hydroxylase and dopamine beta-hydroxylase. Furthermore, CB1 immunoreactivity was observed in sensory nerve endings immunoreactive for P2X3 purinoceptors that colocalized with vesicular glutamate transporter 2. On the other hand, immunoreactivity for CB2 was mainly distributed in chemoreceptor cells, and was weakly observed in sensory nerve endings immunoreactive for P2X2 purinoceptors. The present results suggest that CB1 and CB2 regulate the release of catecholamines and glutamate from chemoreceptor cells and sensory nerve endings, respectively. Therefore, CB1 and CB2 may be involved in synaptic plasticity in the carotid body.
Collapse
Affiliation(s)
- Hiroki Saito
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Takuya Yokoyama
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan.
| |
Collapse
|
2
|
Saito H, Yokoyama T, Nakamuta N, Yamamoto Y. Immunohistochemical distribution of Ca 2+/calmodulin-dependent protein kinase II subunits in the rat carotid body. Acta Histochem 2023; 125:152043. [PMID: 37126880 DOI: 10.1016/j.acthis.2023.152043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
Carotid body (CB) activity stimulated by a lower partial oxygen pressure in rats is enhanced by exposure to chronic intermittent hypoxia. However, the mechanisms that modulate CB activity remain unclear. In the present study, the expression and distribution of one of the candidate molecules to modulate reactivity, Ca2+/calmodulin-dependent protein kinase II (CaMKII) were examined in the rat CB using reverse transcriptional polymerase chain reaction and immunofluorescence with isoform-specific antibodies. CaMKIIγ and CaMKIIδ were distributed in CB chemoreceptor cells, and exhibited intense immunoreactivity in dopamine β-hydroxylase-positive chemoreceptor cells. CaMKIIβ and CaMKIIγ were distributed in sensory nerve endings attached to chemoreceptor cells of the CB. In the petrosal ganglion, immunoreactivities for CaMKIIα, CaMKIIβ, CaMKIIγ, and CaMKIIδ were detected in the perinuclear region of ganglion cells. The present results indicate that CaMKIIγ and CaMKIIδ in chemoreceptor cells and CaMKIIβ and CaMKIIγ in sensory nerve endings enhanced reciprocal synaptic transmission, i.e., noradrenaline and ATP for cells to neurons and glutamate for neurons to cells.
Collapse
Affiliation(s)
- Hiroki Saito
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Takuya Yokoyama
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan.
| |
Collapse
|
3
|
Moriai H, Yokoyama T, Abdali SS, Nakamuta N, Yamamoto Y. Distribution of proteins for synaptic release in nerve endings associated with the trachealis muscle of rats. Auton Neurosci 2023; 244:103042. [PMID: 36370593 DOI: 10.1016/j.autneu.2022.103042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/08/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
The immunohistochemical localization of proteins for synaptic release was examined in smooth muscle-associated sensory nerve endings using whole-mount preparations of the rat trachea. Plant-like smooth muscle-associated nerve endings with immunoreactivity for Na+-K+-ATPase, α3-subunit were identified in the trachealis muscle. VGLUT1, synapsin1, t-SNARE proteins (SNAP25 and syntaxin1), v-SNARE proteins (VAMP1 and VAMP2), and a presynaptic active zone-related protein (piccolo) were detected in the terminal parts of these endings. These results suggest that smooth muscle-associated nerve endings secrete glutamate to modulate sensorimotor functions in the lung deflation reflex.
Collapse
Affiliation(s)
- Hisae Moriai
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Takuya Yokoyama
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| | - Sayed Sharif Abdali
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan.
| |
Collapse
|
4
|
Lazarov NE, Atanasova DY. Neurochemical Anatomy of the Mammalian Carotid Body. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 237:63-103. [PMID: 37946078 DOI: 10.1007/978-3-031-44757-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Carotid body (CB) glomus cells in most mammals, including humans, contain a broad diversity of classical neurotransmitters, neuropeptides and gaseous signaling molecules as well as their cognate receptors. Among them, acetylcholine, adenosine triphosphate and dopamine have been proposed to be the main excitatory transmitters in the mammalian CB, although subsequently dopamine has been considered an inhibitory neuromodulator in almost all mammalian species except the rabbit. In addition, co-existence of biogenic amines and neuropeptides has been reported in the glomus cells, thus suggesting that they store and release more than one transmitter in response to natural stimuli. Furthermore, certain metabolic and transmitter-degrading enzymes are involved in the chemotransduction and chemotransmission in various mammals. However, the presence of the corresponding biosynthetic enzyme for some transmitter candidates has not been confirmed, and neuroactive substances like serotonin, gamma-aminobutyric acid and adenosine, neuropeptides including opioids, substance P and endothelin, and gaseous molecules such as nitric oxide have been shown to modulate the chemosensory process through direct actions on glomus cells and/or by producing tonic effects on CB blood vessels. It is likely that the fine balance between excitatory and inhibitory transmitters and their complex interactions might play a more important than suggested role in CB plasticity.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy and Histology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria.
| | | |
Collapse
|
5
|
Gold OMS, Bardsley EN, Ponnampalam AP, Pauza AG, Paton JFR. Cellular basis of learning and memory in the carotid body. Front Synaptic Neurosci 2022; 14:902319. [PMID: 36046221 PMCID: PMC9420943 DOI: 10.3389/fnsyn.2022.902319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The carotid body is the primary peripheral chemoreceptor in the body, and critical for respiration and cardiovascular adjustments during hypoxia. Yet considerable evidence now implicates the carotid body as a multimodal sensor, mediating the chemoreflexes of a wide range of physiological responses, including pH, temperature, and acidosis as well as hormonal, glucose and immune regulation. How does the carotid body detect and initiate appropriate physiological responses for these diverse stimuli? The answer to this may lie in the structure of the carotid body itself. We suggest that at an organ-level the carotid body is comparable to a miniature brain with compartmentalized discrete regions of clustered glomus cells defined by their neurotransmitter expression and receptor profiles, and with connectivity to defined reflex arcs that play a key role in initiating distinct physiological responses, similar in many ways to a switchboard that connects specific inputs to selective outputs. Similarly, within the central nervous system, specific physiological outcomes are co-ordinated, through signaling via distinct neuronal connectivity. As with the brain, we propose that highly organized cellular connectivity is critical for mediating co-ordinated outputs from the carotid body to a given stimulus. Moreover, it appears that the rudimentary components for synaptic plasticity, and learning and memory are conserved in the carotid body including the presence of glutamate and GABAergic systems, where evidence pinpoints that pathophysiology of common diseases of the carotid body may be linked to deviations in these processes. Several decades of research have contributed to our understanding of the central nervous system in health and disease, and we discuss that understanding the key processes involved in neuronal dysfunction and synaptic activity may be translated to the carotid body, offering new insights and avenues for therapeutic innovation.
Collapse
|
6
|
Argent LP, Bose A, Paton JFR. Intra-carotid body inter-cellular communication. J R Soc N Z 2022; 53:332-361. [PMID: 39439480 PMCID: PMC11459819 DOI: 10.1080/03036758.2022.2079681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
The classic peripheral chemoreflex response is a critical homeostatic mechanism. In healthy individuals, appropriate chemoreflex responses are triggered by acute activation of the carotid body - the principal chemosensory organ in mammals. However, the aberrant chronic activation of the carotid body can drive the elevated sympathetic activity underlying cardio-respiratory diseases such as hypertension, diabetes and heart failure. Carotid body resection induces intolerable side effects and so understanding how to modulate carotid body output without removing it, and whilst maintaining the physiological chemoreflex response, represents the next logical next step in the development of effective clinical interventions. By definition, excessive carotid body output must result from altered intra-carotid body inter-cellular communication. Alongside the canonical synaptic transmission from glomus cells to petrosal afferents, many other modes of information exchange in the carotid body have been identified, for example bidirectional signalling between type I and type II cells via ATP-induced ATP release, as well as electrical communication via gap junctions. Thus, herein we review the carotid body as an integrated circuit, discussing a variety of different inter-cellular signalling mechanisms and highlighting those that are potentially relevant to its pathological hyperactivity in disease with the aim of identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Liam P. Argent
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Aabharika Bose
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Julian F. R. Paton
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Li C, Zhao B, Zhao C, Huang L, Liu Y. Metabotropic Glutamate Receptors 1 Regulates Rat Carotid Body Response to Acute Hypoxia via Presynaptic Mechanism. Front Neurosci 2021; 15:741214. [PMID: 34675769 PMCID: PMC8524001 DOI: 10.3389/fnins.2021.741214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The carotid body (CB) plays a critical role in oxygen sensing; however, the role of glutamatergic signaling in the CB response to hypoxia remains uncertain. We previously found that functional multiple glutamate transporters and inotropic glutamate receptors (iGluRs) are expressed in the CB. The aim of this present research is to investigate the expression of group I metabotropic glutamate receptors (mGluRs) (mGluR1 and 5) in the CB and its physiological function in rat CB response to acute hypoxia. Methods: RT-PCR and immunostaining were conducted to examine the mRNA and protein expression of group I mGluRs in the human and rat CB. Immunofluorescence staining was performed to examine the cellular localization of mGluR1 in the rat CB. In vitro carotid sinus nerve (CSN) discharge recording was performed to detect the physiological function of mGluR1 in CB response to acute hypoxia. Results: We found that (1) mRNAs of mGluR1 and 5 were both expressed in the human and rat CB. (2) mGluR1 protein rather than mGluR5 protein was present in rat CB. (3) mGluR1 was distributed in type I cells of rat CB. (4) Activation of mGluR1 inhibited the hypoxia-induced enhancement of CSN activity (CSNA), as well as prolonged the latency time of CB response to hypoxia. (5) The inhibitory effect of mGluR1 activation on rat CB response to hypoxia could be blocked by GABAB receptor antagonist. Conclusion: Our findings reveal that mGluR1 in CB plays a presynaptic feedback inhibition on rat CB response to hypoxia.
Collapse
Affiliation(s)
- Chaohong Li
- Henan Key Laboratory of Neural Regeneration and Repairment, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Baosheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Chenlu Zhao
- Henan Key Laboratory of Neural Regeneration and Repairment, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Lu Huang
- Henan Key Laboratory of Neural Regeneration and Repairment, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yuzhen Liu
- Henan Key Laboratory of Neural Regeneration and Repairment, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| |
Collapse
|
8
|
Yokoyama T, Yamamoto Y, Hirakawa M, Saino T. GluN2A- and GluN2B-immunoreactive type I cells attached to vesicular glutamate transporter 2-immunoreactive afferent nerve terminals of the rat carotid body. Histochem Cell Biol 2021; 155:719-726. [PMID: 33550485 DOI: 10.1007/s00418-021-01970-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2021] [Indexed: 11/25/2022]
Abstract
We previously reported the immunoreactivity for the vesicular glutamate transporter 2 (VGLUT2) in afferent nerve terminals attached to chemoreceptor type I cells of the carotid body (CB), suggesting that glutamate is released from afferent terminals to stimulate these cells. In the present study, we examined the immunoreactivity for the glutamate-binding subunits of N-methyl-D-aspartate (NMDA) receptors, GluN2A and GluN2B in the rat CB, and the immunohistochemical relationships between these subunits and VGLUT2. Immunoreactivities for GluN2A and GluN2B were predominant in a subpopulation of tyrosine hydroxylase-immunoreactive type I cells rather than those of dopamine beta-hydroxylase-immunoreactive cells. Punctate VGLUT2-immunoreactive products were attached to GluN2A- and GluN2B-immunoreactive type I cells. Bassoon-immunoreactive products were localized between VGLUT2-immunoreactive puncta and type I cells immunoreactive for GluN2A and GluN2B. These results suggest that afferent nerve terminals release glutamate by exocytosis to modulate chemosensory activity of a subpopulation of type I cells via GluN2A- and GluN2B subunits-containing NMDA receptors.
Collapse
Affiliation(s)
- Takuya Yokoyama
- Department of Anatomy (Cell Biology), Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Masato Hirakawa
- Department of Anatomy (Cell Biology), Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Tomoyuki Saino
- Department of Anatomy (Cell Biology), Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| |
Collapse
|
9
|
Yokoyama T, Settai K, Nakamuta N, Yamamoto Y. Vesicular glutamate transporter 2-immunoreactive afferent nerve terminals in rat carotid sinus baroreceptors. Acta Histochem 2020; 122:151469. [PMID: 31784233 DOI: 10.1016/j.acthis.2019.151469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/24/2019] [Accepted: 11/14/2019] [Indexed: 11/17/2022]
Abstract
Sensory nerve endings respond to various stimuli and subsequently transmit afferent informations to central nervous system, but their responsibility has been suggested to be modulated by glutamate. In the present study, we examined the immunohistochemical localization of vesicular glutamate transporter 1 (vGLUT1) and vGLUT2 in baroreceptor nerve endings immunoreactive for P2X2 and P2X3 purinoceptors in the rat carotid sinus by immunohistochemistry of whole-mount preparations with confocal scanning laser microscopy. P2X3-immunoreactive flat leaf-like axon terminals were immunoreactive to vGLUT2, but not to vGLUT1. Among members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex, immunoreactivities for synaptosomal-associated protein, 25 kDa, Syntaxin1, and vesicle-associated membrane protein 2 (VAMP2) were localized in P2X2- and P2X3-immunoreactive axon terminals. Punctate immunoreactive products for VAMP2 and vGLUT2 were co-localized in axon terminals. These results suggest that vGLUT2 is localized in P2X3-immunoreactive baroreceptor terminals in the carotid sinus, and these terminals may release glutamate by exocytosis in order to modulate baroreceptor function in the carotid sinus.
Collapse
Affiliation(s)
- Takuya Yokoyama
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| | - Kazuya Settai
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan.
| |
Collapse
|
10
|
Zera T, Moraes DJA, da Silva MP, Fisher JP, Paton JFR. The Logic of Carotid Body Connectivity to the Brain. Physiology (Bethesda) 2020; 34:264-282. [PMID: 31165684 DOI: 10.1152/physiol.00057.2018] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The carotid body has emerged as a therapeutic target for cardio-respiratory-metabolic diseases. With the expansive functions of the chemoreflex, we sought mechanisms to explain differential control of individual responses. We purport a remarkable correlation between phenotype of a chemosensory unit (glomus cell-sensory afferent) with a distinct component of the reflex response. This logic could permit differential modulation of distinct chemoreflex responses, a strategy ideal for therapeutic exploitation.
Collapse
Affiliation(s)
- Tymoteusz Zera
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw , Warsaw , Poland
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , São Paulo , Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , São Paulo , Brazil
| | - James P Fisher
- Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland , Auckland , New Zealand
| | - Julian F R Paton
- Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland , Auckland , New Zealand
| |
Collapse
|
11
|
Moraes DJA, da Silva MP, Spiller PF, Machado BH, Paton JFR. Purinergic plasticity within petrosal neurons in hypertension. Am J Physiol Regul Integr Comp Physiol 2018; 315:R963-R971. [PMID: 29949411 DOI: 10.1152/ajpregu.00142.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The carotid bodies are peripheral chemoreceptors and contribute to the homeostatic maintenance of arterial levels of O2, CO2, and [H+]. They have attracted much clinical interest recently because of the realization that aberrant signaling in these organs is associated with several pathologies including hypertension. Herein, we describe data suggesting that sympathetic overactivity in neurogenic hypertension is, at least in part, dependent on carotid body tonicity and hyperreflexia that is related to changes in the electrophysiological properties of chemoreceptive petrosal neurons. We present results showing critical roles for both ATP levels in the carotid bodies and expression of P2X3 receptors in petrosal chemoreceptive, but not baroreceptive, terminals in the etiology of carotid body tonicity and hyperreflexia. We discuss mechanisms that may underlie the changes in electrophysiological properties and P2X3 receptor expression in chemoreceptive petrosal neurons, as well as factors affecting ATP release by cells within the carotid bodies. Our findings support the notion of targeting the carotid bodies to reduce sympathetic outflow and arterial pressure, emphasizing the potential clinical importance of modulating purinergic transmission to treat pathologies associated with carotid body dysfunction but, importantly, sparing physiological chemoreflex function.
Collapse
Affiliation(s)
- Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Pedro F Spiller
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Julian F R Paton
- Cardiovascular Autonomic Research Cluster, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland , Auckland , New Zealand
| |
Collapse
|
12
|
Porzionato A, Macchi V, Stecco C, De Caro R. The Carotid Sinus Nerve-Structure, Function, and Clinical Implications. Anat Rec (Hoboken) 2018; 302:575-587. [PMID: 29663677 DOI: 10.1002/ar.23829] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/24/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022]
Abstract
Interest has been renewed in the anatomy and physiology of the carotid sinus nerve (CSN) and its targets (carotid sinus and carotid body, CB), due to recent proposals of surgical procedures for a series of common pathologies, such as carotid sinus syndrome, hypertension, heart failure, and insulin resistance. The CSN originates from the glossopharyngeal nerve soon after its appearance from the jugular foramen. It shows frequent communications with the sympathetic trunk (usually at the level of the superior cervical ganglion) and the vagal nerve (main trunk, pharyngeal branches, or superior laryngeal nerve). It courses on the anterior aspect of the internal carotid artery to reach the carotid sinus, CB, and/or intercarotid plexus. In the carotid sinus, type I (dynamic) carotid baroreceptors have larger myelinated A-fibers; type II (tonic) baroreceptors show smaller A- and unmyelinated C-fibers. In the CB, afferent fibers are mainly stimulated by acetylcholine and ATP, released by type I cells. The neurons are located in the petrosal ganglion, and centripetal fibers project on to the solitary tract nucleus: chemosensory inputs to the commissural subnucleus, and baroreceptor inputs to the commissural, medial, dorsomedial, and dorsolateral subnuclei. The baroreceptor component of the CSN elicits sympatho-inhibition and the chemoreceptor component stimulates sympatho-activation. Thus, in refractory hypertension and heart failure (characterized by increased sympathetic activity), baroreceptor electrical stimulation, and CB removal have been proposed. Instead, denervation of the carotid sinus has been proposed for the "carotid sinus syndrome." Anat Rec, 302:575-587, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrea Porzionato
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padova, Italy
| | - Veronica Macchi
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padova, Italy
| | - Carla Stecco
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padova, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Yamamoto Y, Nakamuta N. Morphology of P2X3-immunoreactive nerve endings in the rat tracheal mucosa. J Comp Neurol 2017; 526:550-566. [PMID: 29124772 DOI: 10.1002/cne.24351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 01/28/2023]
Abstract
Nerve endings with immunoreactivity for the P2X3 purinoreceptor (P2X3) in the rat tracheal mucosa were examined by immunohistochemistry of whole-mount preparations with confocal scanning laser microscopy. P2X3 immunoreactivity was observed in ramified endings distributed in the whole length of the trachea. The myelinated parent axons of P2X3-immunoreactive nerve endings ramified into several branches that extended two-dimensionally in every direction at the interface between the epithelial layer and lamina propria. The axonal branches of P2X3-immunoreactive endings branched off many twigs located just beneath the epithelium, and continued to intraepithelial axon terminals. The axon terminals of P2X3-immunoreactive endings were beaded, rounded, or club-like in shape and terminated between tracheal epithelial cells. Flat axon terminals sometimes partly ensheathed neuroendocrine cells with immunoreactivity for SNAP25 or CGRP. Some axons and axon terminals with P2X3 immunoreactivity were immunoreactive for P2X2, while some terminals were immunoreactive for vGLUT2. Furthermore, a retrograde tracing method using fast blue (FB) revealed that 88.4% of FB-labeled cells with P2X3 immunoreactivity originated from the nodose ganglion. In conclusion, P2X3-immunoreactive nerve endings in the rat tracheal mucosa have unique morphological characteristics, and these endings may be rapidly adapting receptors and/or irritant receptors that are activated by mucosal irritant stimuli.
Collapse
Affiliation(s)
- Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
14
|
Yu W, Liao Y, Huang Y, Chen SY, Sun Y, Sun C, Wu Y, Tang C, Du J, Jin H. Endogenous Hydrogen Sulfide Enhances Carotid Sinus Baroreceptor Sensitivity by Activating the Transient Receptor Potential Cation Channel Subfamily V Member 1 (TRPV1) Channel. J Am Heart Assoc 2017; 6:JAHA.116.004971. [PMID: 28512115 PMCID: PMC5524069 DOI: 10.1161/jaha.116.004971] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background We aimed to investigate the regulatory effects of hydrogen sulfide (H2S) on carotid sinus baroreceptor sensitivity and its mechanisms. Methods and Results Male Wistar‐Kyoto rats and spontaneously hypertensive rats (SHRs) were used in the experiment and were given an H2S donor or a cystathionine‐β‐synthase inhibitor, hydroxylamine, for 8 weeks. Systolic blood pressure and the cystathionine‐β‐synthase/H2S pathway in carotid sinus were detected. Carotid sinus baroreceptor sensitivity and the functional curve of the carotid baroreceptor were analyzed using the isolated carotid sinus perfusion technique. Effects of H2S on transient receptor potential cation channel subfamily V member 1 (TRPV1) expression and S‐sulfhydration were detected. In SHRs, systolic blood pressure was markedly increased, but the cystathionine‐β‐synthase/H2S pathway in the carotid sinus was downregulated in comparison to that of Wistar‐Kyoto rats. Carotid sinus baroreceptor sensitivity in SHRs was reduced, demonstrated by the right and upward shift of the functional curve of the carotid baroreceptor. Meanwhile, the downregulation of TRPV1 protein was demonstrated in the carotid sinus; however, H2S reduced systolic blood pressure but enhanced carotid sinus baroreceptor sensitivity in SHRs, along with TRPV1 upregulation in the carotid sinus. In contrast, hydroxylamine significantly increased the systolic blood pressure of Wistar‐Kyoto rats, along with decreased carotid sinus baroreceptor sensitivity and reduced TRPV1 protein expression in the carotid sinus. Furthermore, H2S‐induced enhancement of carotid sinus baroreceptor sensitivity of SHRs could be amplified by capsaicin but reduced by capsazepine. Moreover, H2S facilitated S‐sulfhydration of TRPV1 protein in the carotid sinus of SHRs and Wistar‐Kyoto rats. Conclusions H2S regulated blood pressure via an increase in TRPV1 protein expression and its activity to enhance carotid sinus baroreceptor sensitivity.
Collapse
Affiliation(s)
- Wen Yu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ying Liao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | | | - Yan Sun
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chufan Sun
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuming Wu
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China.,Key Lab of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Key Lab of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
15
|
Yokoyama T, Saino T, Nakamuta N, Kusakabe T, Yamamoto Y. Three-dimensional architectures of P2X2-/P2X3-immunoreactive afferent nerve terminals in the rat carotid body as revealed by confocal laser scanning microscopy. Histochem Cell Biol 2016; 146:479-88. [DOI: 10.1007/s00418-016-1458-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2016] [Indexed: 12/16/2022]
|
16
|
Name-calling in the hippocampus (and beyond): coming to terms with neuron types and properties. Brain Inform 2016; 4:1-12. [PMID: 27747821 PMCID: PMC5319951 DOI: 10.1007/s40708-016-0053-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/24/2016] [Indexed: 01/25/2023] Open
Abstract
Widely spread naming inconsistencies in neuroscience pose a vexing obstacle to effective communication within and across areas of expertise. This problem is particularly acute when identifying neuron types and their properties. Hippocampome.org is a web-accessible neuroinformatics resource that organizes existing data about essential properties of all known neuron types in the rodent hippocampal formation. Hippocampome.org links evidence supporting the assignment of a property to a type with direct pointers to quotes and figures. Mining this knowledge from peer-reviewed reports reveals the troubling extent of terminological ambiguity and undefined terms. Examples span simple cases of using multiple synonyms and acronyms for the same molecular biomarkers (or other property) to more complex cases of neuronal naming. New publications often use different terms without mapping them to previous terms. As a result, neurons of the same type are assigned disparate names, while neurons of different types are bestowed the same name. Furthermore, non-unique properties are frequently used as names, and several neuron types are not named at all. In order to alleviate this nomenclature confusion regarding hippocampal neuron types and properties, we introduce a new functionality of Hippocampome.org: a fully searchable, curated catalog of human and machine-readable definitions, each linked to the corresponding neuron and property terms. Furthermore, we extend our robust approach to providing each neuron type with an informative name and unique identifier by mapping all encountered synonyms and homonyms.
Collapse
|