1
|
Wang S, Tu Y, Yu H, Li Z, Feng J, Liu S. Animal models and related techniques for dentin study. Odontology 2024:10.1007/s10266-024-00987-1. [PMID: 39225758 DOI: 10.1007/s10266-024-00987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
The intricate and protracted process of dentin formation has been extensively explored, thanks to the significant advancements facilitated by the use of animal models and related techniques. Despite variations in their effectiveness, taking into account factors such as sensitivity, visibility, and reliability, these models or techniques are indispensable tools for investigating the complexities of dentin formation. This article focuses on the latest advances in animal models and related technologies, shedding light on the key molecular mechanisms that are essential in dentin formation. A deeper understanding of this phenomenon enables the careful selection of appropriate animal models, considering their suitability in unraveling the underlying molecular intricacies. These insights are crucial for the advancement of clinical drugs targeting dentin-related ailments and the development of comprehensive treatment strategies throughout the duration of the disease.
Collapse
Affiliation(s)
- Shuai Wang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China
- Department of Pediatrics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People's Republic of China
| | - Yan Tu
- Department of Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Hao Yu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China
- Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People's Republic of China
| | - Zhen Li
- Shanghai Fengxian District Dental Disease Prevention Institute, Shanghai, 201499, People's Republic of China
| | - Jinqiu Feng
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China.
- Department of Pediatrics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People's Republic of China.
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China.
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
2
|
Alnasser M, Alshammari AH, Siddiqui AY, Alothmani OS, Issrani R, Iqbal A, Khattak O, Prabhu N. Tissue Regeneration on Rise: Dental Hard Tissue Regeneration and Challenges-A Narrative Review. SCIENTIFICA 2024; 2024:9990562. [PMID: 38690100 PMCID: PMC11057954 DOI: 10.1155/2024/9990562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
Background As people live longer, there is an increasing need for hard tissue regeneration and whole-tooth regeneration. Despite the advancements in the field of medicine, the field of regenerative dentistry is still challenging due to the complexity of dental hard tissues. Cross-disciplinary collaboration among material scientists, cellular biologists, and odontologists aimed at developing strategies and uncovering solutions related to dental tissue regeneration. Methodology. A search of the literature was done for pertinent research. Consistent with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) 2020 Statement, the electronic databases looked at were PubMed, Science Direct, Scopus, and Google Scholar, with the keyword search "hard dental tissue regeneration." Results Database analysis yielded a total of 476 articles. 222 duplicate articles have been removed in total. Articles that have no connection to the directed regeneration of hard dental tissue were disregarded. The review concluded with the inclusion of four studies that were relevant to our research objective. Conclusion Current molecular signaling network investigations and novel viewpoints on cellular heterogeneity have made advancements in understanding of the kinetics of dental hard tissue regeneration possible. Here, we outline the fundamentals of stem hard dental tissue maintenance, regeneration, and repair, as well as recent advancements in the field of hard tissue regeneration. These intriguing findings help establish a framework that will eventually enable basic research findings to be utilized towards oral health-improving medicines.
Collapse
Affiliation(s)
- Muhsen Alnasser
- Department of Restorative Dental Sciences, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| | | | - Amna Yusuf Siddiqui
- Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama Shujaa Alothmani
- Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rakhi Issrani
- Department of Preventive Dentistry, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Azhar Iqbal
- Department of Restorative Dental Sciences, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| | - Osama Khattak
- Department of Restorative Dental Sciences, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| | - Namdeo Prabhu
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
3
|
Jing J, Zhang M, Guo T, Pei F, Yang Y, Chai Y. Rodent incisor as a model to study mesenchymal stem cells in tissue homeostasis and repair. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.1068494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The homeostasis of adult tissues, such as skin, hair, blood, and bone, requires continuous generation of differentiated progeny of stem cells. The rodent incisor undergoes constant renewal and can provide an extraordinary model for studying stem cells and their progeny in adult tissue homeostasis, cell differentiation and injury-induced regeneration. Meanwhile, cellular heterogeneity in the mouse incisor also provides an opportunity to study cell-cell communication between different cell types, including interactions between stem cells and their niche environment. More importantly, the molecular and cellular regulatory mechanisms revealed by the mouse incisor have broad implications for other organs. Here we review recent findings and advances using the mouse incisor as a model, including perspectives on the heterogeneity of cells in the mesenchyme, the niche environment, and signaling networks that regulate stem cell behavior. The progress from this field will not only expand the knowledge of stem cells and organogenesis, but also bridge a gap between animal models and tissue regeneration.
Collapse
|
4
|
Imai C, Sano H, Quispe-Salcedo A, Saito K, Nakatomi M, Ida-Yonemochi H, Okano H, Ohshima H. Exploration of the role of the subodontoblastic layer in odontoblast-like cell differentiation after tooth drilling using Nestin-enhanced green fluorescent protein transgenic mice. J Oral Biosci 2022; 64:77-84. [PMID: 35031478 DOI: 10.1016/j.job.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Original odontoblasts and regenerated odontoblast-like cells (OBLCs) may differently regulate Nestin expression. This study aimed to investigate the role of the subodontoblastic layer (SOBL) using green fluorescent protein (GFP) reactivity in the process of OBLC differentiation after tooth drilling in Nestin-enhanced GFP transgenic mice. METHODS A groove-shaped cavity was prepared on the mesial surface of the maxillary first molars of 5- or 6-week-old mice under deep anesthesia. Immunohistochemical staining for Nestin and GFP and Nestin in situ hybridization were conducted on the sections obtained at 1-14 days postoperative. RESULTS Odontoblasts showed intense endogenous Nestin protein and mRNA expression, whereas the coronal SOBL cells showed a Nestin-GFP-positive reaction in the control groups. The injured odontoblasts had significantly decreased Nestin immunoreactivity as well as decreased expression of Nestin mRNA 1-2 days after the injury; subsequently, newly differentiated OBLCs were arranged along the pulp-dentin border, with significantly increased Nestin expression as well as increased expression of Nestin mRNA on days 3-5 to form reparative dentin. Nestin-GFP-positive cells at the pulp-dentin border significantly increased in number on days 1 and 2. GFP(+)/Nestin(+) and GFP(-)/Nestin(+) cells were intermingled in the newly differentiated OBLCs. CONCLUSIONS The commitment of Nestin-GFP-positive cells into Nestin-positive OBLCs suggests that the restriction of endogenous Nestin protein and mRNA expression in the static SOBL cells was removed by exogenous stimuli, resulting in their migration along the pulp-dentin border and their differentiation into OBLCs.
Collapse
Affiliation(s)
- Chihiro Imai
- Faculty of Dentistry, Niigata University, Niigata, Japan
| | - Hiroto Sano
- Division of Clinical Chemistry, Department of Medical Technology, Niigata University Graduate School of Health Sciences, Niigata, Japan; Department of Pathology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Angela Quispe-Salcedo
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kotaro Saito
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mitsushiro Nakatomi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Human, Information and Life Sciences, School of Health Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
5
|
Biological characteristics of dental pulp stem cells and their potential use in regenerative medicine. J Oral Biosci 2022; 64:26-36. [PMID: 35031479 DOI: 10.1016/j.job.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Regenerative medicine has emerged as a multidisciplinary field with the promising potential of renewing tissues and organs. The main types of adult stem cells used in clinical trials are hematopoietic and mesenchymal stem cells (MSCs). Stem cells are defined as self-renewing clonogenic progenitor cells that can generate one or more types of specialized cells. HIGHLIGHT MSCs form adipose, cartilage, and bone tissue. Their protective and regenerative effects, such as mitogenic, anti-apoptotic, anti-inflammatory, and angiogenic effects, are mediated through paracrine and endocrine mechanisms. Dental pulp is a valuable source of stem cells because the collection of dental pulp for stem cell isolation is non-invasive, in contrast to conventional sources, such as bone marrow and adipose tissue. Teeth are an excellent source of dental pulp stem cells (DPSCs) for therapeutic procedures and they can be easily obtained after tooth extraction or the shedding of deciduous teeth. Thus, there is increased interest in optimizing and establishing standard procedures for obtaining DPSCs; preserving well-defined DPSC cultures for specific applications; and increasing the efficiency, reproducibility, and safety of the clinical use of DPSCs. CONCLUSION This review comprehensively describes the biological characteristics and origins of DPSCs, their identification and harvesting, key aspects related to their characterization, their multilineage differentiation potential, current clinical applications, and their potential use in regenerative medicine for future dental and medical applications.
Collapse
|
6
|
Olaru M, Sachelarie L, Calin G. Hard Dental Tissues Regeneration-Approaches and Challenges. MATERIALS 2021; 14:ma14102558. [PMID: 34069265 PMCID: PMC8156070 DOI: 10.3390/ma14102558] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
With the development of the modern concept of tissue engineering approach and the discovery of the potential of stem cells in dentistry, the regeneration of hard dental tissues has become a reality and a priority of modern dentistry. The present review reports the recent advances on stem-cell based regeneration strategies for hard dental tissues and analyze the feasibility of stem cells and of growth factors in scaffolds-based or scaffold-free approaches in inducing the regeneration of either the whole tooth or only of its component structures.
Collapse
Affiliation(s)
- Mihaela Olaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Liliana Sachelarie
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700399 Iasi, Romania;
- Correspondence:
| | - Gabriela Calin
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700399 Iasi, Romania;
| |
Collapse
|
7
|
Ishikawa Y, Ida-Yonemochi H, Saito K, Nakatomi M, Ohshima H. The Sonic Hedgehog–Patched–Gli Signaling Pathway Maintains Dental Epithelial and Pulp Stem/Progenitor Cells and Regulates the Function of Odontoblasts. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.651334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study aimed to elucidate the role of the Sonic hedgehog (Shh)–Patched (Ptch)–Gli signaling pathway in maintaining dental epithelial and pulp stem/progenitor cells and regulating the function of odontoblasts. Doxycycline (dox)-inducible histone 2B (H2B)–green fluorescent protein (GFP) transgenic mice ingested dox at prenatal embryonic days 14.5 or 15.5 and their offspring were collected from postnatal day 1 (P1) to week 3 (P3W). Immunohistochemistry for Gli1, Ptch1, and Ptch2 andin situhybridization forShhandPtch1were conducted. Mandibular incisors of postnatal day 2 H2B-GFP transgenic and wild-type mice were cultivated in a nutrient medium with Shh antibody for 4 days and subsequently processed for immunohistochemistry for Sox2. In molars, dense H2B-GFP-label-retaining cells (H2B-GFP-LRCs) were densely distributed throughout the dental pulp during P1 to postnatal week 2 (P2W) and decreased in number by postnatal P3W, whereas the number of dense H2B-GFP-LRCs in the subodontoblastic layer increased in number at P2W. Gli1+and Pthc1+cells were distributed throughout the enamel organ and dental pulp, including the odontoblast and subodontoblastic layers.ShhmRNA was expressed in the inner enamel epithelium and shifted into odontoblasts after dentin deposition.Ptch1mRNA was expressed in the inner enamel epithelium and cuspal pulpal tissue on P1 and decreased in intensity from postnatal week 1 to P3W. In incisors, the apical bud contained H2B-GFP-LRCs, Gli1+cells, and Ptch1+cells. The addition of Shh antibody to explants induced a decrease in the number of Sox2+cells due to the increase in apoptotic cells in the apical bud. Thus, the Shh–Ptch–Gli signaling pathway plays a role in maintaining quiescent adult stem cells and regulating the function of odontoblasts.
Collapse
|
8
|
ADAMTS5 is required for normal trabeculated bone development in the mandibular condyle. Osteoarthritis Cartilage 2021; 29:547-557. [PMID: 33561540 PMCID: PMC8759092 DOI: 10.1016/j.joca.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Determine the role of the extracellular matrix protease ADAMTS5 in development of the trabeculated bone of the mandibular condyle. METHODS The mandibular condyles of wild type and mice deficient in the protease ADAMTS5 were examined for histopathology with Safranin O staining. Microcomputed tomography was performed to analyze the developing bone of the mandibular condyle. RNAscope and immunohistochemistry were utilized to investigate cell type and extracellular matrix expression. RESULTS Mice deficient in Adamts5, (Adamts5tm1Dgen/J) exhibit an increase in trabecular separation (n = 37 wild type; n = 27: P < 0.0001) and reduction of trabecular thickness P = 0.0116 and bone volume fraction P = 0.0869 in the mandibular condylar head compared to wild type littermates. The altered bone parameters were more pronounced in male Adamts5-/- mice compared to female Adamts5-/- mice (TbSp; P = 0.03). Adamts5 was co-expressed with versican and Gli1 in mesenchymal, stem-like cells in the transition zone where the trabeculated bone is adjacent to mature hypertrophic chondrocytes. Loss of Adamts5 caused a reduction of Bglap expressing osteoblasts throughout mandibular condylar development and in young adult mice. The protease Mmp13, that is involved in mineralization and is expressed by hypertrophic chondrocytes and osteoblasts, was reduced in the mandibular condyle of Adamts5 deficient mice. CONCLUSION This is the first report of a novel and critical role for Adamts5 in bone formation within the mandibular condyle of the temporomandibular joint. These data indicate Adamts5 may be required in the transdifferentiation of hypertrophic chondrocytes to osteoblasts during trabecular bone formation in development of the mandibular condyle.
Collapse
|
9
|
Stem cell properties of Gli1-positive cells in the periodontal ligament. J Oral Biosci 2020; 62:299-305. [DOI: 10.1016/j.job.2020.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/14/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
|
10
|
Ren Y, Su S, Liu X, Zhang Y, Zhao Y, Xiao E. Microbiota-Derived Short-Chain Fatty Acids Promote BMP Signaling by Inhibiting Histone Deacetylation and Contribute to Dentinogenic Differentiation in Murine Incisor Regeneration. Stem Cells Dev 2020; 29:1201-1214. [PMID: 32689895 DOI: 10.1089/scd.2020.0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Microbiota and their metabolites short-chain fatty acids (SCFAs) have important roles in regulating tissue regeneration and mesenchymal stem cell (MSC) differentiation. In this study, we explored the potential effects of SCFAs on murine incisor regeneration and dental MSCs. We observed that SCFA deficiency induced by depletion of microbiota through antibiotic treatment led to lower renewal rate and delayed dentinogenesis in mice incisors. Supplementation with SCFAs in drinking water during antibiotic treatment can rescue the renewal rate and dentinogenesis effectively. In vitro, stimulation with SCFAs could promote differentiation of dental MSCs to odontoblasts. We further found that SCFAs could contribute to dentinogenic differentiation of dental MSCs by increasing bone morphogenetic protein (BMP) signal activation. SCFAs could inhibit deacetylation and increase BMP7 transcription of dental MSCs, which promoted BMP signaling. Our results suggested that SCFAs were required for incisor regeneration as well as differentiation of dental MSCs. Microbiota and their metabolites should be concerned as important factors in the tissue renewal and regeneration.
Collapse
Affiliation(s)
- Yi Ren
- Department of Pediatric Dentistry, and Peking University School and Hospital of Stomatology, Beijing, China
| | - Shenping Su
- Department of Pediatric Dentistry, and Peking University School and Hospital of Stomatology, Beijing, China
| | - Xingyu Liu
- Department of Pediatric Dentistry, and Peking University School and Hospital of Stomatology, Beijing, China
| | - Yi Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuming Zhao
- Department of Pediatric Dentistry, and Peking University School and Hospital of Stomatology, Beijing, China
| | - E Xiao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Stomatology, First People's Hospital of Jinzhong, Jinzhong, China
| |
Collapse
|
11
|
Baranova J, Büchner D, Götz W, Schulze M, Tobiasch E. Tooth Formation: Are the Hardest Tissues of Human Body Hard to Regenerate? Int J Mol Sci 2020; 21:E4031. [PMID: 32512908 PMCID: PMC7312198 DOI: 10.3390/ijms21114031] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
With increasing life expectancy, demands for dental tissue and whole-tooth regeneration are becoming more significant. Despite great progress in medicine, including regenerative therapies, the complex structure of dental tissues introduces several challenges to the field of regenerative dentistry. Interdisciplinary efforts from cellular biologists, material scientists, and clinical odontologists are being made to establish strategies and find the solutions for dental tissue regeneration and/or whole-tooth regeneration. In recent years, many significant discoveries were done regarding signaling pathways and factors shaping calcified tissue genesis, including those of tooth. Novel biocompatible scaffolds and polymer-based drug release systems are under development and may soon result in clinically applicable biomaterials with the potential to modulate signaling cascades involved in dental tissue genesis and regeneration. Approaches for whole-tooth regeneration utilizing adult stem cells, induced pluripotent stem cells, or tooth germ cells transplantation are emerging as promising alternatives to overcome existing in vitro tissue generation hurdles. In this interdisciplinary review, most recent advances in cellular signaling guiding dental tissue genesis, novel functionalized scaffolds and drug release material, various odontogenic cell sources, and methods for tooth regeneration are discussed thus providing a multi-faceted, up-to-date, and illustrative overview on the tooth regeneration matter, alongside hints for future directions in the challenging field of regenerative dentistry.
Collapse
Affiliation(s)
- Juliana Baranova
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes 748, Vila Universitária, São Paulo 05508-000, Brazil;
| | - Dominik Büchner
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| | - Werner Götz
- Oral Biology Laboratory, Department of Orthodontics, Dental Hospital of the University of Bonn, Welschnonnenstraße 17, 53111 Bonn, NRW, Germany;
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| |
Collapse
|
12
|
Hosoya A, Shalehin N, Takebe H, Shimo T, Irie K. Sonic Hedgehog Signaling and Tooth Development. Int J Mol Sci 2020; 21:ijms21051587. [PMID: 32111038 PMCID: PMC7084732 DOI: 10.3390/ijms21051587] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
Sonic hedgehog (Shh) is a secreted protein with important roles in mammalian embryogenesis. During tooth development, Shh is primarily expressed in the dental epithelium, from initiation to the root formation stages. A number of studies have analyzed the function of Shh signaling at different stages of tooth development and have revealed that Shh signaling regulates the formation of various tooth components, including enamel, dentin, cementum, and other soft tissues. In addition, dental mesenchymal cells positive for Gli1, a downstream transcription factor of Shh signaling, have been found to have stem cell properties, including multipotency and the ability to self-renew. Indeed, Gli1-positive cells in mature teeth appear to contribute to the regeneration of dental pulp and periodontal tissues. In this review, we provide an overview of recent advances related to the role of Shh signaling in tooth development, as well as the contribution of this pathway to tooth homeostasis and regeneration.
Collapse
Affiliation(s)
- Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
- Correspondence: ; Tel.: +81-133-23-1938; Fax: +81-133-23-1236
| | - Nazmus Shalehin
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| | - Tsuyoshi Shimo
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Kazuharu Irie
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| |
Collapse
|
13
|
Soda M, Saito K, Ida-Yonemochi H, Nakakura-Ohshima K, Kenmotsu S, Ohshima H. Reduced enamel epithelium-derived cell niche in the junctional epithelium is maintained for a long time in mice. J Periodontol 2019; 91:819-827. [PMID: 31495928 DOI: 10.1002/jper.19-0269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/12/2019] [Accepted: 08/26/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Although numerous reports have demonstrated that the junctional epithelium (JE) is derived from the reduced enamel epithelium (REE), the fate of the REE-derived JE remains controversial. The present study elucidated the fate of the REE-derived JE and the cell dynamics of stem/progenitor cells in the JE following tooth eruption. METHODS Mandibular first molar germs (embryonic days 15 to postnatal 1-day-old) were transplanted into the socket of 2-week-old mice after extraction of the upper first molars of B6 wild-type (WT) and green fluorescent protein (GFP) transgenic mice. After analysis by µ-CT, paraffin sections were processed for immunohistochemistry for Nestin, Ki67 and GFP. We also performed chasing analysis using BrdU-administered TetOP-H2B-GFP mice. RESULTS Amelogenesis progressed normally in the cervical areas, and the structure of the JE was like that in normal tooth development. The JE was GFP-negative in transplantations using GFP transgenic mice as the host, and the oral epithelium (OE) showed a positive reaction. By contrast, the JE remained GFP-positive throughout the experimental period in transplantations using GFP transgenic mice as the donor. Chasing analysis revealed that H2B-GFP- and 5-Bromo-2'-deoxyuridine (BrdU)-labeled cells in the basal side of the JE translocated to oral side of the JE as the chasing time increased. Some label-retaining cells remained at the supra-basal cell layer in the JE. CONCLUSION These results suggest that REE-derived cell niche in the JE is maintained for a long time following tooth eruption. Therefore, the JE may be available as the source of the odontogenic epithelium.
Collapse
Affiliation(s)
- Miki Soda
- Division of Pediatric Dentistry, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kotaro Saito
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kuniko Nakakura-Ohshima
- Division of Pediatric Dentistry, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shinichi Kenmotsu
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
14
|
Regulation of IGF-I by IGFBP3 and IGFBP5 during odontoblast differentiation in mice. J Oral Biosci 2019; 61:157-162. [PMID: 31400542 DOI: 10.1016/j.job.2019.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Although intracellular signaling pathways of insulin-like growth factor I (IGF-I) related to the proliferation of dental pulp cells have been investigated, the switching mechanism from cell proliferation to differentiation during odontogenesis remains elusive. This study aimed to elucidate the role of IGF binding protein (IGFBP) 3 and 5 in regulation of IGF-I during odontoblast differentiation in mouse incisors. METHODS The detailed expression patterns of IGF-I, IGF-I receptor (IGF-IR), IGFBP3, and IGFBP5 together with that of an odontoblast differentiation marker, nestin, were examined by immunohistochemistry and/or in situ hybridization using paraffinized sections of TetOP-H2B-GFP mouse incisors at postnatal 4 weeks. RESULTS Undifferentiated dental papilla cells and preodontoblasts (preOB) showed intense IGF-I- and IGF-IRα-positive reactions, and the expression was observed in differentiated odontoblasts, such as immature odontoblasts (iOB) and mature odontoblasts (mOB). IGFBP3/Igfbp3 was transiently expressed in preOB and early iOB, and the intensity of expression gradually reduced with the progression of odontoblast differentiation. In contrast, immunohistochemical analysis for IGFBP5 identified a positive reaction in the undifferentiated dental papilla cells and differentiated odontoblasts, and the expression of Igfbp5 was reduced in the differentiated odontoblasts. CONCLUSION The present study demonstrated the expression patterns of IGF-I, IGF-IR, IGFBP3, and IGFBP5 during odontoblast differentiation in mouse incisors. These results suggested that IGFBP3 regulates the transition from the proliferative to differentiation stage by inhibiting the action of IGF-I on the proliferation of dental papilla cells, and that IGFBP5 plays an important role in the maintenance of the differentiated odontoblasts during tooth development.
Collapse
|
15
|
Medina-Fernandez I, Celiz AD. Acellular biomaterial strategies for endodontic regeneration. Biomater Sci 2019; 7:506-519. [PMID: 30569918 DOI: 10.1039/c8bm01296b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dental decay is treated by removing infected dental tissues such as dentine and restoring the tooth with a material. However, the vast majority of these materials have been designed to be mechanically robust and bioinert, whereas the potential regenerative properties of a biomaterial have not been considered. In endodontics for example, materials are used to seal the pulp cavity to avoid bacterial colonisation of the tooth and prevent further infection. While these treatments are effective in the short term, many of these materials have not been designed to interface with the pulp tissue in a biocompatible manner and are often cytotoxic. This can lead to less favourable long-term outcomes such as devitalisation of the tooth via root-canal therapy or extraction of the tooth. Clinical outcomes could be improved if regenerative approaches were followed whereby the biology of the tooth is engineered for repair and regeneration often with the support of a biomaterial. Within these, acellular or cell homing approaches are particularly interesting, as some regulatory hurdles associated with cellular therapies could be circumvented which may aid their clinical translation. In this review, we highlight progress in regenerative dentistry and focus on exciting developments using acellular biomaterials for regenerating dental tissues.
Collapse
|
16
|
Seino Y, Nakatomi M, Ida-Yonemochi H, Koga D, Ushiki T, Ohshima H. Three-dimensional configuration of apical epithelial compartments including stem cell niches in guinea pig cheek teeth. J Oral Biosci 2019; 61:55-63. [PMID: 30929803 DOI: 10.1016/j.job.2019.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/04/2019] [Accepted: 01/11/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Continuously growing rodent incisors have an apically located epithelial stem cell compartment, known as an "apical bud" (AB). Few studies have described the morphological features of ABs and stem cell niches in continuously growing premolars/molars. We attempted to clarify the relationship between the three-dimensional configuration of ABs and the stem cell niches in guinea pig cheek teeth. METHODS We perfusion-fixed four-week-old guinea pigs, then decalcified their premolars/molars to produce serial paraffin sections, which we immunostained for Sox2. We reconstructed the serial sections using image processing and analysis software. We processed undecalcified samples for scanning electron microscopy by KOH digestion. RESULTS Two types of epithelia with M and Δ shapes surrounded the S-shaped dental papilla in the apical region of the premolars/molars, and there were three Sox2-positive epithelial bulges above the M- and Δ-shaped epithelia. Sox2-positive epithelial stem cell niches were restricted to the apical side, and cell proliferation and differentiation immediately proceeded in the crown-analogue dentin. The Sox2-positive epithelial stem cell niches were sparsely distributed and extended to the occlusal side. We also detected continuously proliferating cells in the cervical loop and Hertwig's epithelial root sheath of the root-analogue dentin. CONCLUSIONS Our findings suggest that guinea pig cheek teeth have three ABs, and the complex configuration of these types of teeth may be attributed to the prompt formation of crown-analogue dentin followed by the long-term formation of root-analogue dentin.
Collapse
Affiliation(s)
- Yuta Seino
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Mitsushiro Nakatomi
- Division of Anatomy, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa 078-8510, Japan
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy and Bio-imaging, Department of Cellular Function, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| |
Collapse
|
17
|
Xie F, Dai Q, Liu X, Wang J. Conditional Knockout of Raptor/mTORC1 Results in Dentin Malformation. Front Physiol 2019; 10:250. [PMID: 30984011 PMCID: PMC6449869 DOI: 10.3389/fphys.2019.00250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/25/2019] [Indexed: 12/16/2022] Open
Abstract
mTORC1 signaling plays an important role in extracellular and intracellular signals, including growth factors, nutrients, energy metabolism, and stress. However, the functional role of mTORC1 in dentinogenesis is unknown. To study the role of Raptor/mTORC1 in dentinogenesis, an Raptorfl/fl; Osx-Cre (Rap-Osx) mouse, in which Raptor was conditionally deleted in odontoblasts and dental mesenchymal cells, was generated, and postnatal tooth development was compared between Rap-Osx mice and control littermates. Rap-Osx mice presented a phenotype known as dentinogenesis imperfecta and had smaller tooth volume, a thinner dentin layer and a larger pulp chamber. The proliferation and differentiation of odontoblasts/preodontoblasts were attenuated in mutant mice, which was likely responsible for the defects in dentinogenesis. Raptor/mTORC1-pS6K1 signaling was inactivated during tooth development in Rap-Osx mice, whereas it was activated in control mice. These results indicate that Raptor/mTORC1 plays a critical role in dentinogenesis via promoting odontoblasts/preodontoblasts proliferation and differentiation. Raptor/mTORC1 might regulate tooth development through the pS6K1 signaling pathway.
Collapse
Affiliation(s)
- Furong Xie
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Qinggang Dai
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiao Liu
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jun Wang
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
18
|
Moradi SL, Golchin A, Hajishafieeha Z, Khani M, Ardeshirylajimi A. Bone tissue engineering: Adult stem cells in combination with electrospun nanofibrous scaffolds. J Cell Physiol 2018; 233:6509-6522. [DOI: 10.1002/jcp.26606] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/16/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Sadegh L. Moradi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Ali Golchin
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Zahra Hajishafieeha
- Department of Microbiology Qazvin University of Medical Sciences Qazvin Iran
| | - Mohammad‐Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
- Edward A. Doisy Department of Biochemistry and Molecular Biology Saint Louis University School of Medicine Saint Louis MO
| |
Collapse
|
19
|
Nakaki T, Nakakura-Ohshima K, Nakagawa E, Ishikawa Y, Saito K, Ida-Yonemochi H, Ohshima H. Donor–host tissue interaction in allogenic transplanted tooth germ with special reference to periodontal tissue. J Oral Biosci 2018. [DOI: 10.1016/j.job.2018.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Kim YS, Lee HJ, Park JM, Han YM, Kangwan N, Oh JY, Lee DY, Hahm KB. Targeted molecular ablation of cancer stem cells for curing gastrointestinal cancers. Expert Rev Gastroenterol Hepatol 2017; 11:1059-1070. [PMID: 28707966 DOI: 10.1080/17474124.2017.1356224] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abundance of the ATPase-binding cassette (ABC) transporters and deranged self-renewal pathways characterize the presence of cancer stem cells (CSCs) in gastrointestinal cancers (GI cancers), which play crucial roles in tumorigenesis, chemotherapy resistance, tumor recurrence, and cancer metastasis. Therefore, in order to ensure high cure rates, chemoquiescence, CSCs should be ablated. Recent advances in either understanding CSCs or biomarker identification enable scientists to develop techniques for ablating CSCs and clinicians to provide cancer cure, especially in GI cancers characterized by inflammation-driven carcinogenesis. Areas covered: A novel approach to ablate CSCs in GI cancers, including esophageal, gastric, and colon cancers, is introduced along with explored underlying molecular mechanisms. Expert commentary: Though CSC ablation is still in the empirical stages and not in clinical practice, several strategies for ablating CSCs in GI cancers had been published, proton-pump inhibitors (PPIs) that regulate the membrane-bound ABC transporters, which underlie drug resistance; chloroquine (CQ) that inhibits autophagy, which is responsible for tumor survival; Hedgehog/Wnt/Notch inhibitors that influence the underlying stem-cell growth, and some natural products including Korean red ginseng, cancer-preventive kimchi, Artemisia extract, EGCG from green tea, and walnut extracts.
Collapse
Affiliation(s)
- Yong Seok Kim
- a Department of Biochemistry and Molecular Biology , Hanyang University College of Medicine , Seoul , Korea
| | - Ho Jae Lee
- b Department of Biochemistry , Gachon University College of Medicine , Incheon , Korea
| | - Jong-Min Park
- c CHA Cancer Prevention Research Center , CHA University , Seongnam , Korea
| | - Young-Min Han
- c CHA Cancer Prevention Research Center , CHA University , Seongnam , Korea
| | - Napapan Kangwan
- d Division of Physiology, School of Medical Sciences , University of Phayao , Phayao , Thailand
| | | | | | - Ki Baik Hahm
- a Department of Biochemistry and Molecular Biology , Hanyang University College of Medicine , Seoul , Korea.,c CHA Cancer Prevention Research Center , CHA University , Seongnam , Korea.,f Digestive Disease Center , CHA University Bundang Medical Center , Seongnam , Korea
| |
Collapse
|