1
|
Abarikwu SO, Coimbra JLP, Campolina-Silva G, Rocha ST, Costa VV, Lacerda SMSN, Costa GMJ. Acute effects of atrazine on the immunoexpressions of sertoli and germ cells molecular markers, cytokines, chemokines, and sex hormones levels in mice testes and epididymides. CHEMOSPHERE 2024; 363:142852. [PMID: 39019188 DOI: 10.1016/j.chemosphere.2024.142852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Atrazine is currently one of the most commonly used agrochemicals in the United States and elsewhere. Here, we studied the immunoexpression of molecular markers of mammalian testicular functions: androgen receptor (AR), promyelocytic leukemia zinc finger (PLZF), GDNF family receptor alpha-1 (GFRA1), VASA/DDX4 (DEAD-Box Helicase 4) as well as the levels of intratesticular and intra-epididymal estradiol (E2) and dihydrotestosterone (DHT), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukins (IL-1β and IL-6, IL-10) and testicular chemokines (CXCL-1, CCL-2 and CCL3) in BalB/c mice after a sub-acute gavage treatment with a gonado-toxin, atrazine (50 mg/kg body wt.) for three days. We found high numbers of AR immunopositive Sertoli cells and low numbers of GFRA1, PLZF and VASA/DDX4-positive germ cells in the seminiferous tubule regions of the testes. While TNF-α level in the testes fell and remained unchanged in the epididymides, IFN-γ levels in the testes remained constant but increased in the epididymides. E2 and DHT concentrations remained unaltered in the testes but were changed in the epididymides. There were no significant changes in the levels of interleukins in the testis and epididymis. Intratesticular chemokines were also not significantly altered, except for CCL-4, which was increased in the testis. Light microscopy of the epididymis showed detached epithelium and some detached cells in the lumen. It is concluded that atrazine changed the inflammatory status of the gonads and highlighted Sertoli and undifferentiated spermatogonia as important targets for atrazine's toxic effects in the testis of mice. Concerning the epididymis, atrazine altered the epididymal hormonal concentrations and promoted histopathological modifications in its parenchyma.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- Reproductive Biology and Molecular Toxicology Research Group, Department of Biochemistry, University of Port Harcourt, Choba, Nigeria.
| | - John L P Coimbra
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | | | - Samuel Tadeu Rocha
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Vivian Vasconcelos Costa
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Samyra M S N Lacerda
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Guilherme M J Costa
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| |
Collapse
|
2
|
Monteiro GN, Monteiro DS, Oliveira RJ, Cunha-Laura AL, Amaral EA, Auharek SA. Testicular toxicity in mice exposed to terephthalic acid in utero and during lactation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66050-66061. [PMID: 37097558 DOI: 10.1007/s11356-023-26849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/03/2023] [Indexed: 05/17/2023]
Abstract
Terephthalic acid (TPA) is a worldwide aromatic compound widely used to manufacture resins and the raw material for the polymerization reaction with ethylene glycol to produce polyethylene terephthalate, known as PET. The use of TPA extends to the synthesis of phthalates, plasticizers used in various industrialized products such as toys and cosmetics. The present study aimed to evaluate the testicular toxicity of terephthalic acid on male mice exposed in utero and during lactation to TPA in different developmental windows. The animals were treated intragastric with TPA at stock dispersal dosages corresponding to 0.0014 g/ml and 0.56 g/ml of TPA in 0.5% v/v carboxymethylcellulose as well as the control dose, composed solely of dispersion of carboxymethylcellulose (0.5% v/v). Four experimental windows were established: group I-treatment in utero, in the fetal period (gestational day-GD 10.5-18.5), with euthanasia at GD 18.5; group II-treatment in utero, in the fetal period (GD 10.5-18.5) and the lactational period (postnatal day (PND-15)), with euthanasia at 15 days; group III-treatment in utero in the fetal period (DG 10.5-18.5) with euthanasia at 70 days (age of sexual maturity, PND 70); group IV-treatment in utero, in the fetal period (GD 10.5-18.5) and the lactational period (PND-15), with euthanasia at 70 days (PND70). The results indicate that TPA changes the reproductive parameters (testicular weight, GI, penis size, and anogenital index) only at the dose of 0.56 g/ml in the fetal period. Data on the volumetric ratio of the testis elements show that the dispersion with the highest concentration of TPA significantly altered the blood vessel/capillary, lymphatic vessel, and connective tissue percentages. Only at the dose of 0.56 g/ml TPA was it effective in decreasing the Leydig and Sertoli cell numbers of the euthanized animals at GD 18.5. In group II, TPA increased the diameter and lumen of seminiferous tubules, which indicates that TPA accelerated the maturation process of Sertoli cells without changing the number and the nuclear volume of these cells. The Sertoli and Leydig cell numbers of the 70-day animals exposed to TPA in the gestational and lactational period were similar to the control. Therefore, the present study is the first in the literature to show that TPA presents a testicular toxicity during fetal (DG18.5) and postnatal life (PND15), without repercussion in adulthood (70 days).
Collapse
Affiliation(s)
- Gustavo Nazareno Monteiro
- Faculdade de Medicina Do Mucuri (FAMMUC), Universidade Federal Dos Vales Do Jequitinhonha E Mucuri (UFVJM), Teófilo Otoni, Minas Gerais, Brazil
- Instituto de Ciência, Engenharia E Tecnologia (ICET), Universidade Federal Dos Vales Do Jequitinhonha E Mucuri (UFVJM), Teófilo Otoni, Minas Gerais, Brazil
| | - Douglas Santos Monteiro
- Instituto de Ciência, Engenharia E Tecnologia (ICET), Universidade Federal Dos Vales Do Jequitinhonha E Mucuri (UFVJM), Teófilo Otoni, Minas Gerais, Brazil
| | - Rodrigo Juliano Oliveira
- Centro de Estudos Em Células Tronco, Terapia Celular E Genética Toxicológica (CeTroGen), Hospital Universitário Maria Aparecida Pedrossian (HUMAP), Universidade Federal de Mato Grosso Do Sul (UFMS), Campo Grande, Mato Grosso Do Sul, Brazil
| | - Andréa Luiza Cunha-Laura
- Instituto de Biologia (INBIO), Universidade Federal de Mato Grosso Do Sul (UFMS), Campo Grande, Mato Grosso Do Sul, Brazil
| | - Ernani Aloysio Amaral
- Faculdade de Medicina Do Mucuri (FAMMUC), Universidade Federal Dos Vales Do Jequitinhonha E Mucuri (UFVJM), Teófilo Otoni, Minas Gerais, Brazil
| | - Sarah Alves Auharek
- Faculdade de Medicina Do Mucuri (FAMMUC), Universidade Federal Dos Vales Do Jequitinhonha E Mucuri (UFVJM), Teófilo Otoni, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Skakkebæk NE, Lindahl-Jacobsen R, Levine H, Andersson AM, Jørgensen N, Main KM, Lidegaard Ø, Priskorn L, Holmboe SA, Bräuner EV, Almstrup K, Franca LR, Znaor A, Kortenkamp A, Hart RJ, Juul A. Environmental factors in declining human fertility. Nat Rev Endocrinol 2022; 18:139-157. [PMID: 34912078 DOI: 10.1038/s41574-021-00598-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
A severe decline in child births has occurred over the past half century, which will lead to considerable population declines, particularly in industrialized regions. A crucial question is whether this decline can be explained by economic and behavioural factors alone, as suggested by demographic reports, or to what degree biological factors are also involved. Here, we discuss data suggesting that human reproductive health is deteriorating in industrialized regions. Widespread infertility and the need for assisted reproduction due to poor semen quality and/or oocyte failure are now major health issues. Other indicators of declining reproductive health include a worldwide increasing incidence in testicular cancer among young men and alterations in twinning frequency. There is also evidence of a parallel decline in rates of legal abortions, revealing a deterioration in total conception rates. Subtle alterations in fertility rates were already visible around 1900, and most industrialized regions now have rates below levels required to sustain their populations. We hypothesize that these reproductive health problems are partially linked to increasing human exposures to chemicals originating directly or indirectly from fossil fuels. If the current infertility epidemic is indeed linked to such exposures, decisive regulatory action underpinned by unconventional, interdisciplinary research collaborations will be needed to reverse the trends.
Collapse
Affiliation(s)
- Niels E Skakkebæk
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | | | - Hagai Levine
- School of Public Health, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Niels Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Katharina M Main
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Øjvind Lidegaard
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Gynecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lærke Priskorn
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Stine A Holmboe
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Elvira V Bräuner
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Almstrup
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Luiz R Franca
- Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ariana Znaor
- Cancer Surveillance Branch, International Agency for Research on Cancer, Lyon, France
| | - Andreas Kortenkamp
- Division of Environmental Sciences, Brunel University London, Uxbridge, UK
| | - Roger J Hart
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Western Australia, Australia
- Fertility Specialists of Western Australia, Bethesda Hospital, Claremont, Western Australia, Australia
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Gayer FA, Reichardt SD, Bohnenberger H, Engelke M, Reichardt HM. Characterization of testicular macrophagesubpopulations in mice. Immunol Lett 2022; 243:44-52. [PMID: 35149127 DOI: 10.1016/j.imlet.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Abstract
Testis is an immune privileged site, a feature that prevents germ cells from eliciting an autoimmune response. Macrophages contribute to this state of tolerance by adopting an immunoregulatory phenotype. Here, we further characterized their features in mice by analyzing surface markers, anatomic localization as well as morphology and function. Testicular macrophages (TMF) were stained for various surface receptors, and MHCII and CD206 were found to be most suitable to discriminate between two subpopulations. Our immunohistochemical analysis further confirmed a predominant localization of CD206+ cells in the interstitial space. Imaging flow cytometry revealed that both subtypes of TMF differed in size and contrast, and to some extent also in their ability to engulf high-molecular dextran. To investigate whether the polarization of the immune system had any influence on the phenotype of TMF, we compared C57BL/6 and BALB/c mice. Importantly, our analysis revealed that the abundance of cells expressing either MHCII or any of the scavenger receptors CD206, CD163 and CD71 differed between both mouse strains. In addition, the presence of the glucocorticoid receptor in macrophages affected the ratio between individual subpopulations, which is consistent with a crucial role of glucocorticoids in macrophage polarization. Collectively, our results indicate that TMF are composed in a variable ratio of distinct subsets with characteristic features, which may shape the immune privilege of the testis also in humans.
Collapse
Affiliation(s)
- Fabian A Gayer
- University Medical Center Göttingen, Institute for Cellular and Molecular Immunology, Göttingen, Germany; University Medical Center Göttingen, Clinic of Urology, Göttingen, Germany
| | - Sybille D Reichardt
- University Medical Center Göttingen, Institute for Cellular and Molecular Immunology, Göttingen, Germany
| | | | - Michael Engelke
- University Medical Center Göttingen, Institute for Cellular and Molecular Immunology, Göttingen, Germany
| | - Holger M Reichardt
- University Medical Center Göttingen, Institute for Cellular and Molecular Immunology, Göttingen, Germany.
| |
Collapse
|
5
|
Resende FCD, Avelar GFD. The sexual segment of the kidney of a tropical rattlesnake, Crotalus durissus (Reptilia, Squamata, Viperidae), and its relationship to seasonal testicular and androgen cycles. J Morphol 2021; 282:1402-1414. [PMID: 34219274 DOI: 10.1002/jmor.21394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 11/10/2022]
Abstract
The sexual segment of the kidney (SSK) is a hypertrophied region of the nephron, which occurs in males of most squamate species that have been investigated, at least, during the active season. Many studies have shown that the SSK has a seasonal secretory cycle that could be correlated to the mating season, testicular activity, and androgen synthesis. However, to date, no study has investigated the presence of androgen receptors (AR) in cells of the SSK, nor the relation between the expression of AR, testosterone levels, and testicular condition. The SSK in Crotalus durissus corresponds to the distal segment of the nephron and presents a peak of hypertrophy during the period of testicular activity (spermatogenesis) and high testosterone levels, suggesting that seasonal variation of the SSK might be under the control of androgens. Testosterone concentrations and expression of AR varied seasonally with increased values for both parameters directly correlated to hypertrophy of the SSK. This study is, therefore, the first to target the SSK of a tropical snake and to establish a relationship between the secretory cycle of the SSK, testicular cycle, and levels of androgens. Furthermore, this study is the first to identify the presence of AR in the nucleus of the SSK cells.
Collapse
Affiliation(s)
- Flávia Cappuccio de Resende
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Scientific Collection of Snakes, Ezequiel Dias Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Gleide Fernandes de Avelar
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
6
|
Cordeiro DA, Costa GMJ, França LR. Testis structure, duration of spermatogenesis and daily sperm production in four wild cricetid rodent species (A. cursor, A. montensis, N. lasiurus, and O. nigripes). PLoS One 2021; 16:e0251256. [PMID: 34014973 PMCID: PMC8136699 DOI: 10.1371/journal.pone.0251256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/23/2021] [Indexed: 11/24/2022] Open
Abstract
Although rodents represent approximately 40% of all living mammalian species, our knowledge regarding their reproductive biology is still scarce. Due to their high vulnerability to environmental changes, wild rodents have become beneficial models for ecological studies. Thus, we aimed to comparatively investigate key functional testis parameters in four sexually mature wild rodent species (A. cursor, A. montensis, N. lasiurus, and O. nigripes). These species belong to the Cricetidae family, which is the most diverse family of rodents in South America, with a total of ~120 species in Brazil. The results found for the gonadosomatic index and the sickled sperm head shape observed strongly suggest that the species here evaluated are promiscuous, prolific, and short-lived. The duration of spermatogenesis was relatively short and varied from ~35-40 days. Both the percentage of seminiferous tubules (ST) in the testis parenchyma (~95-97%) and the number of Sertoli cells (SC) (~48-70 million) per testis gram were very high, whereas a fairly good SC efficiency (~8-13 round spermatids per SC) was observed. In comparison to other mammalian species studied, particularly the rodents of the suborder Myomorpha (i.e. hamsters, rats and mice), the rodents herein investigated exhibited very high (~62-80 million) daily sperm production per testis gram. This impressive spermatogenic efficiency resulted mainly from the short duration of spermatogenesis and quite high values found for the ST percentage in the testis and the SC number per testis gram. We expect that the knowledge here obtained will help conservation programs and the proper management of wildlife.
Collapse
Affiliation(s)
- Dirceu A. Cordeiro
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais—UFMG, Belo Horizonte, MG, Brazil
- UNINCOR, Três Corações, MG, Brazil
| | - Guilherme M. J. Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais—UFMG, Belo Horizonte, MG, Brazil
| | - Luiz R. França
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais—UFMG, Belo Horizonte, MG, Brazil
| |
Collapse
|