1
|
Zhou L, Cai W, Zhang Y, Zhong W, He P, Ren J, Gao X. Therapeutic effect of mesenchymal stem cell-derived exosome therapy for periodontal regeneration: a systematic review and meta-analysis of preclinical trials. J Orthop Surg Res 2025; 20:27. [PMID: 39780243 PMCID: PMC11715287 DOI: 10.1186/s13018-024-05403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND To assess the therapeutic effects of mesenchymal stem cell (MSC)-derived exosome therapy on periodontal regeneration and identify treatment factors associated with enhanced periodontal regeneration in recent preclinical studies. METHODS Searches were conducted in PubMed, Cochrane Library, EMBASE, and Web of Science databases until October 10, 2024. A risk of bias (ROB) assessment was performed using the SYRCLE tool. Osteogenic-related parameters were used as the primary outcome measures. RESULTS In total, 1360 articles were identified, of which 17 preclinical studies were based on MSC-derived exosome therapy, and they demonstrated a beneficial effect on BV/TV (SMD = 13.99; 95% Cl = 10.50, 17.48; p < 0.00001), CEJ-ABC (SMD = -0.22; 95% Cl = -0.31, -0.13; p < 0.00001), BMD (SMD = 0.29; 95% Cl = 0.14, 0.45; p = 0.0002), and Tp.Sp (SMD = -0.08; 95% Cl= -0.15, -0.02; p = 0.02) compared with the control group. However, no significant differences were observed in Tp.Th (SMD = 0.03; 95% CI = 0.00, 0.07; p = 0.09) between the exosome-treated group and control group. Additionally, subgroup analysis indicated that preconditioned exosomes (p = 0.03) significantly improved BV/TV. In contrast, there were no significant differences in the enhancement of BV/TV with respect to the application method (p = 0.29), application frequency (p = 0.10), treatment duration (p = 0.15), or source of MSCs (p = 0.31). CONCLUSIONS MSC-derived exosomes show great promise for enhancing the quality of periodontal regeneration. However, more standardized and robust trials are needed to reduce heterogeneity and bias across studies and to confirm the therapeutic parameters associated with the enhancement of periodontal regeneration by MSC-derived exosomes. REGISTRATION CRD42024546236.
Collapse
Affiliation(s)
- Liping Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, 401147 , China
- Chongqing Key Laboratory of Oral Diseases , Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147 , China
| | - Wenjia Cai
- College of Stomatology, Chongqing Medical University, Chongqing, 401147 , China
- Chongqing Key Laboratory of Oral Diseases , Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147 , China
| | - Yuhan Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147 , China
- Chongqing Key Laboratory of Oral Diseases , Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147 , China
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing, 401147 , China
- Chongqing Key Laboratory of Oral Diseases , Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147 , China
| | - Ping He
- Department of Stomatology, Dazhou Central Hospital, Dazhou, 635000, China.
| | - Jingsong Ren
- Department of Stomatology, Dazhou Central Hospital, Dazhou, 635000, China.
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing, 401147 , China.
- Chongqing Key Laboratory of Oral Diseases , Chongqing, 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147 , China.
| |
Collapse
|
2
|
Jing R, Xie X, Liao X, He S, Mo J, Dai H, Hu Z, Pan L. Transforming growth factor-β1 is associated with inflammatory resolution via regulating macrophage polarization in lung injury model mice. Int Immunopharmacol 2024; 142:112997. [PMID: 39217883 DOI: 10.1016/j.intimp.2024.112997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/21/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Ventilation is the main respiratory support therapy for acute respiratory distress syndrome, which triggers acute lung injury (ALI). Macrophage polarization is vital for the resolution of inflammation and tissue injury. We hypothesized that transforming growth factor (TGF)-β1 may attenuate inflammation and ventilator-induced ALI by promoting M2 macrophage polarization. METHODS C57BL/6 mice received 4-hour ventilation and extubation to observe the resolution of lung injury and inflammation. Lung vascular permeability, inflammation, and histological changes in the lungs were evaluated by bronchoalveolar lavage analysis, enzyme linked immunosorbent assay, hematoxylin and eosin staining, as well as transmission electron microscope. TGF-β1 cellular production and macrophage subsets were analyzed by flow cytometry. The relative expressions of targeted proteins and genes were measured by immunofuorescence staining, Western blot, and quantitative polymerase chain reaction. RESULTS High tidal volume-induced injury and inflammation were resolved at 3 days of post-ventilation (PV3d) to PV10d, with increased elastic fibers, proteoglycans, and collagen content, as well as higher TGF-β1 levels. M1 macrophages were increased in the acute phase, whereas M2a macrophages began to increase from PV1d to PV3d, as well as increased M2c macrophages from PV3d to PV7d. A single dose of rTGF-β1 attenuated lung injury and inflammation at end of ventilation with polymorphonuclear leukocyte apoptosis, while nTAb pretreatment induced the abnormal elevation of TGF-β1 that aggravated lung injury and inflammation due to the significant inhibition of M1 macrophages polarized to M2a, M2b, and M2c macrophages. CONCLUSIONS Precise secretion of TGF-β1-mediated macrophage polarization plays a crucial role in the resolution of ventilator-induced inflammatory lung injury.
Collapse
Affiliation(s)
- Ren Jing
- Guangxi Clinical Research Center for Anesthesiology, Nanning 530021, PR China; Department of Breast and Thyroid Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China
| | - Xianlong Xie
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning 530021, PR China; Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning 530021, PR China; Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, PR China; Department of Critical Medicine, Guangxi Medical University Cancer Hospital, Nanning 530021, PR China
| | - Xiaoting Liao
- Guangxi Clinical Research Center for Anesthesiology, Nanning 530021, PR China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning 530021, PR China; Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning 530021, PR China; Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, PR China
| | - Sheng He
- Guangxi Clinical Research Center for Anesthesiology, Nanning 530021, PR China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning 530021, PR China; Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning 530021, PR China; Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, PR China
| | - Jianlan Mo
- Guangxi Clinical Research Center for Anesthesiology, Nanning 530021, PR China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning 530021, PR China; Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning 530021, PR China; Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, PR China
| | - Huijun Dai
- Guangxi Clinical Research Center for Anesthesiology, Nanning 530021, PR China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning 530021, PR China; Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning 530021, PR China; Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, PR China
| | - Zhaokun Hu
- Guangxi Clinical Research Center for Anesthesiology, Nanning 530021, PR China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning 530021, PR China; Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning 530021, PR China; Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, PR China
| | - Linghui Pan
- Guangxi Clinical Research Center for Anesthesiology, Nanning 530021, PR China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning 530021, PR China; Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning 530021, PR China; Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, PR China.
| |
Collapse
|
3
|
Jin P, Liu H, Chen X, Liu W, Jiang T. From Bench to Bedside: The Role of Extracellular Vesicles in Cartilage Injury Treatment. Biomater Res 2024; 28:0110. [PMID: 39583872 PMCID: PMC11582190 DOI: 10.34133/bmr.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024] Open
Abstract
Cartilage repair is the key to the treatment of joint-related injury. However, because cartilage lacks vessels and nerves, its self-repair ability is extremely low. Extracellular vesicles (EVs) are bilayer nanovesicles with membranes mainly composed of ceramides, cholesterol, phosphoglycerides, and long-chain free fatty acids, containing DNA, RNA, and proteins (such as integrins and enzymes). For mediating intercellular communication and regulating mechanisms, EVs have been shown by multiple studies to be effective treatment options for cartilage repair. This review summarizes recent findings of different sources (mammals, plants, and bacteria) and uses of EVs in cartilage repair, mechanisms of EVs captured by injured chondrocytes, and quantification and storage of EVs, which may provide scientific guidance for promoting the development of EVs in the field of cartilage injury treatment.
Collapse
Affiliation(s)
- Pan Jin
- Health Science Center,
Yangtze University, Jingzhou 434023, Hubei, China
| | - Huan Liu
- Health Science Center,
Yangtze University, Jingzhou 434023, Hubei, China
| | - Xichi Chen
- Health Science Center,
Yangtze University, Jingzhou 434023, Hubei, China
| | - Wei Liu
- Health Science Center,
Yangtze University, Jingzhou 434023, Hubei, China
| | - Tongmeng Jiang
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University,
Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma; Hainan Provincial Stem Cell Research Institute; Hainan Academy of Medical Sciences,
Hainan Medical University, Haikou 571199, China
| |
Collapse
|
4
|
Kodama H, Endo K, Sekiya I. Macrophage depletion in inflamed rat knees prevents the activation of synovial mesenchymal stem cells by weakening Nampt and Spp1 signaling. Inflamm Regen 2024; 44:47. [PMID: 39563425 PMCID: PMC11577658 DOI: 10.1186/s41232-024-00361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Macrophages and mesenchymal stem cells (MSCs) engage in crucial interplay during inflammation and have significant roles in tissue regeneration. Synovial MSCs, as key players in joint regeneration, are known to proliferate together with macrophages in synovitis. However, the crosstalk between synovial MSCs and macrophages remains unclear. In this study, we investigated changes in the activation of synovial MSCs in inflamed rat knees following selective depletion of macrophages with clodronate liposomes. METHODS Acute inflammation was induced in rat knee joints by injection of carrageenan (day 0). Clodronate liposomes were administered intra-articularly on days 1 and 4 to deplete macrophages, with empty liposomes as a control. Knee joints were collected on day 7 for evaluation by histology, flow cytometry, and colony-forming assays. Concurrently, synovial MSCs were cultured and subjected to proliferation assays, flow cytometry, and chondrogenesis assessments. We also analyzed their crosstalk using single-cell RNA sequencing (scRNA-seq). RESULTS Clodronate liposome treatment significantly reduced CD68-positive macrophage numbers and suppressed synovitis. Immunohistochemistry and flow cytometry showed decreased expression of CD68 (a macrophage marker) and CD44 and CD271 (MSC markers) in the clodronate group, while CD73 expression remained unchanged. The number of colony-forming cells per 1000 nucleated cells and per gram of synovium was significantly lower in the clodronate group than in the control group. Cultured synovial MSCs from both groups showed comparable proliferation, surface antigen expression, and chondrogenic capacity. scRNA-seq identified seven distinct synovial fibroblast (SF) subsets, with a notable decrease in the Mki67+ SF subset, corresponding to synovial MSCs, in the clodronate group. Clodronate treatment downregulated genes related to extracellular matrix organization and anabolic pathways in Mki67+ SF. Cell-cell communication analysis revealed diminished Nampt and Spp1 signaling interaction between macrophages and Mki67+ SF and diminished Ccl7, Spp1, and Csf1 signaling interaction between Mki67+ SF and macrophages in the clodronate group. Spp1 and Nampt promoted the proliferation and/or chondrogenesis of synovial MSCs. CONCLUSIONS Macrophage depletion with clodronate liposomes suppressed synovitis and reduced the number and activity of synovial MSCs, highlighting the significance of macrophage-derived Nampt and Spp1 signals in synovial MSC activation. These findings offer potential therapeutic strategies to promote joint tissue regeneration by enhancing beneficial signals between macrophages and synovial MSCs.
Collapse
Affiliation(s)
- Hayato Kodama
- Center for Stem Cell and Regenerative Medicine, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kentaro Endo
- Center for Stem Cell and Regenerative Medicine, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| |
Collapse
|
5
|
Klyucherev TO, Peshkova MA, Revokatova DP, Serejnikova NB, Fayzullina NM, Fayzullin AL, Ershov BP, Khristidis YI, Vlasova II, Kosheleva NV, Svistunov AA, Timashev PS. The Therapeutic Potential of Exosomes vs. Matrix-Bound Nanovesicles from Human Umbilical Cord Mesenchymal Stromal Cells in Osteoarthritis Treatment. Int J Mol Sci 2024; 25:11564. [PMID: 39519121 PMCID: PMC11545893 DOI: 10.3390/ijms252111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease with limited therapeutic options, where inflammation plays a critical role in disease progression. Extracellular vesicles (EV) derived from mesenchymal stromal cells (MSC) have shown potential as a therapeutic approach for OA by modulating inflammation and alleviating degenerative processes in the joint. This study evaluated the therapeutic effects for the treatment of OA of two types of EV-exosomes and matrix-bound nanovesicles (MBV)-both derived from the human umbilical cord MSC (UC-MSC) via differential ultracentrifugation. Different phenotypes of human monocyte-derived macrophages (MDM) were used to study the anti-inflammatory properties of EV in vitro, and the medial meniscectomy-induced rat model of knee osteoarthritis (MMx) was used in vivo. The study found that both EV reduced pro-inflammatory cytokines IL-6 and TNF-α in MDM. However, exosomes showed superior results, preserving the extracellular matrix (ECM) of hyaline cartilage, and reducing synovitis more effectively than MBVs. Additionally, exosomes downregulated inflammatory markers (TNF-α, iNOS) and increased Arg-1 expression in macrophages and synovial fibroblasts, indicating a stronger anti-inflammatory effect. These results suggest UC-MSC exosomes as a promising therapeutic option for OA, with the potential for modulating inflammation and promoting joint tissue regeneration.
Collapse
Affiliation(s)
- Timofey O. Klyucherev
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Maria A. Peshkova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Daria P. Revokatova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Natalia B. Serejnikova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Digital Microscopic Analysis, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Nafisa M. Fayzullina
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alexey L. Fayzullin
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Digital Microscopic Analysis, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Boris P. Ershov
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Yana I. Khristidis
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Irina I. Vlasova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Nastasia V. Kosheleva
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | | | - Peter S. Timashev
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
6
|
José Alcaraz M. Control of articular degeneration by extracellular vesicles from stem/stromal cells as a potential strategy for the treatment of osteoarthritis. Biochem Pharmacol 2024; 228:116226. [PMID: 38663683 DOI: 10.1016/j.bcp.2024.116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Osteoarthritis (OA) is a degenerative joint condition that contributes to years lived with disability. Current therapeutic approaches are limited as there are no disease-modifying interventions able to delay or inhibit the progression of disease. In recent years there has been an increasing interest in the immunomodulatory and regenerative properties of mesenchymal stem/stromal cells (MSCs) to develop new OA therapies. Extracellular vesicles (EVs) mediate many of the biological effects of these cells and may represent an alternative avoiding the limitations of cell-based therapy. There is also a growing interest in EV modifications to enhance their efficacy and applications. Recent preclinical studies have provided strong evidence supporting the potential of MSC EVs for the development of OA treatments. Thus, MSC EVs may regulate chondrocyte functions to avoid cartilage destruction, inhibit abnormal subchondral bone metabolism and synovial tissue alterations, and control pain behavior. EV actions may be mediated by the transfer of their cargo to target cells, with an important role for proteins and non-coding RNAs modulating signaling pathways relevant for OA progression. Nevertheless, additional investigations are needed concerning EV optimization, and standardization of preparation procedures. More research is also required for a better knowledge of possible effects on different OA phenotypes, pharmacokinetics, mechanism of action, long-term effects and safety profile. Furthermore, MSC EVs have a high potential as vehicles for drug delivery or as adjuvant therapy to potentiate or complement the effects of other approaches.
Collapse
Affiliation(s)
- María José Alcaraz
- Department of Pharmacology, University of Valencia, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain.
| |
Collapse
|
7
|
Wu J, Wu J, Liu Z, Gong Y, Feng D, Xiang W, Fang S, Chen R, Wu Y, Huang S, Zhou Y, Liu N, Xu H, Zhou S, Liu B, Ni Z. Mesenchymal stem cell-derived extracellular vesicles in joint diseases: Therapeutic effects and underlying mechanisms. J Orthop Translat 2024; 48:53-69. [PMID: 39170747 PMCID: PMC11338158 DOI: 10.1016/j.jot.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/09/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Joint diseases greatly impact the daily lives and occupational functioning of patients globally. However, conventional treatments for joint diseases have several limitations, such as unsatisfatory efficacy and side effects, necessitating the exploration of more efficacious therapeutic strategies. Mesenchymal stem cell (MSC)-derived EVs (MSC-EVs) have demonstrated high therapeutic efficacyin tissue repair and regeneration, with low immunogenicity and tumorigenicity. Recent studies have reported that EVs-based therapy has considerable therapeutic effects against joint diseases, including osteoarthritis, tendon and ligament injuries, femoral head osteonecrosis, and rheumatoid arthritis. Herein, we review the therapeutic potential of various types of MSC-EVs in the aforementioned joint diseases, summarise the mechanisms underlying specific biological effects of MSC-EVs, and discuss future prospects for basic research on MSC-EV-based therapeutic modalities and their clinical translation. In general, this review provides an in-depth understanding of the therapeutic effects of MSC-EVs in joint diseases, as well as the underlying mechanisms, which may be beneficial to the clinical translation of MSC-EV-based treatment. The translational potential of this article: MSC-EV-based cell-free therapy can effectively promote regeneration and tissue repair. When used to treat joint diseases, MSC-EVs have demonstrated desirable therapeutic effects in preclinical research. This review may supplement further research on MSC-EV-based treatment of joint diseases and its clinical translation.
Collapse
Affiliation(s)
- Jinhui Wu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Jiangyi Wu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Zheng Liu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Yunquan Gong
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Daibo Feng
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Wei Xiang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Shunzheng Fang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Ran Chen
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, China
| | - Yaran Wu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing, 400038, China
| | - Shu Huang
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Yizhao Zhou
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Ningning Liu
- Department of Laboratory Medicine, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450003, China
| | - Hao Xu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University Zhengzhou, 450003, China
| | - Siru Zhou
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, China
| | - Baorong Liu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Zhenhong Ni
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| |
Collapse
|
8
|
Yu T, Wang J, Zhou Y, Ma C, Bai R, Huang C, Wang S, Liu K, Han B. Harnessing Engineered Extracellular Vesicles from Mesenchymal Stem Cells as Therapeutic Scaffolds for Bone‐Related Diseases. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202402861] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Indexed: 10/05/2024]
Abstract
AbstractMesenchymal stem cells (MSCs) play a crucial role in maintaining bone homeostasis and are extensively explored for cell therapy in various bone‐related diseases. In addition to direct cell therapy, the secretion of extracellular vesicles (EVs) by MSCs has emerged as a promising alternative approach. MSC‐derived EVs (MSC‐EVs) offer equivalent therapeutic efficacy to MSCs while mitigating potential risks. These EVs possess unique properties that enable them to traverse biological barriers and deliver bioactive cargos to target cells. Furthermore, by employing modification and engineering strategies, the therapeutic effects and tissue targeting specificity of MSC‐EVs can be further enhanced to meet specific therapeutic needs. In this review, the mechanisms and advantages of MSC‐EV therapy in diseased bone tissues are highlighted. Through simple isolation and modification techniques, MSC‐EV‐based biomaterials have demonstrated great promise for bone regeneration. Finally, future perspectives on MSC‐EV therapy are presented, envisioning the development of next‐generation regenerative materials and bioactive agents for clinical translation in the field of bone regeneration.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| | - Jingwei Wang
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| | - Yusai Zhou
- School of Materials Science and Engineering Beihang University Beijing 100191 P. R. China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Rushui Bai
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| | - Cancan Huang
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| | - Shidong Wang
- Musculoskeletal Tumor Center Peking University People's Hospital No.11 Xizhimen South St. Beijing 100044 P. R. China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Bing Han
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| |
Collapse
|
9
|
Xu S, Zhang Y, Zheng Z, Sun J, Wei Y, Ding G. Mesenchymal stem cells and their extracellular vesicles in bone and joint diseases: targeting the NLRP3 inflammasome. Hum Cell 2024; 37:1276-1289. [PMID: 38985391 DOI: 10.1007/s13577-024-01101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
The nucleotide-binding oligomerization domain-like-receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a cytosolic multi-subunit protein complex, and recent studies have demonstrated the vital role of the NLRP3 inflammasome in the pathological and physiological conditions, which cleaves gasdermin D to induce inflammatory cell death called pyroptosis and mediates the release of interleukin-1 beta and interleukin-18 in response to microbial infection or cellular injury. Over-activation of the NLRP3 inflammasome is associated with the pathogenesis of many disorders affecting bone and joints, including gouty arthritis, osteoarthritis, rheumatoid arthritis, osteoporosis, and periodontitis. Moreover, mesenchymal stem cells (MSCs) have been discovered to facilitate the inhibition of NLRP3 and maybe ideal for treating bone and joint diseases. In this review, we implicate the structure and activation of the NLRP3 inflammasome along with the detail on the involvement of NLRP3 inflammasome in bone and joint diseases pathology. In addition, we focused on MSCs and MSC-extracellular vesicles targeting NLRP3 inflammasomes in bone and joint diseases. Finally, the existing problems and future direction are also discussed.
Collapse
Affiliation(s)
- Shuangshuang Xu
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Ying Zhang
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Zejun Zheng
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Jinmeng Sun
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Yanan Wei
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China.
| |
Collapse
|
10
|
Zeng B, Li Y, Khan N, Su A, Yang Y, Mi P, Jiang B, Liang Y, Duan L. Yin-Yang: two sides of extracellular vesicles in inflammatory diseases. J Nanobiotechnology 2024; 22:514. [PMID: 39192300 DOI: 10.1186/s12951-024-02779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
The concept of Yin-Yang, originating in ancient Chinese philosophy, symbolizes two opposing but complementary forces or principles found in all aspects of life. This concept can be quite fitting in the context of extracellular vehicles (EVs) and inflammatory diseases. Over the past decades, numerous studies have revealed that EVs can exhibit dual sides, acting as both pro- and anti-inflammatory agents, akin to the concept of Yin-Yang theory (i.e., two sides of a coin). This has enabled EVs to serve as potential indicators of pathogenesis or be manipulated for therapeutic purposes by influencing immune and inflammatory pathways. This review delves into the recent advances in understanding the Yin-Yang sides of EVs and their regulation in specific inflammatory diseases. We shed light on the current prospects of engineering EVs for treating inflammatory conditions. The Yin-Yang principle of EVs bestows upon them great potential as, therapeutic, and preventive agents for inflammatory diseases.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 53020, Guangxi, China
| | - Ying Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Nawaz Khan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Aiyuan Su
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Yicheng Yang
- Eureka Biotech Inc, Philadelphia, PA, 19104, USA
| | - Peng Mi
- Department of Radiology, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bin Jiang
- Eureka Biotech Inc, Philadelphia, PA, 19104, USA.
| | - Yujie Liang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| | - Li Duan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
11
|
Vadhan A, Gupta T, Hsu WL. Mesenchymal Stem Cell-Derived Exosomes as a Treatment Option for Osteoarthritis. Int J Mol Sci 2024; 25:9149. [PMID: 39273098 PMCID: PMC11395657 DOI: 10.3390/ijms25179149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoarthritis (OA) is a leading cause of pain and disability worldwide in elderly people. There is a critical need to develop novel therapeutic strategies that can effectively manage pain and disability to improve the quality of life for older people. Mesenchymal stem cells (MSCs) have emerged as a promising cell-based therapy for age-related disorders due to their multilineage differentiation and strong paracrine effects. Notably, MSC-derived exosomes (MSC-Exos) have gained significant attention because they can recapitulate MSCs into therapeutic benefits without causing any associated risks compared with direct cell transplantation. These exosomes help in the transport of bioactive molecules such as proteins, lipids, and nucleic acids, which can influence various cellular processes related to tissue repair, regeneration, and immune regulation. In this review, we have provided an overview of MSC-Exos as a considerable treatment option for osteoarthritis. This review will go over the underlying mechanisms by which MSC-Exos may alleviate the pathological hallmarks of OA, such as cartilage degradation, synovial inflammation, and subchondral bone changes. Furthermore, we have summarized the current preclinical evidence and highlighted promising results from in vitro and in vivo studies, as well as progress in clinical trials using MSC-Exos to treat OA.
Collapse
Affiliation(s)
- Anupama Vadhan
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin 632007, Taiwan
| | - Tanvi Gupta
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Wen-Li Hsu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin 632007, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
12
|
Zhang Z, Wu W, Li M, Du L, Li J, Yin X, Zhang W. Mesenchymal stem cell–derived extracellular vesicles: A novel nanoimmunoregulatory tool in musculoskeletal diseases. NANO TODAY 2024; 57:102343. [DOI: 10.1016/j.nantod.2024.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Dou Y, Zhai H, Li H, Xing H, Zhu C, Xuan Z. Endothelial cells-derived exosomes-based hydrogel improved tendinous repair via anti-inflammatory and tissue regeneration-promoting properties. J Nanobiotechnology 2024; 22:401. [PMID: 38982446 PMCID: PMC11232200 DOI: 10.1186/s12951-024-02607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
Tendon injuries are common orthopedic ailments with a challenging healing trajectory, especially in cases like the Achilles tendon afflictions. The healing trajectory of tendon injuries is often suboptimal, leading to scar formation and functional impairment due to the inherent low metabolic activity and vascularization of tendon tissue. As pressing is needed for effective interventions, efforts are made to explore biomaterials to augment tendon healing. However, tissue engineering approaches face hurdles in optimizing tissue scaffolds and nanomedical strategies. To navigate these challenges, an injectable hydrogel amalgamated with human umbilical vein endothelial cells-derived exosomes (HUVECs-Exos) was prepared and named H-Exos-gel in this study, aiming to enhance tendon repair. In our research involving a model of Achilles tendon injuries in 60 rats, we investigated the efficacy of H-Exos-gel through histological assessments performed at 2 and 4 weeks and behavioral assessments conducted at the 4-week mark revealed its ability to enhance the Achilles tendon's mechanical strength, regulate inflammation and facilitate tendon regeneration and functional recovery. Mechanically, the H-Exos-gel modulated the cellular behaviors of macrophages and tendon-derived stem cells (TDSCs) by inhibiting inflammation-related pathways and promoting proliferation-related pathways. Our findings delineate that the H-Exos-gel epitomizes a viable bioactive medium for tendon healing, heralding a promising avenue for the clinical amelioration of tendon injuries.
Collapse
Affiliation(s)
- Yichen Dou
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China
| | - Hong Zhai
- Department of Laboratory Medicine, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China
| | - Haiqiu Li
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China
| | - Hanlin Xing
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China
| | - Cheng Zhu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China
| | - Zhaopeng Xuan
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China.
| |
Collapse
|
14
|
Liao HJ, Yang YP, Liu YH, Tseng HC, Huo TI, Chiou SH, Chang CH. Harnessing the potential of mesenchymal stem cells-derived exosomes in degenerative diseases. Regen Ther 2024; 26:599-610. [PMID: 39253597 PMCID: PMC11382214 DOI: 10.1016/j.reth.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have gained attention as a promising therapeutic approach in both preclinical and clinical osteoarthritis (OA) settings. Various joint cell types, such as chondrocytes, synovial fibroblasts, osteoblasts, and tenocytes, can produce and release extracellular vesicles (EVs), which subsequently influence the biological activities of recipient cells. Recently, extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) have shown the potential to modulate various physiological and pathological processes through the modulation of cellular differentiation, immune responses, and tissue repair. This review explores the roles and therapeutic potential of MSC-EVs in OA and rheumatoid arthritis, cardiovascular disease, age-related macular degeneration, Alzheimer's disease, and other degenerative diseases. Notably, we provide a comprehensive summary of exosome biogenesis, microRNA composition, mechanisms of intercellular transfer, and their evolving role in the highlight of exosome-based treatments in both preclinical and clinical avenues.
Collapse
Affiliation(s)
- Hsiu-Jung Liao
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Hao Liu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Huan-Chin Tseng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Teh-Ia Huo
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Hung Chang
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City, Taiwan
| |
Collapse
|
15
|
Zheng G, Sun S, Zhang G, Liang X. miR-144 affects the immune response and activation of inflammatory responses in Cynoglossus semilaevis by regulating the expression of CsMAPK6. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109578. [PMID: 38670413 DOI: 10.1016/j.fsi.2024.109578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
MicroRNAs are increasingly recognized for their pivotal role in the immune system, yet the specific regulatory functions of fish-derived microRNAs remain largely unexplored. In this research, we discovered a novel miRNA, Cse-miR-144, in the Chinese tongue sole (Cynoglossus semilaevis), characterized by a 73-base pair precursor and a 21-nucleotide mature sequence. Our findings revealed that the expression of Cse-miR-144 was notably inhibited by various Vibrio species. Utilizing bioinformatics and dual-luciferase assay techniques, we established that the pro-inflammatory cytokine gene CsMAPK6 is a direct target of Cse-miR-144. Subsequent in vitro and in vivo western blotting analyses confirmed that Cse-miR-144 can effectively reduce the protein levels of CsMAPK6 post-transcriptionally. Moreover, CsMAPK6 is known to be involved in the activation of the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-kB). Additional investigations using qPCR and ELISA demonstrated that suppression of Cse-miR-144 leads to an upsurge in the liver mRNA levels of various immune genes (including MYD88, TRAF6, NF-κB, TRAF2, TRAF3, and TNF), alongside a marked increase in the production and secretion of pro-inflammatory cytokines (IL-1β, IL-6, and IL-8) in the bloodstream of C. semilaevis. These findings collectively underscore the potential of Cse-miR-144 as a key inhibitor of CsMAPK and its crucial role in modulating the immune and inflammatory responses in teleost fish. Compared to the siRNA, miRNA is a better tool in controlling the expression of target gene with a lower cost.
Collapse
Affiliation(s)
- Guiliang Zheng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Siqi Sun
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Guosong Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China.
| | - Xia Liang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China.
| |
Collapse
|
16
|
Xu H, Wang B, Li A, Wen J, Su H, Qin D. Mesenchymal Stem Cells-based Cell-free Therapy Targeting Neuroinflammation. Aging Dis 2024; 15:965-976. [PMID: 38722791 PMCID: PMC11081161 DOI: 10.14336/ad.2023.0904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 05/13/2024] Open
Abstract
Emerging from several decades of extensive research, key genetic elements and biochemical mechanisms implicated in neuroinflammation have been delineated, contributing substantially to our understanding of neurodegenerative diseases (NDDs). In this minireview, we discuss data predominantly from the past three years, highlighting the pivotal roles and mechanisms of the two principal cell types implicated in neuroinflammation. The review also underscores the extended process of peripheral inflammation that predates symptomatic onset, the critical influence of neuroinflammation, and their dynamic interplay in the pathogenesis of NDDs. Confronting these complex challenges, we introduce compelling evidence supporting the use of mesenchymal stem cell-based cell-free therapy. This therapeutic strategy includes the regulation of microglia and astrocytes, modulation of peripheral nerve cell inflammation, and targeted anti-inflammatory interventions specifically designed for NDDs, while also discussing engineering and safety considerations. This innovative therapeutic approach intricately modulates the immune system across the peripheral and nervous systems, with an emphasis on achieving superior penetration and targeted delivery. The insights offered by this review have significant implications for the better understanding and management of neuroinflammation.
Collapse
Affiliation(s)
- Hongjie Xu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| | - Bin Wang
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China.
| | - Ang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences; Hong Kong SAR, China
| |
Collapse
|
17
|
Shi L, Duan L, Duan D, Xu H, Li X, Zhao W. Long non-coding RNA DANCR increases spinal cord neuron apoptosis and inflammation of spinal cord injury by mediating the microRNA-146a-5p/MAPK6 axis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:2056-2067. [PMID: 38551688 DOI: 10.1007/s00586-024-08216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVE This research was to unravel the impact of the lncRNA differentiation antagonizing non-protein coding RNA (DANCR)/microRNA (miR)-146a-5p/mitogen-activated protein kinase 6 (MAPK6) axis on spinal cord injury (SCI). METHODS SCI mouse models were established and injected with si-DANCR or miR-146a-5p agomir. The recovery of motor function was assessed by Basso Mouse Scale. SCI was pathologically evaluated, and serum inflammatory factors were measured in SCI mice. Mouse spinal cord neurons were injured by H2O2 and transfected, followed by assessment of proliferation and apoptosis. DANCR, miR-146a-5p, and MAPK6 in tissues and cells were detected, as well as their relationship. RESULTS DANCR increased and miR-146a-5p decreased in SCI. Silencing DANCR or enhancing miR-146a-5p stimulated the proliferation of mouse spinal cord neurons and reduced apoptosis. DANCR was bound to miR-146a-5p to target MAPK6. DANCR affected the proliferation and apoptosis of spinal cord neurons by mediating the miR-146a-5p/MAPK6 axis. Downregulating DANCR or upregulating miR-146a-5p improved inflammation, the destruction of spinal cord tissue structure, and apoptosis in SCI mice. CONCLUSION DANCR affects spinal cord neuron apoptosis and inflammation of SCI by mediating the miR-146a-5p/MAPK6 axis.
Collapse
Affiliation(s)
- Liang Shi
- Department of Orthopedics, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Liang Duan
- Department of Orthopedics, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China.
| | - Dapeng Duan
- Department of Orthopedics, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Honghai Xu
- Department of Orthopedics, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Xiaoming Li
- Department of Emergency Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Wei Zhao
- Department of Orthopedics, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| |
Collapse
|
18
|
Shi L, Zhou Y, Yin Y, Zhang J, Chen K, Liu S, Chen P, Jiang H, Liu J, Wu Y. Advancing Tissue Damage Repair in Geriatric Diseases: Prospects of Combining Stem Cell-Derived Exosomes with Hydrogels. Int J Nanomedicine 2024; 19:3773-3804. [PMID: 38708181 PMCID: PMC11068057 DOI: 10.2147/ijn.s456268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
Geriatric diseases are a group of diseases with unique characteristics related to senility. With the rising trend of global aging, senile diseases now mainly include endocrine, cardiovascular, neurodegenerative, skeletal, and muscular diseases and cancer. Compared with younger populations, the structure and function of various cells, tissues and organs in the body of the elderly undergo a decline as they age, rendering them more susceptible to external factors and diseases, leading to serious tissue damage. Tissue damage presents a significant obstacle to the overall health and well-being of older adults, exerting a profound impact on their quality of life. Moreover, this phenomenon places an immense burden on families, society, and the healthcare system.In recent years, stem cell-derived exosomes have become a hot topic in tissue repair research. The combination of these exosomes with biomaterials allows for the preservation of their biological activity, leading to a significant improvement in their therapeutic efficacy. Among the numerous biomaterial options available, hydrogels stand out as promising candidates for loading exosomes, owing to their exceptional properties. Due to the lack of a comprehensive review on the subject matter, this review comprehensively summarizes the application and progress of combining stem cell-derived exosomes and hydrogels in promoting tissue damage repair in geriatric diseases. In addition, the challenges encountered in the field and potential prospects are presented for future advancements.
Collapse
Affiliation(s)
- Ling Shi
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yunjun Zhou
- The Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yongkui Yin
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Jin Zhang
- Clinical Laboratory, Zhejiang Medical & Health Group Quzhou Hospital, Quzhou, 324004, People’s Republic of China
| | - Kaiyuan Chen
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Sen Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Peijian Chen
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Hua Jiang
- The Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Jieting Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| |
Collapse
|
19
|
Wen S, Huang X, Ma J, Zhao G, Ma T, Chen K, Huang G, Chen J, Shi J, Wang S. Exosomes derived from MSC as drug system in osteoarthritis therapy. Front Bioeng Biotechnol 2024; 12:1331218. [PMID: 38576449 PMCID: PMC10993706 DOI: 10.3389/fbioe.2024.1331218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Osteoarthritis (OA) is the most common degenerative disease of the joint with irreversible cartilage damage as the main pathological feature. With the development of regenerative medicine, mesenchymal stem cells (MSCs) have been found to have strong therapeutic potential. However, intraarticular MSCs injection therapy is limited by economic costs and ethics. Exosomes derived from MSC (MSC-Exos), as the important intercellular communication mode of MSCs, contain nucleic acid, proteins, lipids, microRNAs, and other biologically active substances. With excellent editability and specificity, MSC-Exos function as a targeted delivery system for OA treatment, modulating immunity, inhibiting apoptosis, and promoting regeneration. This article reviews the mechanism of action of MSC-Exos in the treatment of osteoarthritis, the current research status of the preparation of MSC-Exos and its application of drug delivery in OA therapy.
Collapse
Affiliation(s)
- Shuzhan Wen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingchun Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Guanglei Zhao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Tiancong Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Kangming Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Gangyong Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingsheng Shi
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Siqun Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Dong S, Xu G, Li X, Guo S, Bai J, Zhao J, Chen L. Exosomes Derived from Quercetin-Treated Bone Marrow Derived Mesenchymal Stem Cells Inhibit the Progression of Osteoarthritis Through Delivering miR-124-3p to Chondrocytes. DNA Cell Biol 2024; 43:85-94. [PMID: 38241502 DOI: 10.1089/dna.2023.0341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024] Open
Abstract
Osteoarthritis (OA) is a chronic disease characterized by the progressive loss of cartilage and failure of the diarrheal joint. Quercetin has been reported to attenuate the development of OA. Bone marrow derived mesenchymal stem cell (BMSC)-derived exosomes are involved in OA progression. However, the role of BMSC-derived exosomes in quercetin-mediated progression of OA remains unclear. Western blotting and RT-qPCR were used to assess protein and mRNA levels, respectively. CCK8 assay was performed to assess cell viability, and cell apoptosis was assessed using flow cytometry. A dual-luciferase assay was performed to assess the relationship between miR-124-3p and TRAF6 expression. Furthermore, in vivo experiments were performed to test the function of exosomes derived from Quercetin-treated BMSCs in OA patients. IL-1β significantly inhibited the viability of chondrocytes, whereas the conditioned medium of Quercetin-treated BMSCs (BMSCsQUE-CM) reversed this phenomenon through exosomes. IL-1β notably upregulated MMP13 and ADAMT5 and reduced the expression of COL2A1 in chondrocytes, which were rescued by BMSCsQUE-CM. The effects of BMSCsQUE-CM on these three proteins were reversed in the absence of exosomes. Exosomes can be transferred from BMSCs to chondrocytes, and exosomes derived from Quercetin-treated BMSCs (BMSCsQue-Exo) can reverse the apoptotic effects of IL-1β on chondrocytes. The level of miR-124-3p in BMSCs was significantly upregulated by quercetin, and miR-124-3p was enriched in BMSCsQue-Exo. TRAF6 was identified as a direct target of miR-124-3p, and BMSCsQue-Exo abolished the IL-1β-induced activation of MAPK/p38 and NF-κB signaling. Furthermore, BMSCsQue-Exo significantly attenuated OA progression in vivo. Exosomes derived from Quercetin-treated BMSCs inhibited OA progression through the upregulation of miR-124-3p.
Collapse
Affiliation(s)
- Shiyu Dong
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Genrong Xu
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Xiaoliang Li
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Shengjun Guo
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Jing Bai
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Jiyang Zhao
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Liming Chen
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
21
|
Huang H, Chen P, Feng X, Qian Y, Peng Z, Zhang T, Wang Q. Translational studies of exosomes in sports medicine - a mini-review. Front Immunol 2024; 14:1339669. [PMID: 38259444 PMCID: PMC10800726 DOI: 10.3389/fimmu.2023.1339669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
This review in sports medicine focuses on the critical role of exosomes in managing chronic conditions and enhancing athletic performance. Exosomes, small vesicles produced by various cells, are essential for cellular communication and transporting molecules like proteins and nucleic acids. Originating from the endoplasmic reticulum, they play a vital role in modulating inflammation and tissue repair. Their significance in sports medicine is increasingly recognized, particularly in healing athletic injuries, improving articular cartilage lesions, and osteoarthritic conditions by modulating cellular behavior and aiding tissue regeneration. Investigations also highlight their potential in boosting athletic performance, especially through myocytes-derived exosomes that may enhance adaptability to physical training. Emphasizing a multidisciplinary approach, this review underlines the need to thoroughly understand exosome biology, including their pathways and classifications, to fully exploit their therapeutic potential. It outlines future directions in sports medicine, focusing on personalized treatments, clinical evaluations, and embracing technological advancements. This research represents a frontier in using exosomes to improve athletes' health and performance capabilities.
Collapse
Affiliation(s)
- Haoqiang Huang
- Department of Orthopaedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| | - Peng Chen
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xinting Feng
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yinhua Qian
- Department of Orthopaedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| | - Zhijian Peng
- Department of Orthopaedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| | - Ting Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Wang
- Department of Orthopaedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| |
Collapse
|
22
|
Kuang G, Tan X, Liu X, Li N, Yi N, Mi Y, Shi Q, Zeng F, Xie X, Lu M, Xu X. The Role of Innate Immunity in Osteoarthritis and the Connotation of "Immune-joint" Axis: A Narrative Review. Comb Chem High Throughput Screen 2024; 27:2170-2179. [PMID: 38243960 DOI: 10.2174/0113862073264389231101190637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 01/22/2024]
Abstract
Osteoarthritis (OA) is a degenerative disease that results in constriction of the joint space due to the gradual deterioration of cartilage, alterations in subchondral bone, and synovial membrane. Recently, scientists have found that OA involves lesions in the whole joint, in addition to joint wear and tear and cartilage damage. Osteoarthritis is often accompanied by a subclinical form of synovitis, which is a chronic, relatively low-grade inflammatory response mainly mediated by the innate immune system. The "immune-joint" axis refers to an interaction of an innate immune response with joint inflammation and the whole joint range. Previous studies have underestimated the role of the immune-joint axis in OA, and there is no related research. For this reason, this review aimed to evaluate the existing evidence on the influence of innate immune mechanisms on the pathogenesis of OA. The innate immune system is the body's first line of defense. When the innate immune system is triggered, it instantly activates the downstream inflammatory signal pathway, causing an inflammatory response, while also promoting immune cells to invade joint synovial tissue and accelerate the progression of OA. We have proposed the concept of the "immune-joint" axis and explored it from two aspects of Traditional Chinese Medicine (TCM) theory and modern medical research, such as the innate immunity and OA, macrophages and OA, complement and OA, and other cells and OA, to enrich the scientific connotation of the "immune-joint" axis.
Collapse
Affiliation(s)
- Gaoyan Kuang
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Xuyi Tan
- Department of Orthopedic Surgery, Affiliated Hospital of Hunan Academy of Chinese Medical Science, Changsha, Hunan, 410006, China
| | - Xin Liu
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Naping Li
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Nanxing Yi
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Yilin Mi
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Qiyun Shi
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Fan Zeng
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Xinjun Xie
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Min Lu
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Xiaotong Xu
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| |
Collapse
|
23
|
Lee CS, Lee M, Na K, Hwang HS. Stem Cell-Derived Extracellular Vesicles for Cancer Therapy and Tissue Engineering Applications. Mol Pharm 2023; 20:5278-5311. [PMID: 37867343 DOI: 10.1021/acs.molpharmaceut.3c00376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Recently, stem cells and their secretomes have attracted great attention in biomedical applications, particularly extracellular vesicles (EVs). EVs are secretomes of cells for cell-to-cell communication. They play a role as intercellular messengers as they carry proteins, nucleic acids, lipids, and therapeutic agents. They have also been utilized as drug-delivery vehicles due to their biocompatibility, low immunogenicity, stability, targetability, and engineerable properties. The therapeutic potential of EVs can be further enhanced by surface engineering and modification using functional molecules such as aptamers, peptides, and antibodies. As a consequence, EVs hold great promise as effective delivery vehicles for enhancing treatment efficacy while avoiding side effects. Among various cell types that secrete EVs, stem cells are ideal sources of EVs because stem cells have unique properties such as self-renewal and regenerative potential for transplantation into damaged tissues that can facilitate their regeneration. However, challenges such as immune rejection and ethical considerations remain significant hurdles. Stem cell-derived EVs have been extensively explored as a cell-free approach that bypasses many challenges associated with cell-based therapy in cancer therapy and tissue regeneration. In this review, we summarize and discuss the current knowledge of various types of stem cells as a source of EVs, their engineering, and applications of EVs, focusing on cancer therapy and tissue engineering.
Collapse
Affiliation(s)
- Chung-Sung Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Min Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Kun Na
- Department of BioMedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
24
|
Li Z, Bi R, Zhu S. The Dual Role of Small Extracellular Vesicles in Joint Osteoarthritis: Their Global and Non-Coding Regulatory RNA Molecule-Based Pathogenic and Therapeutic Effects. Biomolecules 2023; 13:1606. [PMID: 38002288 PMCID: PMC10669328 DOI: 10.3390/biom13111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
OA is the most common joint disease that affects approximately 7% of the global population. Current treatment methods mainly relieve its symptoms with limited repairing effect on joint destructions, which ultimately contributes to the high morbidity rate of OA. Stem cell treatment is a potential regenerative medical therapy for joint repair in OA, but the uncertainty in differentiation direction and immunogenicity limits its clinical usage. Small extracellular vesicles (sEVs), the by-products secreted by stem cells, show similar efficacy levels but have safer regenerative repair effect without potential adverse outcomes, and have recently drawn attention from the broader research community. A series of research works and reviews have been performed in the last decade, providing references for the application of various exogenous therapeutic sEVs for treating OA. However, the clinical potential of target intervention involving endogenous pathogenic sEVs in the treatment of OA is still under-explored and under-discussed. In this review, and for the first time, we emphasize the dual role of sEVs in OA and explain the effects of sEVs on various joint tissues from both the pathogenic and therapeutic aspects. Our aim is to provide a reference for future research in the field.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Ruiye Bi
- Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Songsong Zhu
- Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Huang S, Liu Y, Wang C, Xiang W, Wang N, Peng L, Jiang X, Zhang X, Fu Z. Strategies for Cartilage Repair in Osteoarthritis Based on Diverse Mesenchymal Stem Cells-Derived Extracellular Vesicles. Orthop Surg 2023; 15:2749-2765. [PMID: 37620876 PMCID: PMC10622303 DOI: 10.1111/os.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
Osteoarthritis (OA) causes disability and significant economic and social burden. Cartilage injury is one of the main pathological features of OA, and is often manifested by excessive chondrocyte death, inflammatory response, abnormal bone metabolism, imbalance of extracellular matrix (ECM) metabolism, and abnormal vascular or nerve growth. Regrettably, due to the avascular nature of cartilage, its capacity to repair is notably limited. Mesenchymal stem cells-derived extracellular vesicles (MSCs-EVs) play a pivotal role in intercellular communication, presenting promising potential not only as early diagnostic biomarkers in OA but also as efficacious therapeutic strategy. MSCs-EVs were confirmed to play a therapeutic role in the pathological process of cartilage injury mentioned above. This paper comprehensively provides the functions and mechanisms of MSCs-EVs in cartilage repair.
Collapse
Affiliation(s)
- Shanjun Huang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Yujiao Liu
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Chenglong Wang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Wei Xiang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Nianwu Wang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Li Peng
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Xuanang Jiang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Xiaomin Zhang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Zhijiang Fu
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
26
|
Khayati S, Dehnavi S, Sadeghi M, Tavakol Afshari J, Esmaeili SA, Mohammadi M. The potential role of miRNA in regulating macrophage polarization. Heliyon 2023; 9:e21615. [PMID: 38027572 PMCID: PMC10665754 DOI: 10.1016/j.heliyon.2023.e21615] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Macrophage polarization is a dynamic process determining the outcome of various physiological and pathological situations through inducing pro-inflammatory responses or resolving inflammation via exerting anti-inflammatory effects. The miRNAs are epigenetic regulators of different biologic pathways that target transcription factors and signaling molecules to promote macrophage phenotype transition and regulate immune responses. Modulating the macrophage activation, differentiation, and polarization by miRNAs is crucial for immune responses in response to microenvironmental signals and under various physiological and pathological conditions. In term of clinical significance, regulating macrophage polarization via miRNAs could be utilized for inflammation control. Also, understanding the role of miRNAs in macrophage polarization can provide insights into diagnostic strategies associated with dysregulated miRNAs and for developing macrophage-centered therapeutic methods. In this case, targeting miRNAs to further regulate of macrophage polarization may become an efficient strategy for treating immune-associated disorders. The current review investigated and categorized various miRNAs directly or indirectly involved in macrophage polarization by targeting different transcription factors and signaling pathways. In addition, prospects for regulating macrophage polarization via miRNA as a therapeutic choice that could be implicated in various pathological conditions, including cancer or inflammation-mediated injuries, were discussed.
Collapse
Affiliation(s)
- Shaho Khayati
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Zhang Z, Zhao S, Sun Z, Zhai C, Xia J, Wen C, Zhang Y, Zhang Y. Enhancement of the therapeutic efficacy of mesenchymal stem cell-derived exosomes in osteoarthritis. Cell Mol Biol Lett 2023; 28:75. [PMID: 37770821 PMCID: PMC10540339 DOI: 10.1186/s11658-023-00485-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Osteoarthritis (OA), a common joint disorder with articular cartilage degradation as the main pathological change, is the major source of pain and disability worldwide. Despite current treatments, the overall treatment outcome is unsatisfactory. Thus, patients with severe OA often require joint replacement surgery. In recent years, mesenchymal stem cells (MSCs) have emerged as a promising therapeutic option for preclinical and clinical palliation of OA. MSC-derived exosomes (MSC-Exos) carrying bioactive molecules of the parental cells, including non-coding RNAs (ncRNAs) and proteins, have demonstrated a significant impact on the modulation of various physiological behaviors of cells in the joint cavity, making them promising candidates for cell-free therapy for OA. This review provides a comprehensive overview of the biosynthesis and composition of MSC-Exos and their mechanisms of action in OA. We also discussed the potential of MSC-Exos as a therapeutic tool for modulating intercellular communication in OA. Additionally, we explored bioengineering approaches to enhance MSC-Exos' therapeutic potential, which may help to overcome challenges and achieve clinically meaningful OA therapies.
Collapse
Affiliation(s)
- Zehao Zhang
- School of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Sheng Zhao
- School of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Zhaofeng Sun
- School of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Chuanxing Zhai
- School of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Caining Wen
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China.
| | - Yuge Zhang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China.
| | - Yuanmin Zhang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China.
| |
Collapse
|
28
|
Wang Z, Zhu P, Liao B, You H, Cai Y. Effects and action mechanisms of individual cytokines contained in PRP on osteoarthritis. J Orthop Surg Res 2023; 18:713. [PMID: 37735688 PMCID: PMC10515001 DOI: 10.1186/s13018-023-04119-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Osteoarthritis (OA) is defined as a degenerative joint disease that can affect all tissues of the joint, including the articular cartilage, subchondral bone, ligaments capsule, and synovial membrane. The conventional nonoperative treatments are ineffective for cartilage repair and induce only symptomatic relief. Platelet-rich plasma (PRP) is a platelet concentrate derived from autologous whole blood with a high concentration of platelets, which can exert anti-inflammatory and regenerative effects by releasing multiple growth factors and cytokines. Recent studies have shown that PRP exhibits clinical benefits in patients with OA. However, high operational and equipment requirements greatly limit the application of PRP to OA treatment. Past studies have indicated that high-concentration PRP growth factors and cytokines may be applied as a commercial replacement for PRP. We reviewed the relevant articles to summarize the feasibility and mechanisms of PRP-based growth factors in OA. The available evidence suggests that transforming growth factor-α and β, platelet-derived growth factors, epidermal growth factor, insulin-like growth factor-1, and connective tissue growth factors might benefit OA, while vascular endothelial growth factor, tumor necrosis factor-α, angiopoietin-1, and stromal cell derived factor-1α might induce negative effects on OA. The effects of fibroblast growth factor, hepatocyte growth factor, platelet factor 4, and keratinocyte growth factor on OA remain uncertain. Thus, it can be concluded that not all cytokines released by PRP are beneficial, although the therapeutic action of PRP has a valuable potential to improve.
Collapse
Affiliation(s)
- Zhengchao Wang
- Department of Orthopedics, Wuhan Fourth Hospital, Wuhan, China
| | - Pengfei Zhu
- Department of Cardiovascular, Wuhan Fourth Hospital, Wuhan, China
- Department of Cardiovascular, Fujian Medical University Union Hospital, Fuzhou, China
| | - Bokai Liao
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University and Technology, Jiefang Avenue No.1095, Qiaokou District, Wuhan, 430030, Hubei Province, China.
| | - Yu Cai
- Department of Rehabilitation, Wuhan Fourth Hospital, Hanzheng Street No.473, Qiaokou District, Wuhan, 430000, Hubei Province, China.
| |
Collapse
|
29
|
Lu J, Zhang Y, Yang X, Zhao H. Harnessing exosomes as cutting-edge drug delivery systems for revolutionary osteoarthritis therapy. Biomed Pharmacother 2023; 165:115135. [PMID: 37453195 DOI: 10.1016/j.biopha.2023.115135] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Exosomes, remarkable extracellular vesicles, have emerged as an advanced frontier in intercellular communication. This remarkable capacity positions them as promising contenders in drug delivery systems (DDSs) for osteoarthritis (OA) therapy, capitalizing on their inherent biocompatibility, stability, and minimal immunogenicity. In this comprehensive review, we summarize the emerging developments surrounding exosome-based DDSs for OA therapy. Focusing on exosome origins, we meticulously explore the diverse sources contributing to their production, including invaluable stem cells, immune cells, and an array of other cell types. In addition, we unravel the underlying mechanisms of action that govern these exosome-borne therapeutics, illuminating the intricate interplay between exosomes and recipient cells. In summary, this review highlights the present challenges that permeate exosome-based DDSs for OA therapy. Through an in-depth exploration of the intricacies within this emerging field, this review aims to shed light on the future direction of exosome-based DDSs in OA. It serves as a bridge for fostering collaboration and collective efforts in reshaping the treatment landscape of OA.
Collapse
Affiliation(s)
- Jun Lu
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province 710054, China
| | - Yan Zhang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province 710054, China
| | - Xinquan Yang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province 710054, China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province 710054, China.
| |
Collapse
|
30
|
Liu Y, Liu PD, Zhang CM, Liu MR, Wang GS, Li PC, Yang ZQ. Research progress and hotspots on macrophages in osteoarthritis: A bibliometric analysis from 2009 to 2022. Medicine (Baltimore) 2023; 102:e34642. [PMID: 37653729 PMCID: PMC10470799 DOI: 10.1097/md.0000000000034642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Macrophages in the synovium, as immune cells, can be polarized into different phenotypes to play an anti-inflammatory role in the treatment of osteoarthritis. In this study, bibliometric methods were used to search the relevant literature to find valuable research directions for researchers and provide new targets for osteoarthritis prevention and early treatment. METHODS Studies about the application of macrophages in the treatment of osteoarthritis were searched through the Web of Science core database from 2009 to 2022. Microsoft Excel 2019, VOSviewer, CiteSpace, R software, and 2 online websites were used to analyze the research status and predict the future development of the trend in research on macrophages in osteoarthritis. RESULTS The number of publications identified with the search strategy was 1304. China and the United States ranked first in the number of publications. Shanghai Jiao Tong University ranked first in the world with 37 papers. Osteoarthritis and Cartilage was the journal with the most publications, and "exosomes," "stem cells," "macrophage polarization," "regeneration," and "innate immunity" may remain the research hotspots and frontiers in the future. CONCLUSION The findings from the global trend analysis indicate that research on macrophages in the treatment of osteoarthritis is gradually deepening, and the number of studies is increasing. Exosomes may become a research trend and hotspot in the future.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
- Department of Joint Surgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Pei-Dong Liu
- Department of Orthopedics, HongHui Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Cheng-Ming Zhang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
- Department of Joint Surgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Meng-Rou Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
- Department of Joint Surgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Gui-Shan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
- Department of Joint Surgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Peng-Cui Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
- Department of Joint Surgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zi-Quan Yang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
- Department of Joint Surgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
31
|
Mou C, Li Z, Liu N, Ni L, Xu Y. Low level TGF-β1-treated Umbilical mesenchymal stem cells attenuates microgliosis and neuropathic pain in chronic constriction injury by exosomes/lncRNA UCA1/miR-96-5p/FOXO3a. Biochem Biophys Rep 2023; 34:101477. [PMID: 37153860 PMCID: PMC10160346 DOI: 10.1016/j.bbrep.2023.101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Neuropathic pain is a chronic pain state that usually caused by injuries in peripheral or central nerve. Inhibition of spinal microglial response is a promising treatment of neuropathic pain caused by peripheral nerve injury. In recent years, mesenchymal stem cells (MSCs) that characterized with multipotent ability have been widely studied for disease treatment. TGF-β1 is a well-known regulatory cytokine that participate in the response to cell stress and is closely correlated with the function of nerve system as well as MSC differentiation. This work aimed to determine the effects of exosomes that extracted from TGF-β1-induced umbilical mesenchymal stem cells (hUCSMCs) on the neuropathic pain. In this work, we established a rat model of chronic constriction injury (CCI) of the sciatic nerve and LPS-induced microglia cell model. The hUCSMCs cell surface biomarker was identified by flow cytometry. Exosomes that extracted from TGF-β1-treated hUCSMCs were characterized by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) and used for treatment. We observed that TGF-β1 upregulates the level of lncRNA UCA1 (UCA1) in hUCMSC-derived exosomes. Treatment with exosomal lncRNA UCA1 (UCA1) alleviated the neuropathic pain, microgliosis, and production of inflammatory mediator both in vivo and in vitro. UCA1 directly interact with the miR-96-5p, and the miR-96-5p acts as sponge of FOXO3a. Knockdown of UCA1 upregulated the level of miR-96-5p and downregulated the FOXO3a expression, which could be recovered by inhibition of miR-96-5p. In summary, the TGF-β1-stimulated exosomal UCA1 from hUCMSCs alleviates the neuropathic pain and microgliosis. These findings may provide novel evidence for treatment of neuropathic pain caused by chronic constriction injury.
Collapse
Affiliation(s)
- Chunlin Mou
- Technology Department, Everunion Biotechnology Co. LTD, Tianjin, China
| | - Zhengnan Li
- Technology Department, Everunion Biotechnology Co. LTD, Tianjin, China
| | - Nian Liu
- Technology Department, Everunion Biotechnology Co. LTD, Tianjin, China
| | - Ling Ni
- Technology Department, Everunion Biotechnology Co. LTD, Tianjin, China
| | - YongSheng Xu
- Technology Department, Everunion Biotechnology Co. LTD, Tianjin, China
| |
Collapse
|
32
|
Yuan S, Li G, Zhang J, Chen X, Su J, Zhou F. Mesenchymal Stromal Cells-Derived Extracellular Vesicles as Potential Treatments for Osteoarthritis. Pharmaceutics 2023; 15:1814. [PMID: 37514001 PMCID: PMC10385170 DOI: 10.3390/pharmaceutics15071814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of the joints characterized by cartilage damage and severe pain. Despite various pharmacological and surgical interventions, current therapies fail to halt OA progression, leading to high morbidity and an economic burden. Thus, there is an urgent need for alternative therapeutic approaches that can effectively address the underlying pathophysiology of OA. Extracellular Vesicles (EVs) derived from mesenchymal stromal cells (MSCs) represent a new paradigm in OA treatment. MSC-EVs are small membranous particles released by MSCs during culture, both in vitro and in vivo. They possess regenerative properties and can attenuate inflammation, thereby promoting cartilage healing. Importantly, MSC-EVs have several advantages over MSCs as cell-based therapies, including lower risks of immune reactions and ethical issues. Researchers have recently explored different strategies, such as modifying EVs to enhance their delivery, targeting efficiency, and security, with promising results. This article reviews how MSC-EVs can help treat OA and how they might work. It also briefly discusses the benefits and challenges of using MSC-EVs and talks about the possibility of allogeneic and autologous MSC-EVs for medical use.
Collapse
Affiliation(s)
- Shunling Yuan
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Guangfeng Li
- Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Jinbo Zhang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
- Department of Pharmacy, Tianjin Rehabilitation Center of Joint Logistics Support Force, Tianjin 300110, China
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Institute of Advanced Interdisciplinary Materials Science, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an 710000, China
| |
Collapse
|
33
|
Zhang Y, Dou Y, Liu Y, Di M, Bian H, Sun X, Yang Q. Advances in Therapeutic Applications of Extracellular Vesicles. Int J Nanomedicine 2023; 18:3285-3307. [PMID: 37346366 PMCID: PMC10281276 DOI: 10.2147/ijn.s409588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoscale bilayer phospholipid membrane vesicles released by cells. Contained large molecules such as nucleic acid, protein, and lipid, EVs are an integral part of cell communication. The contents of EVs vary based on the cell source and play an important role in both pathological and physiological conditions. EVs can be used as drugs or targets in disease treatment, and changes in the contents of EVs can indicate the progression of diseases. In recent years, with the continuous exploration of the structure, characteristics, and functions of EVs, the potential of engineered EVs for drug delivery and therapy being constantly explored. This review provides a brief overview of the structure, characteristics and functions of EVs, summarizes the advanced application of EVs and outlook on the prospect of it. It is our hope that this review will increase understanding of the current development of medical applications of EVs and help us overcome future challenges.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yang Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Mingyuan Di
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Hanming Bian
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| |
Collapse
|
34
|
Zhou Y, Deng G, She H, Bai F, Xiang B, Zhou J, Zhang S. Polydopamine-coated biomimetic bone scaffolds loaded with exosomes promote osteogenic differentiation of BMSC and bone regeneration. Regen Ther 2023; 23:25-36. [PMID: 37063095 PMCID: PMC10091039 DOI: 10.1016/j.reth.2023.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/25/2023] [Accepted: 03/21/2023] [Indexed: 04/01/2023] Open
Abstract
Introduction The repair of bone defects is ideally accomplished with bone tissue engineering. Recent studies have explored the possibility of functional modification of scaffolds in bone tissue engineering. We prepared an SF-CS-nHA (SCN) biomimetic bone scaffold and functionally modified the scaffold material by adding a polydopamine (PDA) coating loaded with exosomes (Exos) of marrow mesenchymal stem cells (BMSCs). The effects of the functional composite scaffold (SCN/PDA-Exo) on BMSC proliferation and osteogenic differentiation were investigated. Furthermore, the SCN/PDA-Exo scaffolds were implanted into animals to evaluate their effect on bone regeneration. Methods SCN biomimetic scaffolds were prepared by a vacuum freeze-drying/chemical crosslinking method. A PDA-functionalized coating loaded with BMSC-Exos was added by the surface coating method. The physical and chemical properties of the functional composite scaffolds were detected by scanning electron microscopy (SEM), energy spectrum analysis and contact angle tests. In vitro, BMSCs were inoculated on different scaffolds, and the Exo internalization by BMSCs was detected by confocal microscopy. The BMSC proliferation activity and cell morphology were detected by SEM, CCK-8 assays and phalloidin staining. BMSC osteogenic differentiation was detected by immunofluorescence, alizarin red staining and qRT‒PCR. In vivo, the functional composite scaffold was implanted into a rabbit critical radial defect model. Bone repair was detected by 3D-CT scanning. HE staining, Masson staining, and immunohistochemistry were used to evaluate bone regeneration. Results Compared with the SCN scaffold, the SCN/PDA-Exo-functionalized composite scaffold had a larger average surface roughness and stronger hydrophilicity. In vitro, the Exos immobilized on the SCN/PDA-Exo scaffolds were internalized by BMSCs. The BMSC morphology, proliferation ability and osteogenic differentiation effect in the SCN/PDA-Exo group were significantly better than those in the other control groups (p < 0.05). The effects of the SCN/PDA-Exo functional composite scaffold on bone defect repair and new bone formation were significantly better than those of the other control groups (p < 0.05). Conclusions In this study, we found that the SCN/PDA-Exo-functionalized composite scaffold promoted BMSC proliferation and osteogenic differentiation in vitro and improved bone regeneration efficiency in vivo. Therefore, combining Exos with biomimetic bone scaffolds by functional PDA coatings may be an effective strategy for functionally modifying biological scaffolds.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Orthopaedics, Jian Yang Hospital of Traditional Chinese Medicine, Jian Yang, 641400, China
| | - Guozhen Deng
- Department of Orthopaedics, Third Affiliated Hospital of Zunyi Medical University(The First People's Hospital of Zunyi City), Zunyi, 563000, China
| | - Hongjiang She
- Department of Orthopaedics, Third Affiliated Hospital of Zunyi Medical University(The First People's Hospital of Zunyi City), Zunyi, 563000, China
| | - Fan Bai
- Department of Orthopaedics, Third Affiliated Hospital of Zunyi Medical University(The First People's Hospital of Zunyi City), Zunyi, 563000, China
| | - Bingyan Xiang
- Department of Orthopaedics, Third Affiliated Hospital of Zunyi Medical University(The First People's Hospital of Zunyi City), Zunyi, 563000, China
| | - Jian Zhou
- Department of Orthopaedics, Jian Yang Hospital of Traditional Chinese Medicine, Jian Yang, 641400, China
| | - Shuiqin Zhang
- Central Laboratory, The Second People's Hospital of Yibin, Yibin, 644000, China
- Corresponding author. Central Laboratory, The Second People's Hospital of Yibin, North Street No.96, Cuiping District, Yibin, 644000, China.
| |
Collapse
|
35
|
Zhao Z, Zhang L, Ocansey DKW, Wang B, Mao F. The role of mesenchymal stem cell-derived exosome in epigenetic modifications in inflammatory diseases. Front Immunol 2023; 14:1166536. [PMID: 37261347 PMCID: PMC10227589 DOI: 10.3389/fimmu.2023.1166536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
Epigenetic modification is a complex process of reversible and heritable alterations in gene function, and the combination of epigenetic and metabolic alterations is recognized as an important causative factor in diseases such as inflammatory bowel disease (IBD), osteoarthritis (OA), systemic lupus erythematosus (SLE), and even tumors. Mesenchymal stem cell (MSC) and MSC-derived exosome (MSC-EXO) are widely studied in the treatment of inflammatory diseases, where they appear to be promising therapeutic agents, partly through the potent regulation of epigenetic modifications such as DNA methylation, acetylation, phosphorylation, and expression of regulatory non-coding RNAs, which affects the occurrence and development of inflammatory diseases. In this review, we summarize the current research on the role of MSC-EXO in inflammatory diseases through their modulation of epigenetic modifications and discuss its potential application in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zihan Zhao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Zhang
- Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Bo Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
36
|
Lu Y, Mai Z, Cui L, Zhao X. Engineering exosomes and biomaterial-assisted exosomes as therapeutic carriers for bone regeneration. Stem Cell Res Ther 2023; 14:55. [PMID: 36978165 PMCID: PMC10053084 DOI: 10.1186/s13287-023-03275-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Mesenchymal stem cell-based therapy has become an effective therapeutic approach for bone regeneration. However, there are still limitations in successful clinical translation. Recently, the secretome of mesenchymal stem cells, especially exosome, plays a critical role in promoting bone repair and regeneration. Exosomes are nanosized, lipid bilayer-enclosed structures carrying proteins, lipids, RNAs, metabolites, growth factors, and cytokines and have attracted great attention for their potential application in bone regenerative medicine. In addition, preconditioning of parental cells and exosome engineering can enhance the regenerative potential of exosomes for treating bone defects. Moreover, with recent advancements in various biomaterials to enhance the therapeutic functions of exosomes, biomaterial-assisted exosomes have become a promising strategy for bone regeneration. This review discusses different insights regarding the roles of exosomes in bone regeneration and summarizes the applications of engineering exosomes and biomaterial-assisted exosomes as safe and versatile bone regeneration agent delivery platforms. The current hurdles of transitioning exosomes from bench to bedside are also discussed.
Collapse
Affiliation(s)
- Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, 510280, Guangzhou, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, 510280, Guangzhou, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, 510280, Guangzhou, China.
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, 510280, Guangzhou, China.
| |
Collapse
|
37
|
Chen LY, Kao TW, Chen CC, Niaz N, Lee HL, Chen YH, Kuo CC, Shen YA. Frontier Review of the Molecular Mechanisms and Current Approaches of Stem Cell-Derived Exosomes. Cells 2023; 12:cells12071018. [PMID: 37048091 PMCID: PMC10093591 DOI: 10.3390/cells12071018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Exosomes are effective therapeutic vehicles that may transport their substances across cells. They are shown to possess the capacity to affect cell proliferation, migration, anti-apoptosis, anti-scarring, and angiogenesis, via the action of transporting molecular components. Possessing immense potential in regenerative medicine, exosomes, especially stem cell-derived exosomes, have the advantages of low immunogenicity, minimal invasiveness, and broad clinical applicability. Exosome biodistribution and pharmacokinetics may be altered, in response to recent advancements in technology, for the purpose of treating particular illnesses. Yet, prior to clinical application, it is crucial to ascertain the ideal dose and any potential negative consequences of an exosome. This review focuses on the therapeutic potential of stem cell-derived exosomes and further illustrates the molecular mechanisms that underpin their potential in musculoskeletal regeneration, wound healing, female infertility, cardiac recovery, immunomodulation, neurological disease, and metabolic regulation. In addition, we provide a summary of the currently effective techniques for isolating exosomes, and describe the innovations in biomaterials that improve the efficacy of exosome-based treatments. Overall, this paper provides an updated overview of the biological factors found in stem cell-derived exosomes, as well as potential targets for future cell-free therapeutic applications.
Collapse
|
38
|
Gao F, Mao X, Wu X. Mesenchymal stem cells in osteoarthritis: The need for translation into clinical therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:199-225. [PMID: 37678972 DOI: 10.1016/bs.pmbts.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Widely used for cell-based therapy in various medical fields, mesenchymal stem cells (MSCs) show capacity for anti-inflammatory effects, anti-apoptotic activity, immunomodulation, and tissue repair and regeneration. As such, they can potentially be used to treat osteoarthritis (OA). However, MSCs from different sources have distinct advantages and disadvantages, and various animal models and clinical trials using different sources of MSCs are being conducted in OA regenerative medicine. It is now widely believed that the primary tissue regeneration impact of MSCs is via paracrine effects, rather than direct differentiation and replacement. Cytokines and molecules produced by MSCs, including extracellular vesicles with mRNAs, microRNAs, and bioactive substances, play a significant role in OA repair. This chapter outlines the properties of MSCs and recent animal models and clinical trials involving MSCs-based OA therapy, as well as how the paracrine effect of MSCs acts in OA cartilage repair. Additionally, it discusses challenges and controversies in MSCs-based OA therapy. Despite its limits and unanticipated hazards, MSCs have the potential to be translated into therapeutic therapy for future OA treatment.
Collapse
Affiliation(s)
- Feng Gao
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xinzhan Mao
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xiaoxin Wu
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
39
|
Targeting macrophage polarization as a promising therapeutic strategy for the treatment of osteoarthritis. Int Immunopharmacol 2023; 116:109790. [PMID: 36736223 DOI: 10.1016/j.intimp.2023.109790] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a chronic osteoarthropathy characterized by the progressive degeneration of articular cartilage and synovial inflammation. Early OA clinical treatments involve intra-articular injection of glucocorticoids, oral acetaminophen and non-steroidal anti-inflammatory drugs (NSAIDs), which are used for anti-inflammation and pain relief. However, long-term use of these agents will lead to inevitable side effects, even aggravate cartilage loss. At present, there are no disease-modifying OA drugs (DMOADs) yet approved by regulatory agencies. Polarization regulation of synovial macrophages is a new target for OA treatment. Inhibiting M1 polarization and promoting M2 polarization of synovial macrophages can alleviate synovial inflammation, relieve joint pain and inhibit articular cartilage degradation, which is a promising strategy for OA treatment. In this study, we describe the molecular mechanisms of macrophage polarization and its key role in the development of OA. Subsequently, we summarize the latest progress of strategies for OA treatment through macrophage reprogramming, including small molecule compounds (conventional western medicine and synthetic compounds, monomer compounds of traditional Chinese medicine), biomacromolecules, metal/metal oxides, cells, and cell derivatives, and interprets the molecular mechanisms, hoping to provide some information for DMOADs development.
Collapse
|
40
|
Yu MY, Jia HJ, Zhang J, Ran GH, Liu Y, Yang XH. Exosomal miRNAs-mediated macrophage polarization and its potential clinical application. Int Immunopharmacol 2023; 117:109905. [PMID: 36848789 DOI: 10.1016/j.intimp.2023.109905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
Macrophages are highly heterogeneous and plastic immune cells that play an important role in the fight against pathogenic microorganisms and tumor cells. After different stimuli, macrophages can polarize to the M1 phenotype to show a pro-inflammatory effect and the M2 phenotype to show an anti-inflammatory effect. The balance of macrophage polarization is highly correlated with disease progression, and therapeutic approaches to reprogram macrophages by targeting macrophage polarization are feasible. There are a large number of exosomes in tissue cells, which can transmit information between cells. In particular, microRNAs (miRNAs) in the exosomes can regulate the polarization of macrophages and further affect the progression of various diseases. At the same time, exosomes are also effective "drug" carriers, laying the foundation for the clinical application of exosomes. This review describes some pathways involved in M1/M2 macrophage polarization and the effects of miRNA carried by exosomes from different sources on the polarization of macrophages. Finally, the application prospects and challenges of exosomes/exosomal miRNAs in clinical treatment are also discussed.
Collapse
Affiliation(s)
- Ming Yun Yu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Eco-city, Tangshan, 063210 Hebei, China
| | - Hui Jie Jia
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China
| | - Jing Zhang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Eco-city, Tangshan, 063210 Hebei, China
| | - Guang He Ran
- Department of Medical Laboratory, Chang shou District Hospital of Traditional Chinese Medicine, No. 1 Xinglin Road, Peach Blossom New Town, Changshou District, 401200 Chongqing, China
| | - Yan Liu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Eco-city, Tangshan, 063210 Hebei, China.
| | - Xiu Hong Yang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Eco-city, Tangshan, 063210 Hebei, China.
| |
Collapse
|
41
|
Li J, Wang ZH, Sun YH. TGF-β1 stimulated mesenchymal stem cells-generated exosomal miR-29a promotes the proliferation, migration and fibrogenesis of tenocytes by targeting FABP3. Cytokine 2023; 162:156090. [PMID: 36481477 DOI: 10.1016/j.cyto.2022.156090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/30/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Rotator cuff Tear (RCT) causes a lot of inconvenience for patients. In most cases, RCT injury does not heal back to bone after repair, and there is a high chance of retearing. Therefore, there is a need to explore more effective targeted therapies. Bone mesenchymal stem cell-derived exosome (BMSCs-Exo) has been proved to be beneficial to the proliferation of tendon cells, but its specific mechanism remains to be further explored. METHODS BMSCs-Exo was isolated and identified by detecting the specific markers using flow cytometry and western blot assays. qRT-PCR and western blot were utilized to determine the gene or protein expressions, respectively. Cell proliferation, and migration in tenocytes were measured by CCK8, EdU and transwell assays. The interaction between miR-29a and FABP3 was analyzed using dual-luciferase reporter assay. RESULTS Our findings demonstrated that miR-29a was expressed in BMSCs-Exo and could be significantly enriched after TGF-β1 treatment. Moreover, TGF-β1-modified BMSCs-Exo co-cultured could promote the proliferation, migration and fibrosis of tenocytes by carrying miR-29a. Upon miR-29a was reduced in BMSCs-Exo, the regulatory roles of BMSCs-Exo on tenocytes were reversed. Mechanistically, miR-29a negatively regulated FABP3 via interaction with its 3'-UTR. Enforced expression of FABP3 could reverse the modulation of exosomal miR-29a in tenocytes. CONCLUSION Exosomal miR-29a derived from TGF-β1-modified BMSCs facilitated the proliferation, migration and fibrosis of tenocytes through targeting FABP3.
Collapse
Affiliation(s)
- Jia Li
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, PR China.
| | - Zhi-Hui Wang
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, PR China
| | - Yu-Hang Sun
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, PR China
| |
Collapse
|
42
|
Su G, Lei X, Wang Z, Xie W, Wen D, Wu Y. Mesenchymal Stem Cell-derived Exosomes Affect Macrophage Phenotype: A Cell-free Strategy for the Treatment of Skeletal Muscle Disorders. Curr Mol Med 2023; 23:350-357. [PMID: 35546766 DOI: 10.2174/1566524022666220511123625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
The process of tissue damage, repair, and regeneration in the skeletal muscle system involves complex inflammatory processes. Factors released in the inflammatory microenvironment can affect the phenotypic changes of macrophages, thereby changing the inflammatory process, making macrophages an important target for tissue repair treatment. Mesenchymal stem cells exert anti-inflammatory effects by regulating immune cells. In particular, exosomes secreted by mesenchymal stem cells have become a new cell-free treatment strategy due to their low tumorigenicity and immunogenicity. This article focuses on the mechanism of the effect of exosomes derived from mesenchymal stem cells on the phenotype of macrophages after skeletal muscle system injury and explores the possible mechanism of macrophages as potential therapeutic targets after tissue injury.
Collapse
Affiliation(s)
- Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaoting Lei
- Department of Orthopedics, The First People's Hospital of Tianshui City, Tianshui, China
| | - Zhenyu Wang
- Department of Orthopedics, The First People's Hospital of Tianshui City, Tianshui, China
| | - Weiqiang Xie
- Department of Orthopedics, The First People's Hospital of Tianshui City, Tianshui, China
| | - Donghong Wen
- Department of Orthopedics, The First People's Hospital of Tianshui City, Tianshui, China
| | - Yucheng Wu
- Department of Orthopedics, The First People's Hospital of Tianshui City, Tianshui, China
| |
Collapse
|
43
|
Yuan W, Wu Y, Huang M, Zhou X, Liu J, Yi Y, Wang J, Liu J. A new frontier in temporomandibular joint osteoarthritis treatment: Exosome-based therapeutic strategy. Front Bioeng Biotechnol 2022; 10:1074536. [PMID: 36507254 PMCID: PMC9732036 DOI: 10.3389/fbioe.2022.1074536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a debilitating degenerative disease with high incidence, deteriorating quality of patient life. Currently, due to ambiguous etiology, the traditional clinical strategies of TMJOA emphasize on symptomatic treatments such as pain relief and inflammation alleviation, which are unable to halt or reverse the destruction of cartilage or subchondral bone. A number of studies have suggested the potential application prospect of mesenchymal stem cells (MSCs)-based therapy in TMJOA and other cartilage injury. Worthy of note, exosomes are increasingly being considered the principal efficacious agent of MSC secretions for TMJOA management. The extensive study of exosomes (derived from MSCs, synoviocytes, chondrocytes or adipose tissue et al.) on arthritis recently, has indicated exosomes and their specific miRNA components to be potential therapeutic agents for TMJOA. In this review, we aim to systematically summarize therapeutic properties and underlying mechanisms of MSCs and exosomes from different sources in TMJOA, also analyze and discuss the approaches to optimization, challenges, and prospects of exosome-based therapeutic strategy.
Collapse
Affiliation(s)
- Wenxiu Yuan
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yange Wu
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Maotuan Huang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Xueman Zhou
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiaqi Liu
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yating Yi
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China,*Correspondence: Jin Liu, ; Jun Wang,
| | - Jin Liu
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Jin Liu, ; Jun Wang,
| |
Collapse
|
44
|
Kuppa SS, Kim HK, Kang JY, Lee SC, Seon JK. Role of Mesenchymal Stem Cells and Their Paracrine Mediators in Macrophage Polarization: An Approach to Reduce Inflammation in Osteoarthritis. Int J Mol Sci 2022; 23:13016. [PMID: 36361805 PMCID: PMC9658630 DOI: 10.3390/ijms232113016] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/28/2022] Open
Abstract
Osteoarthritis (OA) is a low-grade inflammatory disorder of the joints that causes deterioration of the cartilage, bone remodeling, formation of osteophytes, meniscal damage, and synovial inflammation (synovitis). The synovium is the primary site of inflammation in OA and is frequently characterized by hyperplasia of the synovial lining and infiltration of inflammatory cells, primarily macrophages. Macrophages play a crucial role in the early inflammatory response through the production of several inflammatory cytokines, chemokines, growth factors, and proteinases. These pro-inflammatory mediators are activators of numerous signaling pathways that trigger other cytokines to further recruit more macrophages to the joint, ultimately leading to pain and disease progression. Very few therapeutic alternatives are available for treating inflammation in OA due to the condition's low self-healing capacity and the lack of clear diagnostic biomarkers. In this review, we opted to explore the immunomodulatory properties of mesenchymal stem cells (MSCs) and their paracrine mediators-dependent as a therapeutic intervention for OA, with a primary focus on the practicality of polarizing macrophages as suppression of M1 macrophages and enhancement of M2 macrophages can significantly reduce OA symptoms.
Collapse
Affiliation(s)
- Sree Samanvitha Kuppa
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Hyung Keun Kim
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Ju Yeon Kang
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Seok Cheol Lee
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Jong Keun Seon
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| |
Collapse
|
45
|
Breakthrough of extracellular vesicles in pathogenesis, diagnosis and treatment of osteoarthritis. Bioact Mater 2022; 22:423-452. [PMID: 36311050 PMCID: PMC9588998 DOI: 10.1016/j.bioactmat.2022.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is a highly prevalent whole-joint disease that causes disability and pain and affects a patient's quality of life. However, currently, there is a lack of effective early diagnosis and treatment. Although stem cells can promote cartilage repair and treat OA, problems such as immune rejection and tumorigenicity persist. Extracellular vesicles (EVs) can transmit genetic information from donor cells and mediate intercellular communication, which is considered a functional paracrine factor of stem cells. Increasing evidences suggest that EVs may play an essential and complex role in the pathogenesis, diagnosis, and treatment of OA. Here, we introduced the role of EVs in OA progression by influencing inflammation, metabolism, and aging. Next, we discussed EVs from the blood, synovial fluid, and joint-related cells for diagnosis. Moreover, we outlined the potential of modified and unmodified EVs and their combination with biomaterials for OA therapy. Finally, we discuss the deficiencies and put forward the prospects and challenges related to the application of EVs in the field of OA.
Collapse
|
46
|
Zhuang Y, Jiang S, Yuan C, Lin K. The potential therapeutic role of extracellular vesicles in osteoarthritis. Front Bioeng Biotechnol 2022; 10:1022368. [PMID: 36185451 PMCID: PMC9523151 DOI: 10.3389/fbioe.2022.1022368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a worldwide and disabling disease, which cause severe pain and heavy socioeconomic burden. However, pharmacologic or surgical therapies cannot mitigate OA progression. Mesenchymal stem cells (MSCs) therapy has emerged as potential approach for OA treatment, while the immunogenicity and ethical audit of cell therapy are unavoidable. Compared with stem cell strategy, EVs induce less immunological rejection, and they are more stable for storage and in vivo application. MSC-EVs-based therapy possesses great potential in regulating inflammation and promoting cartilage matrix reconstruction in OA treatment. To enhance the therapeutic effect, delivery efficiency, tissue specificity and safety, EVs can be engineered via different modification strategies. Here, the application of MSC-EVs in OA treatment and the potential underlying mechanism were summarized. Moreover, EV modification strategies including indirect MSC modification and direct EV modification were reviewed.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shengjie Jiang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, Shanghai, China
- Department of Dental Implant, The Affiliated Stomatological Hospital of Xuzhou Medical University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Changyong Yuan, ; Kaili Lin,
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- *Correspondence: Changyong Yuan, ; Kaili Lin,
| |
Collapse
|
47
|
Jeyaraman M, Muthu S, Shehabaz S, Jeyaraman N, Rajendran RL, Hong CM, Nallakumarasamy A, Packkyarathinam RP, Sharma S, Ranjan R, Khanna M, Ahn BC, Gangadaran P. Current understanding of MSC-derived exosomes in the management of knee osteoarthritis. Exp Cell Res 2022; 418:113274. [PMID: 35810774 DOI: 10.1016/j.yexcr.2022.113274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) have been utilized as medicinal agents or as delivery vehicles in cartilage injuries and cartilage-based diseases. Given the ongoing emergence of evidence on the effector mechanisms and methods of the utility of the MSC-Exos in knee osteoarthritis, a comprehensive review of the current evidence is the need of the hour. Hence, in this article, we review the current understanding of the role of MSC-Exos in the management of knee osteoarthritis in view of their classification, characterization, biogenesis, mechanism of action, pathways involved in their therapeutic action, in-vitro evidence on cartilage regeneration, in-vivo evidence in OA knee models and recent advances in using MSC-Exos to better streamline future research from bench to bedside for OA knee.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine - Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, 600095, Tamil Nadu, India; Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010, Uttar Pradesh, India
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010, Uttar Pradesh, India; Department of Orthopaedics, Government Medical College and Hospital, Dindigul, 624304, Tamil Nadu, India
| | - Syed Shehabaz
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010, Uttar Pradesh, India; Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow, 226010, Uttar Pradesh, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010, Uttar Pradesh, India; Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow, 226010, Uttar Pradesh, India; Joint Replacement, Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli, 620002, Tamil Nadu, India.
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar, 751019, Odissa, India
| | | | - Shilpa Sharma
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010, Uttar Pradesh, India; Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010, Uttar Pradesh, India; Department of Orthopaedics, Prasad Institute of Medical Sciences, Lucknow, 226401, Uttar Pradesh, India
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
48
|
Wu Y, Li J, Zeng Y, Pu W, Mu X, Sun K, Peng Y, Shen B. Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies. Int J Oral Sci 2022; 14:40. [PMID: 35927232 PMCID: PMC9352673 DOI: 10.1038/s41368-022-00187-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by cartilage loss and accounts for a major source of pain and disability worldwide. However, effective strategies for cartilage repair are lacking, and patients with advanced OA usually need joint replacement. Better comprehending OA pathogenesis may lead to transformative therapeutics. Recently studies have reported that exosomes act as a new means of cell-to-cell communication by delivering multiple bioactive molecules to create a particular microenvironment that tunes cartilage behavior. Specifically, exosome cargos, such as noncoding RNAs (ncRNAs) and proteins, play a crucial role in OA progression by regulating the proliferation, apoptosis, autophagy, and inflammatory response of joint cells, rendering them promising candidates for OA monitoring and treatment. This review systematically summarizes the current insight regarding the biogenesis and function of exosomes and their potential as therapeutic tools targeting cell-to-cell communication in OA, suggesting new realms to improve OA management.
Collapse
Affiliation(s)
- Yuangang Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zeng
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Mu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kaibo Sun
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Bin Shen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
49
|
Wang R, Xu B. TGFβ1-modified MSC-derived exosome attenuates osteoarthritis by inhibiting PDGF-BB secretion and H-type vessel activity in the subchondral bone. Acta Histochem 2022; 124:151933. [PMID: 35933783 DOI: 10.1016/j.acthis.2022.151933] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Greater bone resorption increases TGF-β1 release and nestin-positive BMSC recruitment to the subchondral bone marrow, leading to excessive subchondral osteophyte formation and severe wear to articular cartilage. Our previous research demonstrated that BMSCs-ExoTGF-β1 attenuated cartilage damage in osteoarthritis (OA) rats through carrying highly expressed miR-135b. METHODS The bone marrow mesenchymal stem cells (BMSCs) were isolated from mouse bone marrow, and BMSC-derived exosomes (BMSCs-Exo) were isolated from BMSCs. OA mouse models were established by anterior cruciate ligament transection (ACLT) surgery on the left knee of mice. Then we explored the therapeutic effect of BMSCs-ExoTGF-β1 on ACLT mice. RESULTS BMSCs-ExoTGF-β1 attenuated cartilage damage in OA mice in vivo by ameliorating articular cartilage degeneration and suppressing calcification of the cartilage zone. BMSCs-ExoTGF-β1 also inhibited osteoclastogenesis by suppressing the MAPK pathway in vitro. Micro-computed tomography indicated that BMSCs-ExoTGF-β1 impeded uncoupled subchondral bone remodeling. BMSCs-ExoTGF-β1 also reduced CD31hiEmcnhi vessel activity in the subchondral bone and attenuated OA pain behaviors. CONCLUSIONS In conclusion, BMSCs-ExoTGF-β1 maintains the microarchitecture, inhibits abnormal angiogenesis in subchondral bone and exerts protective effect against OA-induced pain and bone resorption on ACLT mice. DATA AVAILABILITY The datasets are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Rui Wang
- Department of Sports trauma & Arthroscopy, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Bin Xu
- Department of Sports trauma & Arthroscopy, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China.
| |
Collapse
|
50
|
Cheng J, Sun Y, Ma Y, Ao Y, Hu X, Meng Q. Engineering of MSC-Derived Exosomes: A Promising Cell-Free Therapy for Osteoarthritis. MEMBRANES 2022; 12:membranes12080739. [PMID: 36005656 PMCID: PMC9413347 DOI: 10.3390/membranes12080739] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is characterized by progressive cartilage degeneration with increasing prevalence and unsatisfactory treatment efficacy. Exosomes derived from mesenchymal stem cells play an important role in alleviating OA by promoting cartilage regeneration, inhibiting synovial inflammation and mediating subchondral bone remodeling without the risk of immune rejection and tumorigenesis. However, low yield, weak activity, inefficient targeting ability and unpredictable side effects of natural exosomes have limited their clinical application. At present, various approaches have been applied in exosome engineering to regulate their production and function, such as pretreatment of parental cells, drug loading, genetic engineering and surface modification. Biomaterials have also been proved to facilitate efficient delivery of exosomes and enhance treatment effectiveness. Here, we summarize the current understanding of the biogenesis, isolation and characterization of natural exosomes, and focus on the large-scale production and preparation of engineered exosomes, as well as their therapeutic potential in OA, thus providing novel insights into exploring advanced MSC-derived exosome-based cell-free therapy for the treatment of OA.
Collapse
Affiliation(s)
- Jin Cheng
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (J.C.); (Y.M.); (Y.A.)
| | - Yixin Sun
- Peking Unversity First Hospital, Peking University Health Science Center, Beijing 100034, China;
| | - Yong Ma
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (J.C.); (Y.M.); (Y.A.)
| | - Yingfang Ao
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (J.C.); (Y.M.); (Y.A.)
| | - Xiaoqing Hu
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (J.C.); (Y.M.); (Y.A.)
- Correspondence: (X.H.); (Q.M.); Tel.: +86-010-8226-5680 (Q.M.)
| | - Qingyang Meng
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (J.C.); (Y.M.); (Y.A.)
- Correspondence: (X.H.); (Q.M.); Tel.: +86-010-8226-5680 (Q.M.)
| |
Collapse
|