1
|
Ni Bhraonain EP, Turner JA, Hannigan KI, Sanders KM, Cobine CA. Immunohistochemical characterization of interstitial cells and their spatial relationship to motor neurons within the mouse esophagus. Cell Tissue Res 2025; 399:61-84. [PMID: 39607495 DOI: 10.1007/s00441-024-03929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Interstitial cells of Cajal (ICC) and PDGFRα+ cells regulate smooth muscle motility in the gastrointestinal (GI) tract, yet their function in the esophagus remains unknown. The mouse esophagus has been described as primarily skeletal muscle; however, ICC have been identified in this region. This study characterizes the distribution of skeletal and smooth muscle cells (SMCs) and their spatial relationship to ICC, PDGFRα+ cells, and intramuscular motor neurons in the mouse esophagus. SMCs occupied approximately 30% of the distal esophagus, but their density declined in more proximal regions. Similarly, ANO1+ intramuscular ICC (ICC-IM) were distributed along the esophagus, with density decreasing proximally. While ICC-IM were closely associated with SMCs, they were also present in regions of skeletal muscle. Intramuscular, submucosal, and myenteric PDGFRα+ cells were densely distributed throughout the esophagus, yet only intramuscular PDGFRα+ cells in the lower esophageal sphincter (LES) and distal esophagus expressed SK3. ICC-IM and PDGFRα+ cells were closely associated with intramuscular nNOS+, VIP+, VAChT+, and TH+ neurons and GFAP+ cells resembling intramuscular enteric glia. These findings suggest that ICC-IM and PDGFRα+ cells may have roles in regulating esophageal motility due to their close proximity to each other and to skeletal muscle and SMCs, although further functional studies are needed to explore their role in this region. The mixed muscular composition and presence of interstitial cells in the mouse distal esophagus is anatomically similar to the transitional zone found in the human esophagus, and therefore, motility studies in the mouse may be translatable to humans.
Collapse
Affiliation(s)
- Emer P Ni Bhraonain
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Jack A Turner
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Karen I Hannigan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Caroline A Cobine
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA.
| |
Collapse
|
2
|
Ni Bhraonain E, Turner J, Hannigan K, Sanders K, Cobine C. Immunohistochemical characterization of interstitial cells and their relationship to motor neurons within the mouse esophagus. RESEARCH SQUARE 2024:rs.3.rs-4474290. [PMID: 38947055 PMCID: PMC11213231 DOI: 10.21203/rs.3.rs-4474290/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Interstitial cells of Cajal (ICC) and PDGFRα+ cells regulate smooth muscle motility in the gastrointestinal (GI) tract. However, their role(s) in esophageal motility are still unclear. The mouse esophagus has traditionally been described as almost entirely skeletal muscle in nature though ICC have been identified along its entire length. The current study evaluated the distribution of skeletal and smooth muscle within the esophagus using a mouse selectively expressing eGFP in smooth muscle cells (SMCs). The relationship of SMCs to ICC and PDGFRα+ cells was also examined. SMCs declined in density in the oral direction however SMCs represented ~ 25% of the area in the distal esophagus suggesting a likeness to the transition zone observed in humans. ANO1+ intramuscular ICC (ICC-IM) were distributed along the length of the esophagus though like SMCs, declined proximally. ICC-IM were closely associated with SMCs but were also found in regions devoid of SMCs. Intramuscular and submucosal PDGFRα+ cells were densely distributed throughout the esophagus though only intramuscular PDGFRα+ cells within the LES and distal esophagus highly expressed SK3. ICC-IM and PDGFRα+ cells were closely associated with nNOS+, VIP+, VAChT+ and TH+ neurons throughout the LES and distal esophagus. GFAP+ cells resembling intramuscular enteric glia were observed within the muscle and were closely associated with ICC-IM and PDGFRα+ cells, occupying a similar location to c. These data suggest that the mouse esophagus is more similar to the human than thought previously and thus set the foundation for future functional and molecular studies using transgenic mice.
Collapse
|
3
|
Li P, Xiao Y, Zhou L, Zhang X, Xu Y, Wang X, Zou M, Guo X. A bibliometric analysis of interstitial cells of Cajal research. Front Med (Lausanne) 2024; 11:1391545. [PMID: 38831987 PMCID: PMC11145981 DOI: 10.3389/fmed.2024.1391545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 06/05/2024] Open
Abstract
Objective The significance of interstitial cells of Cajal (ICC) in the gastrointestinal tract has garnered increasing attention. In recent years, approximately 80 articles on ICC have been published annually in various journals. However, no bibliometric study has specifically focused on the literature related to ICC. Therefore, we conducted a comprehensive bibliometric analysis of ICC to reveal dynamic scientific developments, assisting researchers in exploring hotspots and emerging trends while gaining a global perspective. Methods We conducted a literature search in the Web of Science Core Collection (WoSCC) from January 1, 2013, to December 31, 2023, to identify relevant literature on ICC. We employed bibliometric software, namely VOSviewer and CiteSpace, to analyze various aspects including annual publication output, collaborations, research hotspots, current status, and development trends in this domain. Results A total of 891 English papers were published in 359 journals by 928 institutions from 57 countries/regions. According to the keyword analysis of the literature, researchers mainly focused on "c-Kit," "expression," "smooth muscle," and "nitric oxide" related to ICC over the past 11 years. However, with "SIP syncytium," "ANO1," "enteric neurons," "gastrointestinal stromal tumors (GIST)," and "functional dyspepsia (FD)," there has been a growing interest in the relationship between ANO1, SIP syncytium, and ICC, as well as the role of ICC in the treatment of GIST and FD. Conclusion Bibliometric analysis has revealed the current status of ICC research. The association between ANO1, SIP syncytium, enteric neurons and ICC, as well as the role of ICC in the treatment of GIST versus FD has become the focus of current research. However, further research and collaboration on a global scale are still needed. Our analysis is particularly valuable to researchers in gastroenterology, oncology, and cell biology, providing insights that can guide future research directions.
Collapse
Affiliation(s)
- Pengyu Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yadan Xiao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Lan Zhou
- Integrated Traditional Chinese and Western Medicine Department, The Third Hospital of Changsha, Changsha, China
| | - Xuyuan Zhang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiaojuan Wang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Menglong Zou
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xuan Guo
- Science & Technology Innovation Center (National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry), Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Hiroshige T, Uemura KI, Nakamura KI, Igawa T. Insights on Platelet-Derived Growth Factor Receptor α-Positive Interstitial Cells in the Male Reproductive Tract. Int J Mol Sci 2024; 25:4128. [PMID: 38612936 PMCID: PMC11012365 DOI: 10.3390/ijms25074128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Male infertility is a significant factor in approximately half of all infertility cases and is marked by a decreased sperm count and motility. A decreased sperm count is caused by not only a decreased production of sperm but also decreased numbers successfully passing through the male reproductive tract. Smooth muscle movement may play an important role in sperm transport in the male reproductive tract; thus, understanding the mechanism of this movement is necessary to elucidate the cause of sperm transport disorder. Recent studies have highlighted the presence of platelet-derived growth factor receptor α (PDGFRα)-positive interstitial cells (PICs) in various smooth muscle organs. Although research is ongoing, PICs in the male reproductive tract may be involved in the regulation of smooth muscle movement, as they are in other smooth muscle organs. This review summarizes the findings to date on PICs in male reproductive organs. Further exploration of the structural, functional, and molecular characteristics of PICs could provide valuable insights into the pathogenesis of male infertility and potentially lead to new therapeutic approaches.
Collapse
Affiliation(s)
- Tasuku Hiroshige
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Kei-Ichiro Uemura
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Kei-Ichiro Nakamura
- Cognitive and Molecular Research Institute of Brain Diseases, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Tsukasa Igawa
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan
| |
Collapse
|
5
|
Sanders KM, Drumm BT, Cobine CA, Baker SA. Ca 2+ dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract. Physiol Rev 2024; 104:329-398. [PMID: 37561138 PMCID: PMC11281822 DOI: 10.1152/physrev.00036.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/29/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal (GI) tract displays multiple motor patterns that move nutrients and wastes through the body. Smooth muscle cells (SMCs) provide the forces necessary for GI motility, but interstitial cells, electrically coupled to SMCs, tune SMC excitability, transduce inputs from enteric motor neurons, and generate pacemaker activity that underlies major motor patterns, such as peristalsis and segmentation. The interstitial cells regulating SMCs are interstitial cells of Cajal (ICC) and PDGF receptor (PDGFR)α+ cells. Together these cells form the SIP syncytium. ICC and PDGFRα+ cells express signature Ca2+-dependent conductances: ICC express Ca2+-activated Cl- channels, encoded by Ano1, that generate inward current, and PDGFRα+ cells express Ca2+-activated K+ channels, encoded by Kcnn3, that generate outward current. The open probabilities of interstitial cell conductances are controlled by Ca2+ release from the endoplasmic reticulum. The resulting Ca2+ transients occur spontaneously in a stochastic manner. Ca2+ transients in ICC induce spontaneous transient inward currents and spontaneous transient depolarizations (STDs). Neurotransmission increases or decreases Ca2+ transients, and the resulting depolarizing or hyperpolarizing responses conduct to other cells in the SIP syncytium. In pacemaker ICC, STDs activate voltage-dependent Ca2+ influx, which initiates a cluster of Ca2+ transients and sustains activation of ANO1 channels and depolarization during slow waves. Regulation of GI motility has traditionally been described as neurogenic and myogenic. Recent advances in understanding Ca2+ handling mechanisms in interstitial cells and how these mechanisms influence motor patterns of the GI tract suggest that the term "myogenic" should be replaced by the term "SIPgenic," as this review discusses.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| | - Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caroline A Cobine
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Salah A Baker
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| |
Collapse
|
6
|
Ding F, Guo R, Chen F, Liu LP, Cui ZY, Wang YX, Zhao G, Hu H. Impact of interstitial cells of Cajal on slow wave and gallbladder contractility in a guinea pig model of acute cholecystitis. World J Gastrointest Surg 2023; 15:1068-1079. [PMID: 37405098 PMCID: PMC10315119 DOI: 10.4240/wjgs.v15.i6.1068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/21/2023] [Accepted: 04/14/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Impaired interstitial cells of Cajal (ICCs) are central to the pathophysiology of acute cholecystitis (AC). Common bile duct ligation is a common model of AC, producing acute inflammatory changes and decrease in gallbladder contractility.
AIM To investigate the origin of slow wave (SW) in the gallbladder and the effect of ICCs on gallbladder contractions during the process of AC.
METHODS Methylene blue (MB) with light was used to establish selective impaired ICCs gallbladder tissue. Gallbladder motility was assessed using the frequency of SW and gallbladder muscle contractility in vitro in normal control (NC), AC12h, AC24h, and AC48h groups of guinea pigs. Hematoxylin and eosin and Masson-stained gallbladder tissues were scored for inflammatory changes. ICCs pathological changes alterations were estimated using immunohistochemistry and transmission electron microscopy. The alterations of c-Kit, α-SMA, cholecystokinin A receptor (CCKAR), and connexin 43 (CX43) were assessed using Western blot.
RESULTS Impaired ICCs muscle strips resulted in the decrease in gallbladder SW frequency and contractility. The frequency of SW and gallbladder contractility were significantly lower in the AC12h group. Compared with the NC group, the density and ultrastructure of ICCs were remarkably impaired in the AC groups, especially in the AC12h group. The protein expression levels of c-Kit were significantly decreased in the AC12h group, while CCKAR and CX43 protein expression levels were significantly decreased in the AC48h group.
CONCLUSION Loss ICCs could lead to a decrease in gallbladder SW frequency and contractility. The density and ultrastructure of ICCs were clearly impaired in the early stage of AC, while CCKAR and CX43 were significantly reduced at end stage.
Collapse
Affiliation(s)
- Fan Ding
- Center of Gallbladder Disease, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200331, China
| | - Run Guo
- Department of Ultrasonography, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Fang Chen
- Department of Ultrasonography, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Li-Ping Liu
- Department of Ultrasonography, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Zheng-Yu Cui
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Yi-Xing Wang
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Gang Zhao
- Center of Gallbladder Disease, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200331, China
| | - Hai Hu
- Center of Gallbladder Disease, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200331, China
| |
Collapse
|
7
|
Friedmacher F, Rolle U. Interstitial cells of Cajal: clinical relevance in pediatric gastrointestinal motility disorders. Pediatr Surg Int 2023; 39:188. [PMID: 37101012 PMCID: PMC10133055 DOI: 10.1007/s00383-023-05467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 04/28/2023]
Abstract
Interstitial cells of Cajal (ICCs) are pacemaker cells of gastrointestinal motility that generate and transmit electrical slow waves to smooth muscle cells in the gut wall, thus inducing phasic contractions and coordinated peristalsis. Traditionally, tyrosine-protein kinase Kit (c-kit), also known as CD117 or mast/stem cell growth factor receptor, has been used as the primary marker of ICCs in pathology specimens. More recently, the Ca2+-activated chloride channel, anoctamin-1, has been introduced as a more specific marker of ICCs. Over the years, various gastrointestinal motility disorders have been described in infants and young children in which symptoms of functional bowel obstruction arise from ICC-related neuromuscular dysfunction of the colon and rectum. The current article provides a comprehensive overview of the embryonic origin, distribution, and functions of ICCs, while also illustrating the absence or deficiency of ICCs in pediatric patients with Hirschsprung disease intestinal neuronal dysplasia, isolated hypoganglionosis, internal anal sphincter achalasia, and congenital smooth muscle cell disorders such as megacystis microcolon intestinal hypoperistalsis syndrome.
Collapse
Affiliation(s)
- Florian Friedmacher
- Department of Paediatric Surgery and Paediatric Urology, University Hospital Frankfurt, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Udo Rolle
- Department of Paediatric Surgery and Paediatric Urology, University Hospital Frankfurt, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
8
|
Huang X, Ao JP, Fu HY, Lu HL, Xu WX. Corticotropin-releasing factor receptor agonists decrease interstitial cells of Cajal in murine colon. Neurogastroenterol Motil 2023; 35:e14499. [PMID: 36377810 DOI: 10.1111/nmo.14499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Peripheral corticotropin-releasing factor (CRF) has been reported to affect gastrointestinal motility through corticotropin-releasing factor receptor located in enteric nervous system (ENS), but less is known about of the relationship between peripheral CRF and interstitial cells of Cajal (ICC). METHODS Mice were intraperitoneally injected with CRF receptor agonists to determine their effects on colonic ICC. Chronic heterotypic stress (CHeS) was applied to mice to determine endogenous CRF-CRF receptor signaling on colonic ICC. RESULTS We found that stressin1, a selective CRF receptor 1 (CRF1 ) agonist, significantly increased the expression of CRF1 but had no effect on the expression of CRF2 in the smooth muscles of murine colon. The protein expression of c-Kit, Anoctamin-1 (ANO1), and stem cell factor (SCF) in the colonic smooth muscles was significantly decreased in stressin1-treated mice. Accordingly, 2-(4-Chloro-2-methylphenoxy)-N'-(2-methoxybenzylidene) acetohydrazide (Ani 9), a selective ANO1 blocker, had a less significant inhibitory effect on CMMC in stressin1-treated mice compared to the saline-treated ones. Similarly, we also found that ICC and ANO1 were reduced in the colonic smooth muscles of mice by treatment with sauvagine (ip), a CRF2 agonist. However, different with stressin1, sauvagine decreased the expression of CRF2 besides increasing CRF1 expression in the colonic smooth muscles. Similar results of CRF1 and c-Kit expressions were also obtained from the colon of CHeS-treated mice. CONCLUSION All these results suggest that CRF may be involved in the abnormality of colonic motility through peripheral CRF1 to decrease the number and function of ICC, which provides a potential target for treating stress-induced gastrointestinal motility disorder.
Collapse
Affiliation(s)
- Xu Huang
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Ping Ao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Han-Yue Fu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Li Lu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Xie Xu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Wang Z, Shi Y, Zeng S, Zheng Y, Wang H, Liao H, Song J, Zhang X, Cao J, Li C. Polysaccharides from Holothuria leucospilota Relieve Loperamide-Induced Constipation Symptoms in Mice. Int J Mol Sci 2023; 24:ijms24032553. [PMID: 36768874 PMCID: PMC9916744 DOI: 10.3390/ijms24032553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
A vital bioactive component of marine resources is Holothuria leucospilota polysaccharides (HLP). This study examined whether HLP could regulate intestinal flora to treat loperamide-induced constipation. Constipated mice showed signs of prolonged defecation (up by 60.79 min) and a reduced number of bowel movements and pellet water content (decreased by 12.375 and 11.77%, respectively). The results showed that HLP treatment reduced these symptoms, reversed the changes in related protein expression levels in the colon, and regulated the levels of active peptides associated with the gastrointestinal tract in constipated mice, which significantly improved water-electrolyte metabolism and enhanced gastrointestinal motility. Meanwhile, it was found that intestinal barrier damage was reduced and the inflammatory response was inhibited through histopathology and immunohistochemistry. As a means to further relieve constipation symptoms, treatment with low, medium, and high HLP concentrations increased the total short-chain fatty acid (SCFA) content in the intestine of constipated mice by 62.60 μg/g, 138.91 μg/g, and 126.51 μg/g, respectively. Moreover, an analysis of the intestinal flora's gene for 16S rRNA suggested that the intestinal microbiota was improved through HLP treatment, which is relevant to the motivation for the production of SCFAs. In summary, it was demonstrated that HLP reduced loperamide-induced constipation in mice.
Collapse
Affiliation(s)
- Ziqi Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yali Shi
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Shiyu Zeng
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuanping Zheng
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Correspondence: (Y.Z.); (C.L.); Tel./Fax: +86-089-8662-56495 (C.L.)
| | - Huaijie Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Haihui Liao
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jie Song
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xinyue Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jun Cao
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chuan Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (Y.Z.); (C.L.); Tel./Fax: +86-089-8662-56495 (C.L.)
| |
Collapse
|
10
|
Analysis of Regional Variations of the Interstitial Cells of Cajal in the Murine Distal Stomach Informed by Confocal Imaging and Machine Learning Methods. Cell Mol Bioeng 2022; 15:193-205. [PMID: 35401841 PMCID: PMC8938532 DOI: 10.1007/s12195-021-00716-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/24/2021] [Indexed: 01/05/2023] Open
Abstract
Introduction The network of Interstitial Cells of Cajal (ICC) plays a plethora of key roles in maintaining, coordinating, and regulating the contractions of the gastrointestinal (GI) smooth muscles. Several GI functional motility disorders have been associated with ICC degradation. This study extended a previously reported 2D morphological analysis and applied it to 3D spatial quantification of three different types of ICC networks in the distal stomach guided by confocal imaging and machine learning methods. The characterization of the complex changes in spatial structure of the ICC network architecture contributes to our understanding of the roles that different types of ICC may play in post-prandial physiology, pathogenesis, and/or amelioration of GI dsymotility- bridging structure and function. Methods A validated classification method using Trainable Weka Segmentation was applied to segment the ICC from a confocal dataset of the gastric antrum of a transgenic mouse, followed by structural analysis of the segmented images. Results The machine learning model performance was compared to manually segmented subfields, achieving an area under the receiver-operating characteristic (AUROC) of 0.973 and 0.995 for myenteric ICC (ICC-MP; n = 6) and intramuscular ICC (ICC-IM; n = 17). The myenteric layer in the distal antrum increased in thickness (from 14.5 to 34 μm) towards the lesser curvature, whereas the thickness decreased towards the lesser curvature in the proximal antrum (17.7 to 9 μm). There was an increase in ICC-MP volume from proximal to distal antrum (406,960 ± 140,040 vs. 559,990 ± 281,000 μm3; p = 0.000145). The % of ICC volume was similar for ICC-LM and for ICC-CM between proximal (3.6 ± 2.3% vs. 3.1 ± 1.2%; p = 0.185) and distal antrum (3.2 ± 3.9% vs. 2.5 ± 2.8%; p = 0.309). The average % volume of ICC-MP was significantly higher than ICC-IM at all points throughout sample (p < 0.0001). Conclusions The segmentation and analysis methods provide a high-throughput framework of investigating the structural changes in extended ICC networks and their associated physiological functions in animal models.
Collapse
|
11
|
Li ZS, Hung LY, Margolis KG, Ambron RT, Sung YJ, Gershon MD. The α isoform of cGMP-dependent protein kinase 1 (PKG1α) is expressed and functionally important in intrinsic primary afferent neurons of the guinea pig enteric nervous system. Neurogastroenterol Motil 2021; 33:e14100. [PMID: 33655600 PMCID: PMC8681866 DOI: 10.1111/nmo.14100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Intrinsic primary afferent neurons (IPANs) enable the gut to manifest reflexes in the absence of CNS input. PKG1α is selectively expressed in a subset of neurons in dorsal root ganglia (DRG) and has been linked to nociception and long-term hyperexcitability. METHODS We used immunoblotting, immunocytochemistry, and in vitro assays of IPAN-dependent enteric functions to test hypotheses that subsets of primary neurons of the ENS and DRG share a reliance on PKG1α expression. KEY RESULTS PKG1α immunoreactivity was demonstrated in immunoblots from isolated myenteric ganglia. PKG1α, but not PKG1β, immunoreactivity, was coincident with that of neuronal markers (HuC/D; β3-tubulin) in both enteric plexuses. PKG1α immunoreactivity also co-localized with the immunoreactivities of the IPAN markers, calbindin (100%; myenteric plexus) and cytoplasmic NeuN (98 ± 1% submucosal plexus). CGRP-immunoreactive DRG neurons, identified as visceral afferents by retrograde transport, were PKG1α-immunoreactive. We used intraluminal cholera toxin to determine whether PKG1α was necessary to enable stimulation of the mucosa to activate Fos in enteric neurons. Tetrodotoxin (1.0 µM), low Ca2+ /high Mg2+ media, and the PKG inhibitor, N46 (100 µM), all inhibited Fos activation in myenteric neurons. N46 also concentration dependently inhibited peristaltic reflexes in isolated preparations of distal colon (IC50 = 83.3 ± 1.3 µM). CONCLUSIONS & INFERENCES These data suggest that PKG1α is present and functionally important in IPANs and visceral afferent nociceptive neurons.
Collapse
Affiliation(s)
- Zhi S. Li
- Departments of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Lin Y. Hung
- Departments of Pediatrics, Columbia University, New York, NY, USA
| | - Kara G. Margolis
- Departments of Pediatrics, Columbia University, New York, NY, USA
| | - Richard T. Ambron
- Departments of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Ying J. Sung
- Departments of Basic Science, The Commonwealth Medical College, Scranton, PA, USA
| | - Michael D. Gershon
- Departments of Pathology & Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
12
|
Kim MG, Jo K, Cho K, Park SS, Suh HJ, Hong KB. Prebiotics/Probiotics Mixture Induced Changes in Cecal Microbiome and Intestinal Morphology Alleviated the Loperamide-Induced Constipation in Rat. Food Sci Anim Resour 2021; 41:527-541. [PMID: 34017959 PMCID: PMC8112309 DOI: 10.5851/kosfa.2021.e17] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/03/2023] Open
Abstract
The aim of this study was to investigate the effect of a mixture of multi-strain
probiotics and prebiotics on loperamide-induced constipation in Sprague-Dawley
rats. A multi-strain probiotics alone (loperamide-induced group with
multi-strain probiotics mixture group; Lop-Pro) and a mixture of multi-strain
probiotics and prebiotics (loperamide-induced group with multi-strain probiotics
and prebiotics mixture group; Lop-Pro/Pre) were administered orally after
inducing constipation. The fecal water content was significantly higher (by
42%) in the Lop-Pro/Pre group (33.5%) than in the
loperamide-induced group (Lop) (23.7%) (p<0.05). The intestinal
mucosal thickness, crypt cell area, and interstitial cells of Cajal area were
significantly higher in the Lop-Pro/Pre group compared to the Lop group by
16.4%, 20.6%, and 42.3%, respectively. Additionally, the
total short-chain fatty acid content was significantly increased in the Lop-Pro
and Lop-Pro/Pre groups by 56.4% and 54.2%, respectively, compared
with the Lop group. The Lop-Pro and Lop-Pro/Pre groups recovered
loperamide-induced alteration in Bacteroidetes and
Verrucomicrobia abundance among intestinal microbiota,
whereas the Lop-Pro/Pre group recovered Akkermansia,
Lactobacillus, Clostridium,
Bacteroides, and Oscillibacter abundance.
Moreover, the relative abundance of Oscillibacter and
Clostridium was significantly different in the Lop-Pro/Pre
group compared to the Lop group. Collectively, administration of synbiotics
rather than multi-strain probiotics alone is effective in alleviating
constipation.
Collapse
Affiliation(s)
- Min Guk Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea
| | - Kyungae Jo
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea
| | | | | | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea.,Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Korea
| | - Ki-Bae Hong
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
13
|
Baker SA, Leigh WA, Del Valle G, De Yturriaga IF, Ward SM, Cobine CA, Drumm BT, Sanders KM. Ca 2+ signaling driving pacemaker activity in submucosal interstitial cells of Cajal in the murine colon. eLife 2021; 10:64099. [PMID: 33399536 PMCID: PMC7806270 DOI: 10.7554/elife.64099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Interstitial cells of Cajal (ICC) generate pacemaker activity responsible for phasic contractions in colonic segmentation and peristalsis. ICC along the submucosal border (ICC-SM) contribute to mixing and more complex patterns of colonic motility. We show the complex patterns of Ca2+ signaling in ICC-SM and the relationship between ICC-SM Ca2+ transients and activation of smooth muscle cells (SMCs) using optogenetic tools. ICC-SM displayed rhythmic firing of Ca2+transients ~ 15 cpm and paced adjacent SMCs. The majority of spontaneous activity occurred in regular Ca2+ transients clusters (CTCs) that propagated through the network. CTCs were organized and dependent upon Ca2+ entry through voltage-dependent Ca2+ conductances, L- and T-type Ca2+ channels. Removal of Ca2+ from the external solution abolished CTCs. Ca2+ release mechanisms reduced the duration and amplitude of Ca2+ transients but did not block CTCs. These data reveal how colonic pacemaker ICC-SM exhibit complex Ca2+-firing patterns and drive smooth muscle activity and overall colonic contractions.
Collapse
Affiliation(s)
- Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, United States
| | - Wesley A Leigh
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, United States
| | - Guillermo Del Valle
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, United States
| | - Inigo F De Yturriaga
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, United States
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, United States
| | - Caroline A Cobine
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, United States
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, United States
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, United States
| |
Collapse
|
14
|
Amylase-Producing Maltooligosaccharide Provides Potential Relief in Rats with Loperamide-Induced Constipation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5470268. [PMID: 32908561 PMCID: PMC7474349 DOI: 10.1155/2020/5470268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/27/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022]
Abstract
Constipation is a chronic disease caused by infrequent, inadequate, and difficult bowel movements. The present study aimed to evaluate the potential laxative effect of maltooligosaccharide (MOS) on loperamide-induced constipation in a rat model. In vitro experiments were conducted to evaluate the effect of MOS on the growth of lactic acid bacteria. Moreover, to examine the effect of MOS administration on Sprague-Dawley (SD) rats with loperamide-induced constipation, the drinking water for the rats was supplemented with 10% or 15% of MOS for 14 days, and, thereafter, the improvement in constipation was assessed. For this, the rats were divided into five groups: normal (Nor), loperamide-induced constipated (Con), positive control (15% of dual-oligosaccharide (DuO-15)), 10% MOS treated (MOS-10), and 15% MOS-treated (MOS-15). In an in vitro test, MOS treatment promoted the growth of lactic acid bacteria except Lactobacillus bulgaricus. Treatment with higher MOS dose relieved constipation in rats by improving the fecal pellet and water content. Furthermore, in the high MOS dose group, the cecal short-chain fatty acid levels significantly increased compared to those in the control group (P < 0.001). MOS treatment also improved the mucosal thickness as well as mucin secretion and increased the area of intestinal Cajal cells compared to that in the control group (P < 0.001). These findings suggest that MOS relieves constipation and has beneficial effect on the gastrointestinal tract, and, therefore, it can be used as an ingredient in functional foods for treating constipation or improving intestinal health.
Collapse
|
15
|
Hannigan KI, Bossey AP, Foulkes HJL, Drumm BT, Baker SA, Ward SM, Sanders KM, Keef KD, Cobine CA. A novel intramuscular Interstitial Cell of Cajal is a candidate for generating pacemaker activity in the mouse internal anal sphincter. Sci Rep 2020; 10:10378. [PMID: 32587396 PMCID: PMC7316801 DOI: 10.1038/s41598-020-67142-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
The internal anal sphincter (IAS) generates phasic contractions and tone. Slow waves (SWs) produced by interstitial cells of Cajal (ICC) underlie phasic contractions in other gastrointestinal regions. SWs are also present in the IAS where only intramuscular ICC (ICC-IM) are found, however the evidence linking ICC-IM to SWs is limited. This study examined the possible relationship between ICC-IM and SWs by recording Ca2+ transients in mice expressing a genetically-encoded Ca2+-indicator in ICC (Kit-Cre-GCaMP6f). A role for L-type Ca2+ channels (CavL) and anoctamin 1 (ANO1) was tested since each is essential for SW and tone generation. Two distinct ICC-IM populations were identified. Type I cells (36% of total) displayed localised asynchronous Ca2+ transients not dependent on CavL or ANO1; properties typical of ICC-IM mediating neural responses in other gastrointestinal regions. A second novel sub-type, i.e., Type II cells (64% of total) generated rhythmic, global Ca2+ transients at the SW frequency that were synchronised with neighbouring Type II cells and were abolished following blockade of either CavL or ANO1. Thus, the spatiotemporal characteristics of Type II cells and their dependence upon CavL and ANO1 all suggest that these cells are viable candidates for the generation of SWs and tone in the IAS.
Collapse
Affiliation(s)
- Karen I Hannigan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Aaron P Bossey
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Holly J L Foulkes
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Kathleen D Keef
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Caroline A Cobine
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA.
| |
Collapse
|
16
|
Grainger N, Freeman RS, Shonnard CC, Drumm BT, Koh SD, Ward SM, Sanders KM. Identification and classification of interstitial cells in the mouse renal pelvis. J Physiol 2020; 598:3283-3307. [PMID: 32415739 DOI: 10.1113/jp278888] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Platelet-derived growth factor receptor-α (PDGFRα) is a novel biomarker along with smooth myosin heavy chain for the pacemaker cells (previously termed 'atypical' smooth muscle cells) in the murine and cynomolgus monkey pelvis-kidney junction. PDGFRα+ cells present in adventitial and urothelial layers of murine renal pelvis do not express smooth muscle myosin heavy chain (smMHC) but are in close apposition to nerve fibres. Most c-Kit+ cells in the renal pelvis are mast cells. Mast cells (CD117+ /CD45+ ) are more abundant in the proximal renal pelvis and pelvis-kidney junction regions whereas c-Kit+ interstitial cells (CD117+ /CD45- ) are found predominantly in the distal renal pelvis and ureteropelvic junction. PDGFRα+ cells are distinct from c-Kit+ interstitial cells. A subset of PDGFRα+ cells express the Ca2+ -activated Cl- channel, anoctamin-1, across the entire renal pelvis. Spontaneous Ca2+ transients were observed in c-Kit+ interstitial cells, smMHC+ PDGFRα cells and smMHC- PDGFRα cells using mice expressing genetically encoded Ca2+ sensors. ABSTRACT Rhythmic contractions of the renal pelvis transport urine from the kidneys into the ureter. Specialized pacemaker cells, termed atypical smooth muscle cells (ASMCs), are thought to drive the peristaltic contractions of typical smooth muscle cells (TSMCs) in the renal pelvis. Interstitial cells (ICs) in close proximity to ASMCs and TSMCs have been described, but the role of these cells is poorly understood. The presence and distributions of platelet-derived growth factor receptor-α+ (PDGFRα+ ) ICs in the pelvis-kidney junction (PKJ) and distal renal pelvis were evaluated. We found PDGFRα+ ICs in the adventitial layers of the pelvis, the muscle layer of the PKJ and the adventitia of the distal pelvis. PDGFRα+ ICs were distinct from c-Kit+ ICs in the renal pelvis. c-Kit+ ICs are a minor population of ICs in murine renal pelvis. The majority of c-Kit+ cells were mast cells. PDGFRα+ cells in the PKJ co-expressed smooth muscle myosin heavy chain (smMHC) and several other smooth muscle gene transcripts, indicating these cells are ASMCs, and PDGFRα is a novel biomarker for ASMCs. PDGFRα+ cells also express Ano1, which encodes a Ca2+ -activated Cl- conductance that serves as a primary pacemaker conductance in ICs of the GI tract. Spontaneous Ca2+ transients were observed in c-Kit+ ICs, smMHC+ PDGFRα cells and smMHC- PDGFRα cells using genetically encoded Ca2+ sensors. A reporter strain of mice with enhanced green fluorescent protein driven by the endogenous promotor for Pdgfra was shown to be a powerful new tool for isolating and characterizing the phenotype and functions of these cells in the renal pelvis.
Collapse
Affiliation(s)
- Nathan Grainger
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Ryan S Freeman
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Cameron C Shonnard
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Bernard T Drumm
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Sang Don Koh
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Sean M Ward
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
17
|
Drumm BT, Rembetski BE, Messersmith K, Manierka MS, Baker SA, Sanders KM. Pacemaker function and neural responsiveness of subserosal interstitial cells of Cajal in the mouse colon. J Physiol 2020; 598:651-681. [PMID: 31811726 DOI: 10.1113/jp279102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Rhythmic action potentials and intercellular Ca2+ waves are generated in smooth muscle cells of colonic longitudinal muscles (LSMC). Longitudinal muscle excitability is tuned by input from subserosal ICC (ICC-SS), a population of ICC with previously unknown function. ICC-SS express Ano1 channels and generate spontaneous Ca2+ transients in a stochastic manner. Release of Ca2+ and activation of Ano1 channels causes depolarization of ICC-SS and LSMC, leading to activation of L-type Ca2+ channels, action potentials, intercellular Ca2+ waves and contractions in LSMC. Nitrergic neural inputs regulate the Ca2+ events in ICC-SS. Pacemaker activity in longitudinal muscle is an emergent property as a result of integrated processes in ICC-SS and LSMC. ABSTRACT Much is known about myogenic mechanisms in circular muscle (CM) in the gastrointestinal tract, although less is known about longitudinal muscle (LM). Two Ca2+ signalling behaviours occur in LM: localized intracellular waves not causing contractions and intercellular waves leading to excitation-contraction coupling. An Ano1 channel antagonist inhibited intercellular Ca2+ waves and LM contractions. Ano1 channels are expressed by interstitial cells of Cajal (ICC) but not by smooth muscle cells (SMCs). We investigated Ca2+ signalling in a novel population of ICC that lies along the subserosal surface of LM (ICC-SS) in mice expressing GCaMP6f in ICC. ICC-SS fired stochastic localized Ca2+ transients. Such events have been linked to activation of Ano1 channels in ICC. Ca2+ transients in ICC-SS occurred by release from stores most probably via inositol trisphosphate receptors. This activity relied on influx via store-operated Ca2+ entry and Orai channels. No voltage-dependent mechanism that synchronized Ca2+ transients in a single cell or between cells was found. Nitrergic agonists inhibited Ca2+ transients in ICC-SS, and stimulation of intrinsic nerves activated nitrergic responses in ICC-SS. Cessation of stimulation resulted in significant enhancement of Ca2+ transients compared to the pre-stimulus activity. No evidence of innervation by excitatory, cholinergic motor neurons was found. Our data suggest that ICC-SS contribute to regulation of LM motor activity. Spontaneous Ca2+ transients activate Ano1 channels in ICC-SS. Resulting depolarization conducts to SMCs, depolarizing membrane potential, activating L-type Ca2+ channels and initiating contraction. Rhythmic electrical and mechanical behaviours of LM are an emergent property of SMCs and ICC-SS.
Collapse
Affiliation(s)
- Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Benjamin E Rembetski
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Katelyn Messersmith
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Marena S Manierka
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
18
|
Li S, Hu X, Tian R, Guo Y, Chen J, Li Z, Zhao X, Kuang L, Ran D, Zhao H, Zhang X, Wang J, Xia L, Yue J, Yao G, Fu Q, Shi H. RNA-Seq-based transcriptomic profiling of primary interstitial cells of Cajal in response to bovine viral diarrhea virus infection. Vet Res Commun 2019; 43:143-153. [PMID: 31102142 DOI: 10.1007/s11259-019-09754-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/30/2019] [Indexed: 12/19/2022]
Abstract
Infections with bovine viral diarrhea virus (BVDV) contribute significantly to health-related economic losses in the beef and dairy industries and are widespread throughout the world. Severe acute BVDV infection is characterized by a gastrointestinal (GI) inflammatory response. The mechanism of inflammatory lesions caused by BVDV remains unknown. The interstitial cells of Cajal (ICC) network plays a pivotal role as a pacemaker in the generation of electrical slow waves for GI motility, and it is crucial for the reception of regulatory inputs from the enteric nervous system. The present study investigated whether ICC were a good model for studying GI inflammatory lesions caused by BVDV infection. Primary ICC were isolated from the duodenum of Merino sheep. The presence of BVDV was detected in ICC grown for five passages after BVDV infection, indicating that BVDV successfully replicated in ICC. After infection with BVDV strain TC, the cell proliferation proceeded slowly or declined. Morphological changes, including swelling, dissolution, and formation of vacuoles in the ICC were observed, indicating quantitative, morphological and functional changes in the cells. RNA sequencing (RNA-Seq) was performed to investigate differentially expressed genes (DEGs) in BVDV-infected ICC and explore the molecular mechanism of underlying quantitative, morphological and functional changes of ICC. Eight hundred six genes were differentially expressed after BVDV infection, of which 538 genes were upregulated and 268 genes were downregulated. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that the 806 DEGs were significantly enriched in 27 pathways, including cytokine-cytokine receptor interaction, interleukin (IL)-17 signaling and mitogen-activated protein kinase (MAPK) signaling pathways. The DEGs and raw files of high-throughput sequencing of this study were submitted to the NCBI Gene Expression Omnibus (GEO) database (accession number GSE122344). Finally, 21 DEGs were randomly selected, and the relative repression levels of these genes were tested using the quantitative real-time PCR (qRT-PCR) to validate the RNA-Seq results. The results showed that the related expression levels of 21 DEGs were similar to RNA-Seq. This study is the first to establish a new infection model for investigating GI inflammatory lesions induced by BVDV infection. RNA-Seq-based transcriptomic profiling can provide a basis for study on BVDV-associated inflammatory lesions.
Collapse
Affiliation(s)
- Shengnan Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Xinyan Hu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Ruixin Tian
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Yanting Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Junzhen Chen
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Zhen Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Xinyan Zhao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Ling Kuang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Duoliang Ran
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Hongqiong Zhao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Xiaohong Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Jinquan Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Lining Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Gang Yao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China.
| | - Qiang Fu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China.
| | - Huijun Shi
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China.
| |
Collapse
|
19
|
|
20
|
Sung TS, Hwang SJ, Koh SD, Bayguinov Y, Peri LE, Blair PJ, Webb TI, Pardo DM, Rock JR, Sanders KM, Ward SM. The cells and conductance mediating cholinergic neurotransmission in the murine proximal stomach. J Physiol 2018; 596:1549-1574. [PMID: 29430647 PMCID: PMC5924836 DOI: 10.1113/jp275478] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/26/2018] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS Enteric neurotransmission is essential for gastrointestinal (GI) motility, although the cells and conductances responsible for post-junctional responses are controversial. The calcium-activated chloride conductance (CaCC), anoctamin-1 (Ano1), was expressed by intramuscular interstitial cells of Cajal (ICC-IM) in proximal stomach and not resolved in smooth muscle cells (SMCs). Cholinergic nerve fibres were closely apposed to ICC-IM. Conductances activated by cholinergic stimulation in isolated ICC-IM and SMCs were determined. A CaCC was activated by carbachol in ICC-IM and a non-selective cation conductance in SMCs. Responses to cholinergic nerve stimulation were studied. Excitatory junction potentials (EJPs) and mechanical responses were evoked in wild-type mice but absent or greatly reduced with knockout/down of Ano1. Drugs that block Ano1 inhibited the conductance activated by carbachol in ICC-IM and EJPs and mechanical responses in tissues. The data of the present study suggest that electrical and mechanical responses to cholinergic nerve stimulation are mediated by Ano1 expressed in ICC-IM and not SMCs. ABSTRACT Enteric motor neurotransmission is essential for normal gastrointestinal (GI) motility. Controversy exists regarding the cells and ionic conductance(s) that mediate post-junctional neuroeffector responses to motor neurotransmitters. Isolated intramuscular ICC (ICC-IM) and smooth muscle cells (SMCs) from murine fundus muscles were used to determine the conductances activated by carbachol (CCh) in each cell type. The calcium-activated chloride conductance (CaCC), anoctamin-1 (Ano1) is expressed by ICC-IM but not resolved in SMCs, and CCh activated a Cl- conductance in ICC-IM and a non-selective cation conductance in SMCs. We also studied responses to nerve stimulation using electrical-field stimulation (EFS) of intact fundus muscles from wild-type and Ano1 knockout mice. EFS activated excitatory junction potentials (EJPs) in wild-type mice, although EJPs were absent in mice with congenital deactivation of Ano1 and greatly reduced in animals in which the CaCC-Ano1 was knocked down using Cre/loxP technology. Contractions to cholinergic nerve stimulation were also greatly reduced in Ano1 knockouts. SMCs cells also have receptors and ion channels activated by muscarinic agonists. Blocking acetylcholine esterase with neostigmine revealed a slow depolarization that developed after EJPs in wild-type mice. This depolarization was still apparent in mice with genetic deactivation of Ano1. Pharmacological blockers of Ano1 also inhibited EJPs and contractile responses to muscarinic stimulation in fundus muscles. The data of the present study are consistent with the hypothesis that ACh released from motor nerves binds muscarinic receptors on ICC-IM with preference and activates Ano1. If metabolism of acetylcholine is inhibited, ACh overflows and binds to extrajunctional receptors on SMCs, eliciting a slower depolarization response.
Collapse
Affiliation(s)
- Tae Sik Sung
- Department of Physiology and Cell Biology, University of NevadaReno School of MedicineRenoNVUSA
| | - Sung Jin Hwang
- Department of Physiology and Cell Biology, University of NevadaReno School of MedicineRenoNVUSA
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of NevadaReno School of MedicineRenoNVUSA
| | - Yulia Bayguinov
- Department of Physiology and Cell Biology, University of NevadaReno School of MedicineRenoNVUSA
| | - Lauen E. Peri
- Department of Physiology and Cell Biology, University of NevadaReno School of MedicineRenoNVUSA
| | - Peter J. Blair
- Department of Physiology and Cell Biology, University of NevadaReno School of MedicineRenoNVUSA
| | - Timothy I. Webb
- Department of Physiology and Cell Biology, University of NevadaReno School of MedicineRenoNVUSA
| | - David M. Pardo
- Department of AnatomyUniversity of CaliforniaSan FranciscoCAUSA
| | - Jason R. Rock
- Center for Regenerative MedicineBoston University School of MedicineBostonMAUSA
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of NevadaReno School of MedicineRenoNVUSA
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of NevadaReno School of MedicineRenoNVUSA
| |
Collapse
|
21
|
Wang L, Liang Y, Chen Q, Ahmed N, Wang F, Hu B, Yang P. Identification and Distribution of the Interstitial Cells of Cajal in the Abomasum of Goats. Cell Transplant 2017; 27:335-344. [PMID: 28933185 PMCID: PMC5898686 DOI: 10.1177/0963689717722561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The interstitial cells of Cajal (ICCs) are regarded as pacemakers and are involved in neurotransmission in the gastrointestinal tract (GIT) of animals. However, limited information is available about the existence of ICCs within the GIT of ruminants. In this study, we investigated the ultrastructural characteristics and distribution of ICCs in goat abomasum using transmission electron microscopy and c-kit immunohistochemistry. Two different kinds of c-kit immunoreactive cells were observed in the abomasum. The first was identified as ICCs, which appeared to be multipolar or bipolar in shape, with some processes. These c-kit immunoreactive cells were deposited in the submucosal layer, myenteric plexus between the circular and longitudinal muscle layers, and within the longitudinal and circular muscle layers of the abomasum. The second type of cell was round in shape and was identified as mast cells, which were located in the submucosal layer as well as in the lamina propria. Ultrastructurally, ICCs were also observed as stellate or spindle-shaped cells, which were consistent in shape with our c-kit immunoreactive cells. In the cytoplasm of ICCs, numerous mitochondria, rough endoplasmic reticulum, and caveolae were detected. ICCs were located in the myenteric plexus between the longitudinal and circular muscle layers (ICC-MY), with the longitudinal and circular muscle layer was replaced as “intramuscular layers” (ICC-IM), and in the submucosal layer (ICC-SM). In addition, we found ICCs surrounding nerve fibers and smooth muscle cells, where they formed heterocellular junctions in the form of close membrane associations or gap junctions and homocellular junctions among the processes of the ICCs. In the current study, we provide the first complete characterization of ICCs within the goat abomasum and propose that ICCs might have a key role in producing contractions in the ruminant stomach for proper absorption of nutrients.
Collapse
Affiliation(s)
- Lingling Wang
- 1 College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yu Liang
- 1 College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Qiusheng Chen
- 1 College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Nisar Ahmed
- 1 College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Feng Wang
- 2 College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Bing Hu
- 3 College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Ping Yang
- 1 College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China.,2 College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
22
|
Sanders KM, Kito Y, Hwang SJ, Ward SM. Regulation of Gastrointestinal Smooth Muscle Function by Interstitial Cells. Physiology (Bethesda) 2017; 31:316-26. [PMID: 27488743 DOI: 10.1152/physiol.00006.2016] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Interstitial cells of mesenchymal origin form gap junctions with smooth muscle cells in visceral smooth muscles and provide important regulatory functions. In gastrointestinal (GI) muscles, there are two distinct classes of interstitial cells, c-Kit(+) interstitial cells of Cajal and PDGFRα(+) cells, that regulate motility patterns. Loss of these cells may contribute to symptoms in GI motility disorders.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada; and
| | - Yoshihiko Kito
- Department of Pharmacology, Faculty of Medicine, Saga University, Nabeshima, Japan
| | - Sung Jin Hwang
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada; and
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada; and
| |
Collapse
|
23
|
Chai Y, Huang Y, Tang H, Tu X, He J, Wang T, Zhang Q, Xiong F, Li D, Qiu Z. Role of stem cell growth factor/c-Kit in the pathogenesis of irritable bowel syndrome. Exp Ther Med 2017; 13:1187-1193. [PMID: 28413456 PMCID: PMC5377426 DOI: 10.3892/etm.2017.4133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 11/25/2016] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional bowel disease with a complicated etiopathogenesis, often characterized by gastrointestinal motility disorder and high visceral sensitivity. IBS is a comprehensive multi-systemic disorder, with the interaction of multiple factors, such as mental stress, intestinal function and flora, heredity, resulting in the disease. The existence of a common mechanism underlying the aforementioned factors is currently unknown. The lack of therapies that comprehensively address the disease symptoms, including abdominal pain and diarrhea, is a limitation of current IBS management. The current review has explored the role of the SCF/c-Kit receptor/ligand system in IBS. The SCF/c-Kit system constitutes a classical ligand/receptor tyrosine kinase signaling system that mediates inflammation and smooth muscle contraction. Additionally, it provides trophic support to neural crest-derived cell types, including the enteric nervous system and mast cells. The regulation of SCF/c-Kit on the interstitial cells of Cajal (ICC) suggest that it may play a key role in the aberrant intestinal dynamics and high visceral sensitivity observed in IBS. The role of the SCF/c-Kit system in intestinal motility, inflammation and nerve growth has been reported. From the available biomedical evidence on the pathogenesis of IBS, it has been concluded that the SCF-c-Kit system is a potential therapeutic target for rational drug design in the treatment of IBS.
Collapse
Affiliation(s)
- Yuna Chai
- Pharmaceutical Department, First Affiliated Hospital of Zhengzhou University of Chinese Medicine, Zhengzhou, Henan 450052, P.R. China.,Chinese Medicine Program, The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yusheng Huang
- Chinese Medicine Program, The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Hongmei Tang
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xing Tu
- Institute of Traditional Chinese Medicine, School of Traditional Chinese Medicine of Hubei University for Nationalities, Enshi, Hubei 445000, P.R. China
| | - Jianbo He
- Department of Orthopedics, The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Ting Wang
- Chinese Medicine Program, The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Qingye Zhang
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Fen Xiong
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Detang Li
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Zhenwen Qiu
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
24
|
Lentle RG, Reynolds GW, Hulls CM, Chambers JP. Advanced spatiotemporal mapping methods give new insights into the coordination of contractile activity in the stomach of the rat. Am J Physiol Gastrointest Liver Physiol 2016; 311:G1064-G1075. [PMID: 27765760 DOI: 10.1152/ajpgi.00308.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/12/2016] [Indexed: 01/31/2023]
Abstract
We used spatiotemporal mapping of strain rate to determine the direction of propagation and amplitudes of the longitudinal and circumferential components of antrocorporal (AC) contractions and fundal contractions in the rat stomach maintained ex vivo and containing a volume of fluid that was within its normal functional capacity. In the region of the greater curvature the longitudinal and circular components of AC contractions propagated synchronously at right angles to the arciform geometric axis of the stomach. However, the configuration of AC contractions was U shaped, neither the circular nor the longitudinal component of contractions being evident in the upper proximal corpus. Similarly, in the distal upper antrum of some preparations, circumferential components propagated more rapidly than longitudinal components. Ongoing "high-frequency, low-amplitude myogenic contractions" were identified in the upper proximal gastric corpus and on the anterior and posterior wall of the fundus. The amplitudes of these contractions were modulated in the occluded stomach by low-frequency pressure waves that occurred spontaneously. Hence the characteristics of phasic contractions vary regionally in the antrum and corpus and a previously undescribed high-frequency contractile component was identified in the proximal corpus and fundus, the latter being modulated in synchrony with cyclic variation in intrafundal pressure in the occluded fundus.
Collapse
Affiliation(s)
- R G Lentle
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand; and
| | - G W Reynolds
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand; and
| | - C M Hulls
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand; and
| | - J P Chambers
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
25
|
Tamada H, Kiyama H. Existence of c-Kit negative cells with ultrastructural features of interstitial cells of Cajal in the subserosal layer of the W/W(v) mutant mouse colon. J Smooth Muscle Res 2015; 51:1-9. [PMID: 26004376 PMCID: PMC5137270 DOI: 10.1540/jsmr.51.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interstitial cells of Cajal (ICC) are mesenchymal cells that are distributed along the gastrointestinal tract and function as pacemaker cells or intermediary cells between nerves and smooth muscle cells. ICC express a receptor tyrosine kinase c-Kit, which is an established marker for ICC. The c-kit gene is allelic with the murine white-spotting locus (W), and some ICC subsets were reported to be missing in heterozygous mutant W/W(v) mice carrying W and W(v) mutated alleles. In this study, the characterization of interstitial cells in the subserosal layer of W/W(v) mice was analyzed by immunohistochemistry and electron microscopy. In the proximal and distal colon of W/W(v) mutant mice, no c-Kit-positive cells were detected in the subserosal layer by immunohistochemistry. By electron microscopy, the interstitial cells, which were characterized by the existence of caveolae, abundant mitochondria and gap junctions, were observed in the W/W(v) mutant colon. The morphological characteristics were comparable to those of the multipolar c-Kit positive ICC seen in the subserosa of proximal and distal colon of wild-type mice. Fibroblasts were also located in the same layers, but the morphology of the fibroblasts was distinguishable from that of ICC in wild type mice or of ICC-like cells in W/W(v) mutant mice. Collectively, it is concluded that c-Kit-negative interstitial cells showing a typical ICC ultrastructure exist in the proximal and distal colon of W/W(v) mutant mice.
Collapse
Affiliation(s)
- Hiromi Tamada
- Department of Functional Anatomy and Neuroscience, Nagoya University, Graduate School of Medicine, Aichi, Japan
| | | |
Collapse
|
26
|
Ju L, Sun JH, Lu G, Wu XL. Colonic migrating motor complex: Generation and propagation mechanism. Shijie Huaren Xiaohua Zazhi 2015; 23:4221-4226. [DOI: 10.11569/wcjd.v23.i26.4221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The colonic migrating motor complex (CMMC) is a critical neurally mediated, cyclical contractile and electrical event. CMMC is the primary motor pattern underlying fecal pellet propulsion along the murine colon. Abnormal CMMC has important implications in a number of gastrointestinal disorders, especially slow transit constipation. This review focuses on the mechanisms involved in producing and propagating the CMMC, which is likely dependent on mucosal and neuronal serotonin and pacemaker interstitial cells of Cajal networks and how peristaltic reflexes or occult reflexes affect them, and emphasizes the important role of intrinsic primary afferent neurons, ascending excitatory and descending inhibitory neural pathways. In addition to these, we also introduce some new tools to detect specific neuronal activity so as to offer some exciting insights into the role of 5-hydroxytryptamine in colonic motility.
Collapse
|
27
|
Worth AA, Forrest AS, Peri LE, Ward SM, Hennig GW, Sanders KM. Regulation of gastric electrical and mechanical activity by cholinesterases in mice. J Neurogastroenterol Motil 2015; 21:200-16. [PMID: 25843073 PMCID: PMC4398240 DOI: 10.5056/jnm14120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/15/2014] [Accepted: 11/18/2014] [Indexed: 12/03/2022] Open
Abstract
Background/Aims Gastric peristalsis begins in the orad corpus and propagates to the pylorus. Directionality of peristalsis depends upon orderly generation and propagation of electrical slow waves and a frequency gradient between proximal and distal pacemakers. We sought to understand how chronotropic agonists affect coupling between corpus and antrum. Methods Electrophysiological and imaging techniques were used to investigate regulation of gastric slow wave frequency by muscarinic agonists in mice. We also investigated the expression and role of cholinesterases in regulating slow wave frequency and motor patterns in the stomach. Results Both acetycholinesterase (Ache) and butyrylcholine esterase (Bche) are expressed in gastric muscles and AChE is localized to varicose processes of motor neurons. Inhibition of AChE in the absence of stimulation increased slow wave frequency in corpus and throughout muscle strips containing corpus and antrum. CCh caused depolarization and increased slow wave frequency. Stimulation of cholinergic neurons increased slow wave frequency but did not cause depolarization. Neostigmine (1 μM) increased slow wave frequency, but uncoupling between corpus and antrum was not detected. Motility mapping of contractile activity in gastric muscles showed similar effects of enteric nerve stimulation on the frequency and propagation of slow waves, but neostigmine (> 1 μM) caused aberrant contractile frequency and propagation and ectopic pacemaking. Conclusions Our data show that slow wave uncoupling is difficult to assess with electrical recording from a single or double sites and suggest that efficient metabolism of ACh released from motor neurons is an extremely important regulator of slow wave frequency and propagation and gastric motility patterns.
Collapse
Affiliation(s)
- Amy A Worth
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Lauren E Peri
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Grant W Hennig
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| |
Collapse
|
28
|
Li C, Nie SP, Zhu KX, Xiong T, Li C, Gong J, Xie MY. Effect ofLactobacillus plantarumNCU116 on loperamide-induced constipation in mice. Int J Food Sci Nutr 2015; 66:533-8. [DOI: 10.3109/09637486.2015.1024204] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev 2014; 94:859-907. [PMID: 24987007 DOI: 10.1152/physrev.00037.2013] [Citation(s) in RCA: 338] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα(+) cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα(+) cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
30
|
Blair PJ, Rhee PL, Sanders KM, Ward SM. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil 2014; 20:294-317. [PMID: 24948131 PMCID: PMC4102150 DOI: 10.5056/jnm14060] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 12/21/2022] Open
Abstract
Smooth muscle layers of the gastrointestinal tract consist of a heterogeneous population of cells that include enteric neurons, several classes of interstitial cells of mesenchymal origin, a variety of immune cells and smooth muscle cells (SMCs). Over the last number of years the complexity of the interactions between these cell types has begun to emerge. For example, interstitial cells, consisting of both interstitial cells of Cajal (ICC) and platelet-derived growth factor receptor alpha-positive (PDGFRα(+)) cells generate pacemaker activity throughout the gastrointestinal (GI) tract and also transduce enteric motor nerve signals and mechanosensitivity to adjacent SMCs. ICC and PDGFRα(+) cells are electrically coupled to SMCs possibly via gap junctions forming a multicellular functional syncytium termed the SIP syncytium. Cells that make up the SIP syncytium are highly specialized containing unique receptors, ion channels and intracellular signaling pathways that regulate the excitability of GI muscles. The unique role of these cells in coordinating GI motility is evident by the altered motility patterns in animal models where interstitial cell networks are disrupted. Although considerable advances have been made in recent years on our understanding of the roles of these cells within the SIP syncytium, the full physiological functions of these cells and the consequences of their disruption in GI muscles have not been clearly defined. This review gives a synopsis of the history of interstitial cell discovery and highlights recent advances in structural, molecular expression and functional roles of these cells in the GI tract.
Collapse
Affiliation(s)
- Peter J Blair
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| | - Poong-Lyul Rhee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| |
Collapse
|
31
|
Blair PJ, Rhee PL, Sanders KM, Ward SM. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil 2014. [PMID: 24948131 DOI: 10.5056/jnm140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Smooth muscle layers of the gastrointestinal tract consist of a heterogeneous population of cells that include enteric neurons, several classes of interstitial cells of mesenchymal origin, a variety of immune cells and smooth muscle cells (SMCs). Over the last number of years the complexity of the interactions between these cell types has begun to emerge. For example, interstitial cells, consisting of both interstitial cells of Cajal (ICC) and platelet-derived growth factor receptor alpha-positive (PDGFRα(+)) cells generate pacemaker activity throughout the gastrointestinal (GI) tract and also transduce enteric motor nerve signals and mechanosensitivity to adjacent SMCs. ICC and PDGFRα(+) cells are electrically coupled to SMCs possibly via gap junctions forming a multicellular functional syncytium termed the SIP syncytium. Cells that make up the SIP syncytium are highly specialized containing unique receptors, ion channels and intracellular signaling pathways that regulate the excitability of GI muscles. The unique role of these cells in coordinating GI motility is evident by the altered motility patterns in animal models where interstitial cell networks are disrupted. Although considerable advances have been made in recent years on our understanding of the roles of these cells within the SIP syncytium, the full physiological functions of these cells and the consequences of their disruption in GI muscles have not been clearly defined. This review gives a synopsis of the history of interstitial cell discovery and highlights recent advances in structural, molecular expression and functional roles of these cells in the GI tract.
Collapse
Affiliation(s)
- Peter J Blair
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Poong-Lyul Rhee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
32
|
Márquez S, Galotta JM, Gálvez GA, Portiansky E, Barbeito CG. Presence of c-kit positive cells in fetal and adult bovine forestomachs. Biotech Histochem 2014; 89:591-601. [DOI: 10.3109/10520295.2014.919023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
33
|
Huizinga JD, Chen JH. The myogenic and neurogenic components of the rhythmic segmentation motor patterns of the intestine. Front Neurosci 2014; 8:78. [PMID: 24782705 PMCID: PMC3989585 DOI: 10.3389/fnins.2014.00078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/28/2014] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jan D Huizinga
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University Hamilton, ON, Canada
| | - Ji-Hong Chen
- Key Laboratory of Hubei Province for Digestive System Diseases, Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan University Institute of Digestive and Liver Diseases Wuhan, China
| |
Collapse
|
34
|
Yang XJ, Xu JY, Shen ZJ, Zhao J. Immunohistochemical alterations of cajal-like type of tubal interstitial cells in women with endometriosis and tubal ectopic pregnancy. Arch Gynecol Obstet 2013; 288:1295-1300. [PMID: 23700252 DOI: 10.1007/s00404-013-2878-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE The aim of the study was to observe alterations of pacemaker cells termed cajal-like type of tubal interstitial cells (t-ICC) in oviduct from early-stage EMs and tEP, discuss underlying mechanisms and potential role in tubal factor infertility (TFI). METHODS Ten patients with early-stage EMs, 10 with unruptured tEP and 10 control subjects were included in this retrospective comparative study, received adnexectomy (salpingectomy) and/or hysterectomy. Paraffin-embedded full-thickness isthmic segment of oviduct specimens received immunohistochemistry with c-kit/CD117 antibody. Network distribution and area density of cells with features of t-ICC were analyzed. RESULTS t-ICC was detected mainly in lamina propria and smooth muscle layers. t-ICC lost its network integrity, became less densely stained, sparse and almost invisible with relatively very rare connections in EMs and tEP, apparently differing in morphology of t-ICC from control, which demonstrated rich t-ICC immunostaining and intact network. Further quantitative analysis showed the area density of t-ICC decreased significantly in early-stage EMs and tEP compared with the control (73.9 ± 8.8 vs. 156 ± 18.3 mm(2); and 76 ± 7.4 vs. 156 ± 18.3 mm(2); both P < 0.001). CONCLUSIONS We revealed that t-ICC underwent certain degree of cell damage, suggested that decreased expression of t-ICC network may be involved in early development of EMs and tEP, and might serve as an explanation for TFI in these patients.
Collapse
Affiliation(s)
- Xiao-Jun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou City, 215006, Jiangsu Province, People's Republic of China,
| | | | | | | |
Collapse
|
35
|
|
36
|
Gfroerer S, Rolle U. Interstitial cells of Cajal in the normal human gut and in Hirschsprung disease. Pediatr Surg Int 2013; 29:889-97. [PMID: 23917331 DOI: 10.1007/s00383-013-3364-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hirschsprung disease (HD) is the most prevalent congenital gastrointestinal motility disorder. The pathogenesis of HD is defined as a functional intestinal obstruction resulting from a defect in the intrinsic innervation of the distal bowel. In addition to the enteric nervous system, the interstitial cells of Cajal (ICC) play an important role in the generation of coordinated gastrointestinal peristalsis. The major function of the ICCs is the generation of slow waves that allow these cells to act as specialised pacemaker cells within various tissues. ICCs have additional functions in the gastrointestinal tract as regulators of mechanical activity and neurotransmission. Due to the central role of ICCs in gastrointestinal peristalsis, it has been suggested that defects or impairments of the ICCs may contribute to motility dysfunction in several gastrointestinal motility disorders. This review describes the distribution and functions of ICCs in the normal gut and in Hirschsprung disease.
Collapse
Affiliation(s)
- Stefan Gfroerer
- Department of Paediatric Surgery, University Hospital, Goethe University Frankfurt/M, 60596 Frankfurt/M, Germany,
| | | |
Collapse
|
37
|
Gao J, Du P, O'Grady G, Archer R, Farrugia G, Gibbons SJ, Cheng LK. Numerical metrics for automated quantification of interstitial cell of Cajal network structural properties. J R Soc Interface 2013; 10:20130421. [PMID: 23804441 DOI: 10.1098/rsif.2013.0421] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Depletion of interstitial cells of Cajal (ICC) networks is known to occur in several gastrointestinal motility disorders. Although confocal microscopy can effectively image and visualize the spatial distribution of ICC networks, current descriptors of ICC depletion are limited to cell numbers and volume computations. Spatial changes in ICC network structural properties have not been quantified. Given that ICC generate electrical signals, the organization of a network may also affect physiology. In this study, six numerical metrics were formulated to automatically determine complex ICC network structural properties from confocal images: density, thickness, hole size, contact ratio, connectivity and anisotropy. These metrics were validated and applied in proof-of-concept studies to quantitatively determine jejunal ICC network changes in mouse models with decreased (5-HT2B receptor knockout (KO)) and normal (Ano1 KO) ICC numbers, and during post-natal network maturation. Results revealed a novel remodelling phenomenon occurring during ICC depletion, namely a spatial rearrangement of ICC and the preferential longitudinal alignment. In the post-natal networks, an apparent pruning of the ICC network was demonstrated. The metrics developed here enabled the first detailed quantitative analyses of structural changes that may occur in ICC networks during depletion and development.
Collapse
Affiliation(s)
- Jerry Gao
- Auckland Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
TCs (telocytes) are actually defined as stromal cells with specific long and thin prolongations, called Tp (telopodes). They have been positively identified in various tissues and we now report their presence in the esophagus. These cells were identified by TEM (transmission electron microscopy) in esophageal samples of Wistar rats (n = 5) occurring beneath the basal epithelial layer, in submucosa, closely related to smooth and striated muscular fibres, as also in the adventitia. They are closely related to mast cells, macrophages and microvessels. Hybrid morphologies of stromal cells processes were found: cytoplasmic processes continued distally in a telopodial fashion. Telopodes alone may not be sufficient, however, for a safe diagnosis of TCs in TEM. A larger set of specific standards (such as the telopodial emergence, and the size of the cell body and telopodes) should be considered to differentiate TCs from various species of fibroblasts. The morphological and ultrastructural features should distinguish between TCs and interstitial cells of Cajal in the digestive tract.
Collapse
|
39
|
Shi LL, Liu MD, Chen M, Zou XP. Involvement of interstitial cells of Cajal in experimental severe acute pancreatitis in rats. World J Gastroenterol 2013; 19:2179-2186. [PMID: 23599644 PMCID: PMC3627882 DOI: 10.3748/wjg.v19.i14.2179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/11/2012] [Accepted: 02/06/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the changes in interstitial cells of Cajal (ICC) in rats with experimental severe acute pancreatitis (SAP).
METHODS: A total of twenty-four SD rats were randomly divided into two groups (n = 12), namely the sham (S) group and the SAP group; the SAP rat model was established by retrograde injection of 5% sodium taurocholate (1.0 mL/kg) into the pancreatic duct. Twenty-four hours later intestinal motility was assessed by testing small intestinal propulsion rate, and then the rats were sacrificed. The pancreas and jejunum were resected and underwent routine pathologic examination. Immunohistochemical staining was used to detect c-kit-positive cells in the jejunum. Expression of c-kit mRNA was detected by real-time polymerase chain reaction, and the expression of c-kit protein was evaluated by Western blotting. Ultrastructure of ICC was evaluated by transmission electron microscopy.
RESULTS: There was bleeding, necrosis and a large amount of inflammatory cell infiltration in pancreatic tissue in the SAP group, while in jejunal tissue we observed a markedly denuded mucosal layer, loss of villous tissue and a slightly dilated muscular layer. The small intestinal propulsion rate was 68.66% ± 2.66% in the S group and 41.55% ± 3.85% in the SAP group. Compared with the S group, the rate of the SAP group decreased sharply. The density of c-kit-positive cells in the SAP group was significantly lower than in the S group; the respective mean densities were 88.47 ± 10.49 in the S group and 56.11 ± 7.09 in the SAP group. The levels of c-kit protein and mRNA were 0.36 ± 0.04 and 1.29 ± 0.91 in the SAP group, respectively, which were significantly lower than those in the S group (0.53 ± 0.06, 0.64 ± 0.33, respectively). In the SAP group, ICC profiles showed the same change tendency, such as vacuolation of mitochondria, irregular vacuoles and loosened desmosome-like junctions.
CONCLUSION: Decreased c-kit-positive cells and ultrastructural changes in ICC resulting from blockade of the c-kit signaling pathway are involved in the intestinal dysmotility associated with SAP.
Collapse
|
40
|
Hotta R, Stamp LA, Foong JPP, McConnell SN, Bergner AJ, Anderson RB, Enomoto H, Newgreen DF, Obermayr F, Furness JB, Young HM. Transplanted progenitors generate functional enteric neurons in the postnatal colon. J Clin Invest 2013; 123:1182-91. [PMID: 23454768 DOI: 10.1172/jci65963] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/11/2012] [Indexed: 01/11/2023] Open
Abstract
Cell therapy has the potential to treat gastrointestinal motility disorders caused by diseases of the enteric nervous system. Many studies have demonstrated that various stem/progenitor cells can give rise to functional neurons in the embryonic gut; however, it is not yet known whether transplanted neural progenitor cells can migrate, proliferate, and generate functional neurons in the postnatal bowel in vivo. We transplanted neurospheres generated from fetal and postnatal intestinal neural crest-derived cells into the colon of postnatal mice. The neurosphere-derived cells migrated, proliferated, and generated neurons and glial cells that formed ganglion-like clusters within the recipient colon. Graft-derived neurons exhibited morphological, neurochemical, and electrophysiological characteristics similar to those of enteric neurons; they received synaptic inputs; and their neurites projected to muscle layers and the enteric ganglia of the recipient mice. These findings show that transplanted enteric neural progenitor cells can generate functional enteric neurons in the postnatal bowel and advances the notion that cell therapy is a promising strategy for enteric neuropathies.
Collapse
Affiliation(s)
- Ryo Hotta
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rich A, Gordon S, Brown C, Gibbons SJ, Schaefer K, Hennig G, Farrugia G. Kit signaling is required for development of coordinated motility patterns in zebrafish gastrointestinal tract. Zebrafish 2013; 10:154-60. [PMID: 23297728 DOI: 10.1089/zeb.2012.0766] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Interstitial cells of Cajal (ICC) provide a pacemaker signal for coordinated motility patterns in the mammalian gastrointestinal (GI) tract. Kit signaling is required for development and maintenance of ICC, and these cells can be identified by Kit-like immunoreactivity. The zebrafish GI tract has two distinct ICC networks similar to mammals, suggesting a similar role in the generation of GI motility; however, a functional role for Kit-positive cells in zebrafish has not been determined. Analysis of GI motility in intact zebrafish larvae was performed during development and after disruption of Kit signaling. Development of coordinated motility patterns occurred after 5 days post-fertilization (dpf) and correlated with appearance of Kit-positive cells. Disruptions of Kit signaling using the Kit antagonist imatinib mesylate, and in Sparse, a null kita mutant, also disrupted development of coordinated motility patterns. These data suggest that Kit signaling is necessary for development of coordinated motility patterns and that Kit-positive cells in zebrafish are necessary for coordinated motility patterns.
Collapse
Affiliation(s)
- Adam Rich
- Department of Biology, The College at Brockport, State University of New York , Brockport, NY 14420, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Sanders KM, Koh SD, Ro S, Ward SM. Regulation of gastrointestinal motility--insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 2012; 9:633-45. [PMID: 22965426 PMCID: PMC4793911 DOI: 10.1038/nrgastro.2012.168] [Citation(s) in RCA: 283] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal motility results from coordinated contractions of the tunica muscularis, the muscular layers of the alimentary canal. Throughout most of the gastrointestinal tract, smooth muscles are organized into two layers of circularly or longitudinally oriented muscle bundles. Smooth muscle cells form electrical and mechanical junctions between cells that facilitate coordination of contractions. Excitation-contraction coupling occurs by Ca(2+) entry via ion channels in the plasma membrane, leading to a rise in intracellular Ca(2+). Ca(2+) binding to calmodulin activates myosin light chain kinase; subsequent phosphorylation of myosin initiates cross-bridge cycling. Myosin phosphatase dephosphorylates myosin to relax muscles, and a process known as Ca(2+) sensitization regulates the activity of the phosphatase. Gastrointestinal smooth muscles are 'autonomous' and generate spontaneous electrical activity (slow waves) that does not depend upon input from nerves. Intrinsic pacemaker activity comes from interstitial cells of Cajal, which are electrically coupled to smooth muscle cells. Patterns of contractile activity in gastrointestinal muscles are determined by inputs from enteric motor neurons that innervate smooth muscle cells and interstitial cells. Here we provide an overview of the cells and mechanisms that generate smooth muscle contractile behaviour and gastrointestinal motility.
Collapse
|
43
|
Yang P, Yu Z, Gandahi JA, Bian X, Wu L, Liu Y, Zhang L, Zhang Q, Chen Q. The identification of c-Kit-positive cells in the intestine of chicken. Poult Sci 2012; 91:2264-9. [PMID: 22912461 DOI: 10.3382/ps.2011-02076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ultrastructure of the interstitial cells of Cajal (ICC) has been examined in birds, but the distribution of these cells remains obscure because a suitable marker is lacking. In the present study, the identification and expression of c-Kit-positive cells in the chicken intestine were demonstrated by means of in situ hybridization histochemistry and the expression of the c-Kit gene by real-time quantitative PCR. Two types of cells stained positive for c-Kit mRNA. The first group consisted of spindle-shaped or bipolar cells identified as ICC. The ICC were found at a variety of locations: at the level of the myenteric plexus between the circular and longitudinal muscle and intermingled with smooth muscle cells within muscle bundles in the circular and longitudinal muscle layers. The ICC were also identified along the submucosal layer. The second group was composed of round-shaped cells, which resembled mast cells. Mast cells were mainly found in the lamina propria region as well as in the submucosal layer. The expression of the c-Kit gene by real-time quantitative PCR revealed the expression of c-Kit mRNA throughout the lamina muscularis and mucosa of the intestine; however, the quantitation was variable in different regions. This study reveals conclusively for the first time the distribution of ICC, quantifies the expression of c-Kit mRNA in the intestine of adult chicken, and also compares the c-Kit-positive cell types morphologically.
Collapse
Affiliation(s)
- P Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 210095 Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Blair PJ, Bayguinov Y, Sanders KM, Ward SM. Interstitial cells in the primate gastrointestinal tract. Cell Tissue Res 2012; 350:199-213. [PMID: 22864981 DOI: 10.1007/s00441-012-1468-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/20/2012] [Indexed: 02/06/2023]
Abstract
Kit immunohistochemistry and confocal reconstructions have provided detailed 3-dimensional images of ICC networks throughout the gastrointestinal (GI) tract. Morphological criteria have been used to establish that different classes of ICC exist within the GI tract and physiological studies have shown that these classes have distinct physiological roles in GI motility. Structural studies have focused predominately on rodent models and less information is available on whether similar classes of ICC exist within the GI tracts of humans or non-human primates. Using Kit immunohistochemistry and confocal imaging, we examined the 3-dimensional structure of ICC throughout the GI tract of cynomolgus monkeys. Whole or flat mounts and cryostat sections were used to examine ICC networks in the lower esophageal sphincter (LES), stomach, small intestine and colon. Anti-histamine antibodies were used to distinguish ICC from mast cells in the lamina propria. Kit labeling identified complex networks of ICC populations throughout the non-human primate GI tract that have structural characteristics similar to that described for ICC populations in rodent models. ICC-MY formed anastomosing networks in the myenteric plexus region. ICC-IM were interposed between smooth muscle cells in the stomach and colon and were concentrated within the deep muscular plexus (ICC-DMP) of the intestine. ICC-SEP were found in septal regions of the antrum that separated circular muscle bundles. Spindle-shaped histamine(+) mast cells were found in the lamina propria throughout the GI tract. Since similar sub-populations of ICC exist within the GI tract of primates and rodents and the use of rodents to study the functional roles of different classes of ICC is warranted.
Collapse
Affiliation(s)
- Peter J Blair
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | | | | | | |
Collapse
|
45
|
Yang XJ, Wei W, Zhao J, Zheng FY. Inhibitory effects of methotrexate on spontaneous motility and Cajal-like type of tubal interstitial cells in rabbit oviduct. Fertil Steril 2012; 98:215-21. [PMID: 22608313 DOI: 10.1016/j.fertnstert.2012.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/29/2012] [Accepted: 04/09/2012] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To study the adverse biomechanical effects of methotrexate (MTX) on spontaneous tubal motility and on a widely distributed Cajal-like type of tubal interstitial cells (t-ICC) in rabbits. In our previous study, MTX was confirmed to cause acute endosalpingitis, and ultrastructural and steroid receptor damage in rat's endosalpinx in a dose-dependent manner. DESIGN Differences in spontaneous tubal contractions and cellular distribution of t-ICC in isthmus were evaluated in response to MTX. SETTING Medical school research laboratory. ANIMAL(S) Twenty nonpregnant female New Zealand albino rabbits in estrus stage were divided equally into four groups. INTERVENTION(S) Rabbits received IM MTX (1, 5, 10 mg/kg body weight) and controls received physiological saline. MAIN OUTCOME MEASURE(S) On day 7, in vitro motility studies measuring spontaneous tubal contractions were performed, and cellular distribution of t-ICC was determined by immunohistochemistry. RESULT(S) Methotrexate produced a concentration-dependent inhibition of spontaneous isthmus contractions (frequency in 5, 10 mg/kg groups, and amplitude in 1, 5, 10 mg/kg MTX groups). It decreased significantly compared with the control group. Meanwhile, MTX at 5, 10 mg/kg decreased the population of c-kit immunoreactive t-ICC significantly. CONCLUSION(S) The decreased t-ICC may contribute to the diminished tubal smooth muscle contractility caused by MTX as observed. Tubal interstitial cells might be new potential targets for a variety of dysfunctional tubal motility diseases.
Collapse
Affiliation(s)
- Xiao-Jun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China.
| | | | | | | |
Collapse
|
46
|
Liu YA, Chung YC, Pan ST, Hou YC, Peng SJ, Pasricha PJ, Tang SC. 3-D illustration of network orientations of interstitial cells of Cajal subgroups in human colon as revealed by deep-tissue imaging with optical clearing. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1099-110. [PMID: 22421617 PMCID: PMC3362097 DOI: 10.1152/ajpgi.00432.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Morphological changes of interstitial cells of Cajal (ICC) have been proposed to characterize motility disorders. However, a global view of the network orientations of ICC subgroups has not been established to illustrate their three-dimensional (3-D) architectures in the human colon. In this research, we integrate c-kit immunostaining, 3-D microscopy with optical clearing, and image rendering to present the location-dependent network orientations with high definition. Full-depth colonic tissues were obtained from colectomies performed for nonobstructing carcinoma. Specimens of colon wall were prepared away from the tumor site. C-kit and nuclear fluorescent staining were used to identify the ICC processes and cell body. Optical clearing was used to generate transparent colon specimens, which led to panoramic visualization of the fluorescence-labeled ICC networks at the myenteric plexus (ICC-MY), longitudinal (ICC-LM) and circular (ICC-CM) muscles, and submucosal boundary (ICC-SM) up to 300 μm in depth via confocal microscopy with subcellular level resolution. We observed four distinct network patterns: 1) periganglionic ICC-MY that connect with ICC-LM and ICC-CM, 2) plexuses of ICC-LM within the longitudinal muscle and extending toward the serosa, 3) repetitive and organized ICC-CM layers running parallel to the circular muscle axis and extending toward the submucosa, and 4) a condensed ICC-SM layer lining the submucosal border. Among the four patterns, the orderly aligned ICC-CM layers provide an appropriate target for quantitation. Our results demonstrate the location-dependent network orientations of ICC subgroups and suggest a practical approach for in-depth imaging and quantitative analysis of ICC in the human colon specimen.
Collapse
Affiliation(s)
- Yuan-An Liu
- 1Department of Chemical Engineering, National Tsing Hua University;
| | - Yuan-Chiang Chung
- 2Division of Colorectal Surgery, National Taiwan University Hospital–Hsinchu Branch;
| | - Shien-Tung Pan
- 3Department of Pathology, National Taiwan University Hospital–Hsinchu Branch; and
| | - Yung-Chi Hou
- 2Division of Colorectal Surgery, National Taiwan University Hospital–Hsinchu Branch;
| | - Shih-Jung Peng
- 1Department of Chemical Engineering, National Tsing Hua University; ,4Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan; and
| | - Pankaj J. Pasricha
- 5Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Shiue-Cheng Tang
- 1Department of Chemical Engineering, National Tsing Hua University; ,4Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan; and
| |
Collapse
|
47
|
He X, Yang WC, Wen XY, Tang D, Xiao L, Han J, Yu B, Zhang W, Mei F. Late embryonic and postnatal development of interstitial cells of cajal in mouse esophagus: distribution, proliferation and kit dependence. Cells Tissues Organs 2012; 196:175-88. [PMID: 22269660 DOI: 10.1159/000332381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2011] [Indexed: 12/13/2022] Open
Abstract
This paper investigates alterations in interstitial cells of Cajal (ICC) in the esophagus of mice from embryonic day 13.5 (E13.5) to 36 days postpartum (P0-P36) using immunohistochemistry. At E13.5, Kit+ cells presented in clusters and differentiated into spindle-like cells with biopolar processes within the outer (longitudinal) and inner (circular) muscle layers at E17.5. These Kit+ ICC with long processes were also Ano1+ and prominent at birth. The density of ICC gradually decreased, and at P36 it became about one twentieth of that at birth. Kit ligand (stem cell factor) expression is lower in striated muscle cells than that in smooth muscle cells. The ICC number was higher in the distal (close to the cardia) than in the proximal esophagus (close to the pharynx). Some Kit+/Ki67+ and Kit+/bromodeoxyuridine+ cells were observed within the muscle layers, and proliferation persisted from birth through adulthood (P28) with a gradually decreasing cell number. At 24 h, Kit+ ICC were dramatically decreased and almost missing 48 h after administration of imatinib (a Kit inhibitor). Our results indicate that ICC proliferation is age dependent and persists throughout the postnatal period. There is a dramatic decrease in the ICC number from P0 to adult life. The Kit signal is essential for the postnatal development of ICC in the esophagus.
Collapse
Affiliation(s)
- Xiao He
- Department of Histology and Embryology, and Development Biology, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Shigemasa Y, Kito Y, Hashitani H, Suzuki H. Factors which determine the duration of follower potentials in longitudinal smooth muscle isolated from the guinea-pig stomach antrum. J Smooth Muscle Res 2011; 47:89-110. [PMID: 21979408 DOI: 10.1540/jsmr.47.89] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In isolated longitudinal muscle tissues of the guinea-pig stomach antrum, recording electrical responses from smooth muscle cells revealed a periodical generation of follower potentials with variable durations. The I-D relationship, made by plotting the duration as a function of the interval before generating follower potential, was linear. Experiments were carried out to investigate the effects of chemicals which had been known to modulate the release of Ca(2+) from the internal stores (2-aminoethoxy-diphenyl-borate, cyclopiazonic acid, caffeine), inhibit mitochondrial metabolic activity (m-chlorophenyl hydrazone, 2-deoxy-D-glucose, potassium cyanide, rotenone), inhibit ATP-sensitive K-channels distributed in mitochondria (glibenclamide, 5-hydroxydecanoic acid) and inhibit the activity of proteinkinase C (chelerythrine), on the I-D relationship of follower potentials. The effects of depolarization on follower potentials were assessed by stimulating tissues with high potassium solution. Experiments were carried out mainly in the presence of nifedipine which minimized the movements of muscles with no modulation of follower potentials. Cycropiazonic acid and caffeine reduced the slope of I-D relationship, with associated reduction of the duration and frequency of follower potentials. 2-Aminoethoxydiphenyl borate reduced the duration and amplitude and increased the frequency of follower potentials, with depolarization of the membrane, and the effects were simulated by high potassium solution. m-Chlorophenyl hydrazone, potassium cyanide, 2-deoxy-D-glucose, rotenone, 5-hydroxydecanoic acid and glibenclamide reduced the slope of I-D relationship, with associated reduction of the frequency of follower potentials. Chelerythrine did not modulate the slope of I-D relationship, with reduced frequency of follower potentials. It seemed likely that the amount of Ca(2+) released from the internal stores and also mitochondrial function had causal relationship to the duration of pacemaker potentials, suggesting that internal Ca-stores and mitochondria are taking the central role for determining the duration of the pacemaker activity. Proteinkinase C did not seem to participate to the function of mitochondria and internal Ca(2+) stores.
Collapse
Affiliation(s)
- Yuhsuke Shigemasa
- Department of Cell Physiology, Nagoya City University Medical School, Mizuho-ku, Nagoya, Japan
| | | | | | | |
Collapse
|
49
|
Identification and functional response of interstitial Cajal-like cells from rat mesenteric artery. Cell Tissue Res 2011; 343:509-19. [PMID: 21243375 DOI: 10.1007/s00441-010-1114-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 12/02/2010] [Indexed: 01/06/2023]
Abstract
Cells with irregular shapes, numerous long thin filaments, and morphological similarities to the gastrointestinal interstitial cells of Cajal (ICCs) have been observed in the wall of some blood vessels. These ICC-like cells (ICC-LCs) do not correspond to the other cell types present in the arterial wall: smooth muscle cells (SMCs), endothelial cells, fibroblasts, inflammatory cells, or pericytes. However, no clear physiological role has as yet been determined for ICC-LCs in the vascular wall. The aim of this study has been to identify and characterize the functional response of ICC-LCs in rat mesenteric arteries. We have observed ICC-LCs and identified them morphologically and histologically in three different environments: isolated artery, freshly dispersed cells, and primary-cultured cells from the arterial wall. Like ICCs but unlike SMCs, ICC-LCs are positively stained by methylene blue. Cells morphologically resembling methylene-blue-positive cells are also positive for the ICC and ICC-LC markers α-smooth muscle actin and desmin. Furthermore, the higher expression of vimentin in ICC-LCs compared with SMCs allows a clear discrimination between these two cell types. At the functional level, the differences observed in the variations of cytosolic free calcium concentration of freshly dispersed SMCs and ICC-LCs in response to a panel of vasoactive molecules show that ICC-LCs, unlike SMCs, do not respond to exogenous ATP and [Arginine](8)-vasopressin.
Collapse
|
50
|
Yun HY, Sung R, Kim YC, Choi W, Kim HS, Kim H, Lee GJ, You RY, Park SM, Yun SJ, Kim MJ, Kim WS, Song YJ, Xu WX, Lee SJ. Regional Distribution of Interstitial Cells of Cajal (ICC) in Human Stomach. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:317-24. [PMID: 21165331 DOI: 10.4196/kjpp.2010.14.5.317] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 09/24/2010] [Accepted: 09/28/2010] [Indexed: 12/22/2022]
Abstract
We elucidated the distribution of interstitial cells of Cajal (ICC) in human stomach, using cryosection and c-Kit immunohistochemistry to identify c-Kit positive ICC. Before c-Kit staining, we routinely used hematoxylin and eosin (HE) staining to identify every structure of human stomach, from mucosa to longitudinal muscle. HE staining revealed that the fundus greater curvature (GC) had prominent oblique muscle layer, and c-Kit immunostaining c-Kit positive ICC cells were found to have typical morphology of dense fusiform cell body with multiple processes protruding from the central cell body. In particular, we could observe dense processes and ramifications of ICC in myenteric area and longitudinal muscle layer of corpus GC. Interestingly, c-Kit positive ICC-like cells which had morphology very similar to ICC were found in gastric mucosa. We could not find any significant difference in the distribution of ICC between fundus and corpus, except for submucosa where the density of ICC was much higher in gastric fundus than corpus. Furthermore, there was no significant difference in the density of ICC between each area of fundus and corpus, except for muscularis mucosa. Finally, we also found similar distribution of ICC in normal and cancerous tissue obtained from a patient who underwent pancreotomy and gastrectomy. In conclusion, ICC was found ubiquitously in human stomach and the density of ICC was significantly lower in the muscularis mucosa of both fundus/corpus and higher in the submucosa of gastric fundus than corpus.
Collapse
Affiliation(s)
- Hyo-Yung Yun
- Department of Surgery, College of Medicine, Chungbuk National University, Cheongju 361-763, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|