1
|
Velikaneye BA, Kozak GM. Timing-dependent effects of elevated temperature on reproductive traits in the European corn borer moth. J Evol Biol 2024; 37:1076-1090. [PMID: 39037024 DOI: 10.1093/jeb/voae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Elevated temperature often has life stage-specific effects on ectotherms because thermal tolerance varies throughout ontogeny. Impacts of elevated temperature may extend beyond the exposed life stage if developmental plasticity causes early exposure to carry-over or if exposure at multiple life stages cumulatively produces effects. Reproductive traits may be sensitive to different thermal environments experienced during development, but such effects have not been comprehensively measured in Lepidoptera. In this study, we investigate how elevated temperature at different life stages alters reproduction in the European corn borer moth, Ostrinia nubilalis. We tested effects of exposure to elevated temperature (28 °C) separately or additively during larval, pupal, and adult life stages compared to control temperatures (23 °C). We found that exposure to elevated pupal and adult temperature decreased the number of egg clusters produced, but exposure limited to a single stage did not significantly impact reproductive output. Furthermore, elevated temperature during the pupal stage led to a faster transition to the adult stage and elevated larval temperature altered synchrony of adult eclosion, either by itself or combined with pupal temperature exposure. These results suggest that exposure to elevated temperature during development alters reproduction in corn borers in multiple ways, including through carry-over and additive effects. Additive effects of temperature across life stages are thought to be less common than stage-specific or carry-over effects, but our results suggest thermal environments experienced at all life stages need to be considered when predicting reproductive responses of insects to heatwaves.
Collapse
Affiliation(s)
- Brittany A Velikaneye
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| | - Genevieve M Kozak
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| |
Collapse
|
2
|
Ashe‐Jepson E, Hayes MP, Hitchcock GE, Wingader K, Turner EC, Bladon AJ. Day-flying lepidoptera larvae have a poorer ability to thermoregulate than adults. Ecol Evol 2023; 13:e10623. [PMID: 37854314 PMCID: PMC10580006 DOI: 10.1002/ece3.10623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
Changes to ambient temperatures under climate change may detrimentally impact small ectotherms that rely on their environment for thermoregulation; however, there is currently a limited understanding of insect larval thermoregulation. As holometabolous insects, Lepidoptera differ in morphology, ecology and behaviour across the life cycle, and so it is likely that adults and larvae differ in their capacity to thermoregulate. In this study, we investigated the thermoregulatory capacity (buffering ability) of 14 species of day-flying Lepidoptera, whether this is influenced by body length or gregariousness, and whether it differs between adult and larval life stages. We also investigated what thermoregulation mechanisms are used: microclimate selection (choosing locations with a particular temperature) or behavioural thermoregulation (controlling temperature through other means, such as basking). We found that Lepidoptera larvae differ in their buffering ability between species and body lengths, but gregariousness did not influence buffering ability. Larvae are worse at buffering themselves against changes in air temperature than adults. Therefore Lepidoptera may be more vulnerable to adverse temperature conditions during their larval life stage. Adults and larvae rely on different thermoregulatory mechanisms; adults primarily use behavioural thermoregulation, whereas larvae use microclimate selection. This implies that larvae are highly dependent on the area around their foodplant for effective thermoregulation. These findings have implications for the management of land and species, for example, highlighting the importance of creating and preserving microclimates and vegetation complexity surrounding Lepidoptera foodplants for larval thermoregulation under future climate change.
Collapse
Affiliation(s)
| | | | - Gwen E. Hitchcock
- The Wildlife Trust for Bedfordshire, Cambridgeshire and NorthamptonshireCambridgeUK
| | | | | | | |
Collapse
|
3
|
Yoshida A, Yabu S, Otaki JM. The Plastic Larval Body Color of the Pale Grass Blue Butterfly Zizeeria maha (Lepidoptera: Lycaenidae) in Response to the Host Plant Color: The Maternal Effect on Crypsis. INSECTS 2023; 14:insects14020202. [PMID: 36835771 PMCID: PMC9966816 DOI: 10.3390/insects14020202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 06/01/2023]
Abstract
Many lepidopteran larvae show body color polyphenism, and their colors may be cryptic on the host plant leaves. To elucidate the effect of the host plant color on the plastic larval body color, we focused on the lycaenid butterfly Zizeeria maha, which shows various larval body colors ranging from green to red, even within a sibling group. We showed that oviposition was normally performed on both green and red leaves, despite a green preference and the fact that the larvae grew equally by consuming either green or red leaves. The number of red larvae decreased from the second instar stage to the fourth instar stage, demonstrating a stage-dependent variation. When the larvae were fed either green or red leaves across multiple generations of the lineages, the red larvae were significantly more abundant in the red leaf lineage than in the green leaf lineage. Moreover, the red-fed siblings showed a significantly higher red larval frequency than the green-fed siblings in the red-leaf lineage but not in the green-leaf lineage. These results suggest that, in this butterfly species, the plastic larval body color for crypsis may be affected not only by the color of the leaves that the larvae consume (single-generation effect) but also by the color of the leaves that their mothers consume (maternal effect), in addition to a stage-dependent color variation.
Collapse
|
4
|
Nielsen ME, Papaj DR. Why study plasticity in multiple traits? New hypotheses for how phenotypically plastic traits interact during development and selection. Evolution 2022; 76:858-869. [PMID: 35274745 PMCID: PMC9313899 DOI: 10.1111/evo.14464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/12/2021] [Accepted: 12/29/2021] [Indexed: 01/21/2023]
Abstract
Organisms can often respond adaptively to a change in their environment through phenotypic plasticity in multiple traits, a phenomenon termed as multivariate plasticity. These different plastic responses could interact and affect each other's development as well as selection on each other, but the causes and consequences of these interactions have received relatively little attention. Here, we propose a new conceptual framework for understanding how different plastic responses can affect each other's development and why organisms should have multiple plastic responses. A plastic change in one trait could alter the phenotype of a second plastic trait by changing either the cue received by the organism (cue-mediated effect) or the response to that cue (response-mediated effect). Multivariate plasticity could benefit the organism either because the plastic responses work better when expressed together (synergy) or because each response is more effective under different environmental circumstances (complementarity). We illustrate these hypotheses with case studies, focusing on interactions between behavior and morphology, plastic traits that differ in their reversibility. Future empirical and theoretical research should investigate the consequences of these interactions for additional factors important for the evolution of plasticity, such as the limits and costs of plasticity.
Collapse
Affiliation(s)
- Matthew E. Nielsen
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizona85721,Zoology DepartmentStockholm UniversityStockholm11419Sweden
| | - Daniel R. Papaj
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizona85721
| |
Collapse
|
5
|
Hill GM, Kawahara AY, Daniels JC, Bateman CC, Scheffers BR. Climate change effects on animal ecology: butterflies and moths as a case study. Biol Rev Camb Philos Soc 2021; 96:2113-2126. [PMID: 34056827 PMCID: PMC8518917 DOI: 10.1111/brv.12746] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/10/2023]
Abstract
Butterflies and moths (Lepidoptera) are one of the most studied, diverse, and widespread animal groups, making them an ideal model for climate change research. They are a particularly informative model for studying the effects of climate change on species ecology because they are ectotherms that thermoregulate with a suite of physiological, behavioural, and phenotypic traits. While some species have been negatively impacted by climatic disturbances, others have prospered, largely in accordance with their diversity in life-history traits. Here we take advantage of a large repertoire of studies on butterflies and moths to provide a review of the many ways in which climate change is impacting insects, animals, and ecosystems. By studying these climate-based impacts on ecological processes of Lepidoptera, we propose appropriate strategies for species conservation and habitat management broadly across animals.
Collapse
Affiliation(s)
- Geena M. Hill
- Florida Natural Areas InventoryFlorida State University1018 Thomasville Rd., #200‐CTallahasseeFL323303U.S.A.
| | - Akito Y. Kawahara
- Florida Museum of Natural HistoryUniversity of Florida3215 Hull RdGainesvilleFL32611U.S.A.
- Department of BiologyUniversity of Florida876 Newell Dr.GainesvilleFL32611U.S.A.
| | - Jaret C. Daniels
- Florida Museum of Natural HistoryUniversity of Florida3215 Hull RdGainesvilleFL32611U.S.A.
- Department of Entomology and NematologyUniversity of Florida1881 Natural Area Dr.GainesvilleFL32608U.S.A.
| | - Craig C. Bateman
- Florida Museum of Natural HistoryUniversity of Florida3215 Hull RdGainesvilleFL32611U.S.A.
| | - Brett R. Scheffers
- Department of Wildlife Ecology and ConservationUniversity of Florida110 Newins‐Ziegler Hall, P.O. Box 110430GainesvilleFL32611U.S.A.
| |
Collapse
|
6
|
van der Burg KR, Reed RD. Seasonal plasticity: how do butterfly wing pattern traits evolve environmental responsiveness? Curr Opin Genet Dev 2021; 69:82-87. [PMID: 33740694 DOI: 10.1016/j.gde.2021.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 01/28/2023]
Abstract
Phenotypic plasticity in response to environmental cues is common in butterflies, and is a major driver of butterfly wing pattern diversity. The endocrine signal ecdysone has been revealed as a major modulator of plasticity in butterflies. External cues such as day length or temperature are translated internally into variation in ecdysone titers, which in turn lead to alternate phenotypes such as seasonal wing patterns. Here we review the evidence showing that ecdysone-mediated plasticity of different wing pattern features such as wing color and eyespot size can evolve independently. Recent studies show that ecdysone regulates gene expression in Drosophila melanogaster via a chromatin remodeling mechanism. We thus propose that environmentally responsive ecdysone titers in butterflies may also function via chromatin regulation to promote different seasonal phenotypes. We present a model of ecdysone response evolution that integrates both gene regulatory architecture and organismal development, and propose a set of testable mechanistic hypotheses for how plastic response profiles of specific genes can evolve.
Collapse
Affiliation(s)
- Karin Rl van der Burg
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States.
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
7
|
Nay TJ, Longbottom RJ, Gervais CR, Johansen JL, Steffensen JF, Rummer JL, Hoey AS. Regulate or tolerate: Thermal strategy of a coral reef flat resident, the epaulette shark, Hemiscyllium ocellatum. JOURNAL OF FISH BIOLOGY 2021; 98:723-732. [PMID: 33206373 DOI: 10.1111/jfb.14616] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/23/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Highly variable thermal environments, such as coral reef flats, are challenging for marine ectotherms and are thought to invoke the use of behavioural strategies to avoid extreme temperatures and seek out thermal environments close to their preferred temperatures. Common to coral reef flats, the epaulette shark (Hemiscyllium ocellatum) possesses physiological adaptations to hypoxic and hypercapnic conditions, such as those experienced on reef flats, but little is known regarding the thermal strategies used by these sharks. We investigated whether H. ocellatum uses behavioural thermoregulation (i.e., movement to occupy thermally favourable microhabitats) or tolerates the broad range of temperatures experienced on the reef flat. Using an automated shuttlebox system, we determined the preferred temperature of H. ocellatum under controlled laboratory conditions and then compared this preferred temperature to 6 months of in situ environmental and body temperatures of individual H. ocellatum across the Heron Island reef flat. The preferred temperature of H. ocellatum under controlled conditions was 20.7 ± 1.5°C, but the body temperatures of individual H. ocellatum on the Heron Island reef flat mirrored environmental temperatures regardless of season or month. Despite substantial temporal variation in temperature on the Heron Island reef flat (15-34°C during 2017), there was a lack of spatial variation in temperature across the reef flat between sites or microhabitats. This limited spatial variation in temperature creates a low-quality thermal habitat limiting the ability of H. ocellatum to behaviourally thermoregulate. Behavioural thermoregulation is assumed in many shark species, but it appears that H. ocellatum may utilize other physiological strategies to cope with extreme temperature fluctuations on coral reef flats. While H. ocellatum appears to be able to tolerate acute exposure to temperatures well outside of their preferred temperature, it is unclear how this, and other, species will cope as temperatures continue to rise and approach their critical thermal limits. Understanding how species will respond to continued warming and the strategies they may use will be key to predicting future populations and assemblages.
Collapse
Affiliation(s)
- Tiffany J Nay
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Rohan J Longbottom
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Connor R Gervais
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jacob L Johansen
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii, USA
| | - John F Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Andrew S Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
8
|
Nielsen ME, Mappes J. Out in the open: behavior's effect on predation risk and thermoregulation by aposematic caterpillars. Behav Ecol 2020; 31:1031-1039. [PMID: 32760178 PMCID: PMC7390994 DOI: 10.1093/beheco/araa048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/31/2020] [Accepted: 05/06/2020] [Indexed: 11/14/2022] Open
Abstract
Warning coloration should be under strong stabilizing selection but often displays considerable intraspecific variation. Opposing selection on color by predators and temperature is one potential explanation for this seeming paradox. Despite the importance of behavior for both predator avoidance and thermoregulation, its role in mediating selection by predators and temperature on warning coloration has received little attention. Wood tiger moth caterpillars, Arctia plantaginis, have aposematic coloration, an orange patch on the black body. The size of the orange patch varies considerably: individuals with larger patches are safer from predators, but having a small patch is beneficial in cool environments. We investigated microhabitat preference by these caterpillars and how it interacted with their coloration. We expected caterpillar behavior to reflect a balance between spending time exposed to maximize basking and spending time concealed to avoid detection by predators. Instead, we found that caterpillars preferred exposed locations regardless of their coloration. Whether caterpillars were exposed or concealed had a strong effect on both temperature and predation risk, but caterpillars in exposed locations were both much warmer and less likely to be attacked by a bird predator (great tits, Parus major). This shared optimum may explain why we observed so little variation in caterpillar behavior and demonstrates the important effects of behavior on multiple functions of coloration.
Collapse
Affiliation(s)
- Matthew E Nielsen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Survontie 9 C, Jyväskylä, Finland
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, Stockholm, Sweden
| | - Johanna Mappes
- Department of Biological and Environmental Sciences, University of Jyväskylä, Survontie 9 C, Jyväskylä, Finland
| |
Collapse
|
9
|
Harrod SE, Rolland V. Demographic responses of eastern bluebirds to climatic variability in northeastern Arkansas. POPUL ECOL 2020. [DOI: 10.1002/1438-390x.12048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sara E. Harrod
- Department of Biological Sciences Arkansas State University, PO Box 599 State University Arkansas 72467 USA
| | - Virginie Rolland
- Department of Biological Sciences Arkansas State University, PO Box 599 State University Arkansas 72467 USA
| |
Collapse
|
10
|
Galarza JA, Dhaygude K, Ghaedi B, Suisto K, Valkonen J, Mappes J. Evaluating responses to temperature during pre-metamorphosis and carry-over effects at post-metamorphosis in the wood tiger moth (Arctia plantaginis). Philos Trans R Soc Lond B Biol Sci 2019; 374:20190295. [PMID: 31438813 PMCID: PMC6711291 DOI: 10.1098/rstb.2019.0295] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2019] [Indexed: 01/03/2023] Open
Abstract
Insect metamorphosis is one of the most recognized processes delimiting transitions between phenotypes. It has been traditionally postulated as an adaptive process decoupling traits between life stages, allowing evolutionary independence of pre- and post-metamorphic phenotypes. However, the degree of autonomy between these life stages varies depending on the species and has not been studied in detail over multiple traits simultaneously. Here, we reared full-sib larvae of the warningly coloured wood tiger moth (Arctia plantaginis) in different temperatures and examined their responses for phenotypic (melanization change, number of moults), gene expression (RNA-seq and qPCR of candidate genes for melanization and flight performance) and life-histories traits (pupal weight, and larval and pupal ages). In the emerging adults, we examined their phenotypes (melanization and size) and compared them at three condition proxies: heat absorption (ability to engage flight), flight metabolism (ability to sustain flight) and overall flight performance. We found that some larval responses, as evidenced by gene expression and change in melanization, did not have an effect on the adult (i.e. size and wing melanization), whereas other adult traits such as heat absorption, body melanization and flight performance were found to be impacted by rearing temperature. Adults reared at high temperature showed higher resting metabolic rate, lower body melanization, faster heating rate, lower body temperature at take-off and inferior flight performance than cold-reared adults. Thus, our results did not unambiguously support the environment-matching hypothesis. Our results illustrate the importance of assessing multiple traits across life stages as these may only be partly decoupled by metamorphosis. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Juan A. Galarza
- Department of Biological and Environmental Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland
| | | | - Behnaz Ghaedi
- Department of Biological and Environmental Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Kaisa Suisto
- Department of Biological and Environmental Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Janne Valkonen
- Department of Biological and Environmental Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Johanna Mappes
- Department of Biological and Environmental Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland
| |
Collapse
|
11
|
Podhorna J, Aubernon C, Borkovcova M, Boulay J, Hedouin V, Charabidze D. To eat or get heat: Behavioral trade-offs between thermoregulation and feeding in gregarious necrophagous larvae. INSECT SCIENCE 2018; 25:883-893. [PMID: 28374542 DOI: 10.1111/1744-7917.12465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/16/2017] [Accepted: 02/26/2017] [Indexed: 06/07/2023]
Abstract
The thermoregulation behavior of Lucilia sericata larvae (Diptera: Calliphoridae), a necrophagous species that feeds on vertebrate cadavers, was investigated. These larvae require high heat incomes to develop, and can elevate temperatures by forming large aggregates. We hypothesized that L. sericata larvae should continue to feed at temperatures up to 38 °C, which can be reached inside larval masses. Thermal regulation behavior such as movement between a hot food spot and colder areas was also postulated. The hypotheses were tested by tracking for 1 h the activity of single, starved third instar larvae in a Petri dish containing 1 food spot (FS) that was heated to a constant temperature of 25 °C, 34 °C or 38 °C with an ambient temperature of 25 °C. The influence of previous conspecific activity in the food on larval behavior was also tested. The crops of larvae were dissected to monitor food content in the digestive systems. Based on relative crop measurements, larvae fed at all food temperatures, but temperature strongly affected larval behavior and kinematics. The total time spent by larvae in FS and the duration of each stay decreased at high FS temperature. Previous activity of conspecifics in the food slightly increased the time spent by larvae in FS and also decreased the average distance to FS. Therefore, necrophagous L. sericata larvae likely thermoregulate during normal feeding activities by adjusting to local fluctuations in temperature, particularly inside maggot masses. By maintaining a steady internal body temperature, larvae likely reduce their development time.
Collapse
Affiliation(s)
- Jana Podhorna
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University in Brno, Czech Republic
| | - Cindy Aubernon
- Unité de Taphonomie Médico-Légale, University of Lille, CHU Lille, EA, France
| | - Marie Borkovcova
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University in Brno, Czech Republic
| | - Julien Boulay
- Unité de Taphonomie Médico-Légale, University of Lille, CHU Lille, EA, France
| | - Valery Hedouin
- Unité de Taphonomie Médico-Légale, University of Lille, CHU Lille, EA, France
| | - Damien Charabidze
- Unité de Taphonomie Médico-Légale, University of Lille, CHU Lille, EA, France
| |
Collapse
|
12
|
Fabricant SA, Burdfield-Steel ER, Umbers K, Lowe EC, Herberstein ME. Warning signal plasticity in hibiscus harlequin bugs. Evol Ecol 2018. [DOI: 10.1007/s10682-018-9946-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Nielsen ME, Levin E, Davidowitz G, Papaj DR. Colour plasticity alters thermoregulatory behaviour in Battus philenor caterpillars by modifying the cue received. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Kuyucu AC, Sahin MK, Caglar SS. The relation between melanism and thermal biology in a colour polymorphic bush cricket, Isophya rizeensis. J Therm Biol 2018; 71:212-220. [PMID: 29301693 DOI: 10.1016/j.jtherbio.2017.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 11/28/2022]
Abstract
According to the thermal melanism hypothesis, darker coloured melanic individuals heat up faster and to higher temperatures than lighter coloured individuals due to lower skin reflectance. Consequently, it is assumed that darker melanic types may be advantageous compared to light coloured types in colder regions. As temperature gradually decreases with elevation and latitude the degree of melanism is expected to increase along these gradients in ectothermic species. Isophya rizeensis, a colour polymorphic bush cricket species endemic to Northeastern Turkey is an interesting case since the degree of melanism decreases with elevation, contrary to the thermal melanism hypothesis. In order to investigate the relation between colouration and thermal biology of this species, body temperatures (Tb) of crickets from different colour morphs, environmental temperatures (Ta), solar radiation and vegetation height were measured to test the relation between these variables and thermoregulation. Field results showed that solar radiation was the most effective factor on temperature excess (Tex), the difference between body and ambient temperature. Additionally, Tex values showed negative correlation with vegetation height. Although Tex values did not differ significantly between colour morphs, paired experiments under sunlight showed that darker morphs heated up faster and attained higher body temperatures than light morphs. We conclude that, since higher Tex values at alpine short swards might also increase the risk of facing deleterious temperatures at high elevations, protection against overheating might be one of the factors responsible for this polymorphism.
Collapse
Affiliation(s)
- Arda Cem Kuyucu
- Hacettepe University, Department of Biology, Faculty of Science, Ankara, Turkey.
| | - Mehmet Kursat Sahin
- Hacettepe University, Department of Biology, Faculty of Science, Ankara, Turkey
| | - Selim Sualp Caglar
- Hacettepe University, Department of Biology, Faculty of Science, Ankara, Turkey
| |
Collapse
|
15
|
Nielsen ME. No geographic variation in thermoregulatory colour plasticity and limited variation in heat‐avoidance behaviour in
Battus philenor
caterpillars. J Evol Biol 2017; 30:1919-1928. [DOI: 10.1111/jeb.13168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/24/2017] [Accepted: 08/17/2017] [Indexed: 11/29/2022]
Affiliation(s)
- M. E. Nielsen
- Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ USA
| |
Collapse
|
16
|
Nielsen ME, Papaj DR. Why Have Multiple Plastic Responses? Interactions between Color Change and Heat Avoidance Behavior in Battus philenor Larvae. Am Nat 2017; 189:657-666. [PMID: 28514633 DOI: 10.1086/691536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Having multiple plastic responses to a change in the environment, such as increased temperature, can be adaptive for two major reasons: synergy (the plastic responses perform better when expressed simultaneously) or complementarity (each plastic response provides a greater net benefit in a different environmental context). We investigated these hypotheses for two forms of temperature-induced plasticity of Battus philenor caterpillars in southern Arizona populations: color change (from black to red at high temperatures) and heat avoidance behavior (movement from host to elevated refuges at high host temperatures). Field assays using aluminum models showed that the cooling effect of the red color is greatly reduced in a refuge position relative to that on a host. Field assays with live caterpillars demonstrated that refuge seeking is much more important for survival under hot conditions than coloration; however, in those assays, red coloration reduced the need to seek refuges. Our results support the complementarity hypothesis: refuge seeking facilitates survival during daily temperature peaks, while color change reduces the need to leave the host over longer warm periods. We propose that combinations of rapid but costly short-term behavioral responses and slow but efficient long-term morphological responses may be common when coping with temperature change.
Collapse
|
17
|
Agosta SJ, Hulshof CM, Staats EG. Organismal responses to habitat change: herbivore performance, climate and leaf traits in regenerating tropical dry forests. J Anim Ecol 2017; 86:590-604. [PMID: 28146325 DOI: 10.1111/1365-2656.12647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 01/13/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Salvatore J. Agosta
- Center for Environmental Studies Virginia Commonwealth University Richmond VA 23284‐9067 USA
- Department of Biology Virginia Commonwealth University Richmond VA 23284‐9067 USA
| | | | - Ethan G. Staats
- Department of Biology Virginia Commonwealth University Richmond VA 23284‐9067 USA
| |
Collapse
|
18
|
López-Carretero A, Boege K, Díaz-Castelazo C, Domínguez Z, Rico-Gray V. Influence of plant resistance traits in selectiveness and species strength in a tropical plant-herbivore network. AMERICAN JOURNAL OF BOTANY 2016; 103:1436-1448. [PMID: 27539260 DOI: 10.3732/ajb.1600045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY Plant-herbivore networks are highly specialized in their interactions, yet they are highly variable with regard to the relative importance of specific host species for herbivores. How host species traits determine specialization and species strength in this antagonistic network is still an unanswered question that we addressed in this study. METHODS We assessed plant cover and antiherbivore resistance traits to assess the extent to which they accounted for the variation in specialization and strength of interactions among species in a plant-herbivore network. We studied a tropical antagonistic network including a diverse herbivore-host plant assemblages in different habitat types and climatic seasons, including host plants with different life histories. KEY RESULTS Particular combinations of leaf toughness, trichome density, and phenolic compounds influenced herbivore specialization and host species strength, but with a significant spatiotemporal variation among plant life histories. Conversely, plant-herbivore network parameters were not influenced by plant cover. CONCLUSIONS Our study highlights the importance of species-specific resistance traits of plants to understand the ecological and evolutionary consequences of plant-herbivore interaction networks. The novelty of our research lies in the use of a trait-based approach to understand the variation observed in diverse plant-herbivore networks.
Collapse
Affiliation(s)
| | - Karina Boege
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Zaira Domínguez
- Unidad de Servicios de Apoyo en Resolución Analítica, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Víctor Rico-Gray
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México
| |
Collapse
|
19
|
Woods HA, Dillon ME, Pincebourde S. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J Therm Biol 2015; 54:86-97. [DOI: 10.1016/j.jtherbio.2014.10.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/07/2014] [Accepted: 10/07/2014] [Indexed: 12/22/2022]
|
20
|
Kandori I, Tsuchihara K, Suzuki TA, Yokoi T, Papaj DR. Long Frontal Projections Help Battus philenor (Lepidoptera: Papilionidae) Larvae Find Host Plants. PLoS One 2015. [PMID: 26222554 PMCID: PMC4519131 DOI: 10.1371/journal.pone.0131596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Animals sometimes develop conspicuous projections on or near their heads as, e.g., weaponry, burrowing or digging tools, and probes to search for resources. The frontal projections that insects generally use to locate and assess resources are segmented appendages, including antennae, maxillary palps, and labial palps. There is no evidence to date that arthropods, including insects, use projections other than true segmental appendages to locate food. In this regard, it is noteworthy that some butterfly larvae possess a pair of long antenna-like projections on or near their heads. To date, the function of these projections has not been established. Larvae of pipevine swallowtail butterflies Battus philenor (Papilionidae) have a pair of long frontal fleshy projections that, like insect antennae generally, can be actively moved. In this study, we evaluated the possible function of this pair of long moveable frontal projections. In laboratory assays, both frontal projections and lateral ocelli were shown to increase the frequency with which search larvae found plants. The frontal projections increased finding of host and non-host plants equally, suggesting that frontal projections do not detect host-specific chemical cues. Detailed SEM study showed that putative mechanosensillae are distributed all around the frontal as well as other projections. Taken together, our findings suggest that the frontal projections and associated mechanosensillae act as vertical object detectors to obtain tactile information that, together with visual information from lateral ocelli and presumably chemical information from antennae and mouthparts, help larvae to find host plants. Field observations indicate that host plants are small and scattered in southern Arizona locations. Larvae must therefore find multiple host plants to complete development and face significant challenges in doing so. The frontal projections may thus be an adaptation for finding a scarce resource before starving to death. This is the first evidence that arthropods use projections other than true segmental appendages such as antennae, mouthparts and legs, to locate food resources.
Collapse
Affiliation(s)
- Ikuo Kandori
- Laboratory of Entomology, Faculty of Agriculture, Kinki University, Nara, Japan
- * E-mail:
| | | | - Taichi A. Suzuki
- Department of Integrative Biology, University of California, Berkeley, United States of America
| | - Tomoyuki Yokoi
- Laboratory of Conservation Ecology, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Daniel R. Papaj
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States of America
| |
Collapse
|
21
|
Cao H, Zhao X, Wang S, Zhao L, Duan J, Zhang Z, Ge S, Zhu X. Grazing intensifies degradation of a Tibetan Plateau alpine meadow through plant-pest interaction. Ecol Evol 2015; 5:2478-86. [PMID: 26120436 PMCID: PMC4475379 DOI: 10.1002/ece3.1537] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/19/2015] [Accepted: 04/12/2015] [Indexed: 11/17/2022] Open
Abstract
Understanding the plant–pest interaction under warming with grazing conditions is critical to predict the response of alpine meadow to future climate change. We investigated the effects of experimental warming and grazing on the interaction between plants and the grassland caterpillar Gynaephora menyuanensis in an alpine meadow on the Tibetan Plateau in 2010 and 2011. Our results showed that grazing significantly increased nitrogen concentration in graminoids and sward openness with a lower sward height, sward coverage, and plant litter mass in the community. Grazing significantly increased G. menyuanensis body size and potential fecundity in 2010. The increases in female body size were about twofold greater than in males. In addition, grazing significantly increased G. menyuanensis density and its negative effects on aboveground biomass and graminoid coverage in 2011. We found that G. menyuanensis body size was significantly positively correlated with nitrogen concentration in graminoids but negatively correlated with plant litter mass. Even though warming did not significantly increased G. menyuanensis performance and the negative effects of G. menyuanensis on alpine meadow, the increases in G. menyuanensis growth rate and its negative effect on aboveground biomass under the warming with grazing treatment were significantly higher than those under the no warming with grazing treatment. The positive effects of grazing on G. menyuanensis performance and its damage were exacerbated by the warming treatment. Our results suggest that the fitness of G. menyuanensis would increase under future warming with grazing conditions, thereby posing a greater risk to alpine meadow and livestock production.
Collapse
Affiliation(s)
- Hui Cao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences Xining, 810008, China ; Graduate University of Chinese Academy of Sciences Beijing, 100049, China
| | - Xinquan Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences Xining, 810008, China ; Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu, 610041, China
| | - Shiping Wang
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences Beijing, 100101, China
| | - Liang Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences Xining, 810008, China
| | - Jichuang Duan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences Xining, 810008, China ; Binhai Research Institute in Tianjin Tianjin, 300457, China
| | - Zhenhua Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences Xining, 810008, China
| | - Shidong Ge
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences Xining, 810008, China
| | - Xiaoxue Zhu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences Xining, 810008, China ; Graduate University of Chinese Academy of Sciences Beijing, 100049, China
| |
Collapse
|
22
|
Välimäki P, Kivelä SM, Raitanen J, Pakanen VM, Vatka E, Mäenpää MI, Keret N, Tammaru T. Larval melanism in a geometrid moth: promoted neither by a thermal nor seasonal adaptation but desiccating environments. J Anim Ecol 2015; 84:817-828. [PMID: 25581258 DOI: 10.1111/1365-2656.12330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 12/17/2014] [Indexed: 11/27/2022]
Abstract
Spatiotemporal variation in the degree of melanism is often considered in the context of thermal adaptation, melanism being advantageous under suboptimal thermal conditions. Yet, other mutually nonexclusive explanations exist. Analysis of geographical patterns combined with laboratory experiments on the mechanisms of morph induction helps to unveil the adaptive value of particular cases of polyphenism. In the context of the thermal melanism hypothesis and seasonal adaptations, we explored an array of environmental factors that may affect the expression and performance of nonmelanic vs. melanic larval morphs in different latitudinal populations of the facultatively bivoltine moth Chiasmia clathrata (Lepidoptera: Geometridae). Geographical variation in larval coloration was independent of average temperatures experienced by the populations in the wild. The melanic morph was, however, more abundant in dry than in mesic habitats. In the laboratory, the melanic morph was induced especially under a high level of incident radiation but also at relatively high temperatures, but independently of photoperiod. Melanic larvae had higher growth rates and shorter development times than the nonmelanic ones when both temperature and the level of incident radiation were high. Our results that melanism is induced and advantageous in warm desiccating conditions contradict the thermal melanism hypothesis for this species. Neither has melanism evolved to compensate time constraints due to forthcoming autumn. Instead, larvae solve seasonal variation in the time available for growth by an elevated growth rate and a shortened larval period in the face of autumnal photoperiods. The phenotypic response to the level of incident radiation and a lack of adaptive adjustment of larval growth trajectories in univoltine populations underpin the role of deterministic environmental variation in the evolution of irreversible adaptive plasticity and seasonal polyphenism.
Collapse
Affiliation(s)
- Panu Välimäki
- Department of Ecology, University of Oulu, PO Box 3000, Oulu, FI-90014, Finland
| | - Sami M Kivelä
- Department of Ecology, University of Oulu, PO Box 3000, Oulu, FI-90014, Finland
| | - Jani Raitanen
- Department of Ecology, University of Oulu, PO Box 3000, Oulu, FI-90014, Finland
| | - Veli-Matti Pakanen
- Department of Ecology, University of Oulu, PO Box 3000, Oulu, FI-90014, Finland
| | - Emma Vatka
- Department of Ecology, University of Oulu, PO Box 3000, Oulu, FI-90014, Finland
| | - Maarit I Mäenpää
- Department of Ecology, University of Oulu, PO Box 3000, Oulu, FI-90014, Finland
| | - Netta Keret
- Department of Ecology, University of Oulu, PO Box 3000, Oulu, FI-90014, Finland
| | - Toomas Tammaru
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu, EE-51014, Estonia
| |
Collapse
|
23
|
Nielsen ME, Papaj DR. Effects of developmental change in body size on ectotherm body temperature and behavioral thermoregulation: caterpillars in a heat-stressed environment. Oecologia 2014; 177:171-9. [PMID: 25367578 DOI: 10.1007/s00442-014-3123-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
Abstract
Ectotherms increase in size dramatically during development, and this growth should have substantial effects on their body temperature and ability to thermoregulate. To better understand how this change in size affects temperature, we examined the direct effects of body size on body temperature in Battus philenor caterpillars, and also how body size affects both the expression and effectiveness of thermal refuge-seeking, a thermoregulatory behavior. Field studies of both live caterpillars and physical operative temperature models indicated that caterpillar body temperature increases with body size. The operative temperature models also showed that thermal refuges have a greater cooling effect for larger caterpillars, while a laboratory study found that larger caterpillars seek refuges at a lower temperature. Although the details may vary, similar connections between developmental growth, temperature, and thermoregulation should be common among ectotherms and greatly affect both their development and thermal ecology.
Collapse
Affiliation(s)
- Matthew E Nielsen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA,
| | | |
Collapse
|
24
|
Telemeco RS. Immobile and mobile life-history stages have different thermal physiologies in a lizard. Physiol Biochem Zool 2014; 87:203-15. [PMID: 24642538 DOI: 10.1086/674959] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Temperature affects multiple aspects of an organism's biology and thus defines a major axis of the fundamental niche. For ectotherms, variation in the thermal environment is particularly important because most of these taxa have a limited capacity to thermoregulate via metabolic heat production. While temperature affects all life-history stages, stages can differ in their ability to respond to the thermal environment. For example, in oviparous organisms, free-living adults can behaviorally thermoregulate, whereas developing embryos are at the mercy of the nest environment. These differences in the realized thermal environment should select for life-history stages to have different thermal tolerances, although this has been rarely examined. I tested the hypothesis that stage-specific thermal reaction norms can evolve independently by using southern alligator lizards (Elgaria multicarinata, Anguidae). Using incubation experiments (five temperatures: 24°, 26°, 28°, 30°, and 32°C), I described the thermal reaction norm for embryonic development and compared these results to previous studies on the thermal ecology of adults. Offspring survivorship and morphology were similarly affected by incubation temperature. While developing embryos had the same optimum temperature as adults (approximately 28°C), the breadth of their thermal reaction norms differed. My results suggest that developing embryos of E. multicarinata are more sensitive to variation in the average thermal environment than are adults. Variation in the thermal sensitivity of life-history stages might be common and has implications for how organisms respond to variation in the thermal environment. Identifying those life-history stages that are most sensitive/limiting will be important for developing models that best predict species' responses to impending environmental change.
Collapse
Affiliation(s)
- Rory S Telemeco
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
25
|
Umbers KDL, Fabricant SA, Gawryszewski FM, Seago AE, Herberstein ME. Reversible colour change in Arthropoda. Biol Rev Camb Philos Soc 2014; 89:820-48. [DOI: 10.1111/brv.12079] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 12/04/2013] [Accepted: 12/12/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Kate D. L. Umbers
- Department of Biological Sciences; Macquarie University; Sydney 2109 Australia
- School of Biological Sciences; University of Wollongong; Wollongong 2252 Australia
- Centre for Evolutionary Biology, School of Animal Biology; University of Western Australia; Perth 6008 Australia
| | - Scott A. Fabricant
- Department of Biological Sciences; Macquarie University; Sydney 2109 Australia
| | | | | | | |
Collapse
|
26
|
Stoepler TM, Lill JT. Direct and indirect effects of light environment generate ecological trade-offs in herbivore performance and parasitism. Ecology 2013; 94:2299-310. [DOI: 10.1890/12-2068.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Sandre SL, Kaasik A, Eulitz U, Tammaru T. Phenotypic plasticity in a generalist insect herbivore with the combined use of direct and indirect cues. OIKOS 2013. [DOI: 10.1111/j.1600-0706.2013.00504.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Serratore VR, Zalucki MP, Carter PA. Thermoregulation in moulting and feedingDanaus plexippus L. (Lepidoptera: Nymphalidae) caterpillars. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1440-6055.2012.00874.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Myron P Zalucki
- School of Biological Sciences; The University of Queensland; St Lucia; Brisbane; Qld; 4072; Australia
| | - Patrick A Carter
- School of Biological Sciences; Washington State University; Pullman; WA; 99164; USA
| |
Collapse
|
29
|
Radchuk V, Turlure C, Schtickzelle N. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. J Anim Ecol 2012; 82:275-85. [PMID: 22924795 DOI: 10.1111/j.1365-2656.2012.02029.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/14/2012] [Indexed: 11/27/2022]
Abstract
As ectothermic organisms, butterflies have widely been used as models to explore the predicted impacts of climate change. However, most studies explore only one life stage; to our best knowledge, none have integrated the impact of temperature on the vital rates of all life stages for a species of conservation concern. Besides, most population viability analysis models for butterflies are based on yearly population growth rate, precluding the implementation and assessment of important climate change scenarios, where climate change occurs mainly, or differently, during some seasons. Here, we used a combination of laboratory and field experiments to quantify the impact of temperature on all life stages of a vulnerable glacial relict butterfly. Next, we integrated these impacts into an overall population response using a deterministic periodic matrix model and explored the impact of several climate change scenarios. Temperature positively affected egg, pre-diapause larva and pupal survival, and the number of eggs laid by a female; only the survival of overwintering larva was negatively affected by an increase in temperature. Despite the positive impact of warming on many life stages, population viability was reduced under all scenarios, with predictions of much shorter times to extinction than under the baseline (current temperature situation) scenario. Indeed, model predictions were the most sensitive to changes in survival of overwintering larva, the only stage negatively affected by warming. A proper consideration of every stage of the life cycle is important when designing conservation guidelines in the light of climate change. This is in line with the resource-based habitat view, which explicitly refers to the habitat as a collection of resources needed for all life stages of the species. We, therefore, encourage adopting a resource-based habitat view for population viability analysis and development of conservation guidelines for butterflies, and more generally, other organisms. Life stages that are cryptic or difficult to study should not be forsaken as they may be key determinants in the overall response to climate change, as we found with overwintering Boloria eunomia larvae.
Collapse
Affiliation(s)
- Viktoriia Radchuk
- Biodiversity Research Centre, Earth & Life Institute, Université catholique de Louvain, Place Croix du Sud, 4, L7.07.04, 1348, Louvain-la-Neuve, Belgium.
| | | | | |
Collapse
|
30
|
Johns RC, Boone J, Leggo JJ, Smith S, Carleton D, Quiring DT. Temporal and spatial variations in microclimate influence the larval foraging behaviors and performance of a conifer-feeding sawfly. ENVIRONMENTAL ENTOMOLOGY 2012; 41:594-602. [PMID: 22732618 DOI: 10.1603/en11262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Herbivorous insects are often exposed to broad temporal and spatial variations in microclimate conditions within their host plants and have adapted a variety of behaviors, such as avoidance or basking, to either offset or benefit from such variation. Field experiments were carried out to investigate the influence of daily and intratree variations in microclimate on the behaviors (feeding, resting, dispersal, and hiding) and associated performance of late-instar larvae of the yellowheaded spruce sawfly, Pikonema alaskensis (Rohwer) (Hymenoptera: Tenthredinidae) within crowns of 1.25-1.5 m tall black spruce (Picea mariana [Miller] Britton Sterns Poggenburg); late instars feed on developing shoots of young spruce and are often exposed to microclimatic extremes with unknown effects on performance. Larvae fed diurnally from just after dawn (0800 h) until dusk (2000 h) and rested throughout the night, with brief periods of dispersal occurring in the morning and evening. Neither larval behavior nor abiotic conditions differed significantly between the upper and lower crowns of trees. Temperature, humidity, and solar insolation all explained >90% of variation in feeding; however, sunrise and sunset were the most likely cues influencing diurnal behavior. Most larvae (94%) fed on the bottom, shaded side of shoots, and field experiments indicated that this behavior is adaptive with respect to microclimate, probably reducing hygrothermal stress. Thus, behavioral adaptations by P. alaskensis to daily and within-shoot microclimatic variation may reduce the risk of hygrothermal stress during dispersal or feeding, while still allowing larvae to feed on the preferred and highly nutritious upper crown foliage of young spruce.
Collapse
Affiliation(s)
- R C Johns
- Natural Resources Canada, Canadian Forest Service-Atlantic Forestry Centre, Fredericton, New Brunswick, Canada.
| | | | | | | | | | | |
Collapse
|
31
|
On the significance of structural vegetation elements for caterpillar thermoregulation in two peat bog butterflies: Boloria eunomia and B. aquilonaris. J Therm Biol 2011. [DOI: 10.1016/j.jtherbio.2011.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Snell-Rood EC, Cash A, Han MV, Kijimoto T, Andrews J, Moczek AP. Developmental decoupling of alternative phenotypes: insights from the transcriptomes of horn-polyphenic beetles. Evolution 2011; 65:231-45. [PMID: 20731717 PMCID: PMC3010270 DOI: 10.1111/j.1558-5646.2010.01106.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Developmental mechanisms play an important role in determining the costs, limits, and evolutionary consequences of phenotypic plasticity. One issue central to these claims is the hypothesis of developmental decoupling, where alternate morphs result from evolutionarily independent developmental pathways. We address this assumption through a microarray study that tests whether differences in gene expression between alternate morphs are as divergent as those between sexes, a classic example of developmental decoupling. We then examine whether genes with morph-biased expression are less conserved than genes with shared expression between morphs, as predicted if developmental decoupling relaxes pleiotropic constraints on divergence. We focus on the developing horns and brains of two species of horned beetles with impressive sexual- and morph-dimorphism in the expression of horns and fighting behavior. We find that patterns of gene expression were as divergent between morphs as they were between sexes. However, overall patterns of gene expression were also highly correlated across morphs and sexes. Morph-biased genes were more evolutionarily divergent, suggesting a role of relaxed pleiotropic constraints or relaxed selection. Together these results suggest that alternate morphs are to some extent developmentally decoupled, and that this decoupling has significant evolutionary consequences. However, alternative morphs may not be as developmentally decoupled as sometimes assumed and such hypotheses of development should be revisited and refined.
Collapse
Affiliation(s)
- Emilie C Snell-Rood
- Department of Biology, Indiana University, 915 E. Third Street, Myers Hall 150, Bloomington, Indiana 47405-7107, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Bush S, Kim D, Reed M, Clayton D. Evolution of Cryptic Coloration in Ectoparasites. Am Nat 2010; 176:529-35. [DOI: 10.1086/656269] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Pincebourde S, Sanford E, Helmuth B. An Intertidal Sea Star Adjusts Thermal Inertia to Avoid Extreme Body Temperatures. Am Nat 2009; 174:890-7. [DOI: 10.1086/648065] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
GOTTHARD KARL, BERGER DAVID, BERGMAN MARTIN, MERILAITA SAMI. The evolution of alternative morphs: density-dependent determination of larval colour dimorphism in a butterfly. Biol J Linn Soc Lond 2009. [DOI: 10.1111/j.1095-8312.2009.01290.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Fordyce JA, Nice CC. Antagonistic, stage-specific selection on defensive chemical sequestration in a toxic butterfly. Evolution 2008; 62:1610-1617. [PMID: 18373625 DOI: 10.1111/j.1558-5646.2008.00388.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Larvae of the pipevine swallowtail (Battus philenor) sequester toxic alkaloids called aristolochic acids from their Aristolochia host plants, rendering both larvae and adults chemically defended against most predators. Using a chemically controlled artificial diet, we observed substantial among-family variation in sequestration ability and larval developmental rate in a population occurring in central Texas. Early instar larvae from families that sequester greater amounts of aristolochic acid showed increased survivorship in a field experiment in which cohorts from each family were exposed to natural predators, whereas among-family variation in growth rate did not predict survivorship. Conversely, the aristolochic acid content of adult butterflies was negatively correlated with adult fat content, a fitness correlate. Sequestration ability positively affects the probability of larval survivorship, but at the cost of adult fat content. The costs and benefits of aristolochic acid sequestration vary during the course of the butterfly's development, and these antagonistic selection pressures may explain why variation in sequestration ability persists in wild populations.
Collapse
Affiliation(s)
- James A Fordyce
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | | |
Collapse
|
37
|
Bohlin T, Tullberg BS, Merilaita S. The effect of signal appearance and distance on detection risk in an aposematic butterfly larva (Parnassius apollo). Anim Behav 2008. [DOI: 10.1016/j.anbehav.2008.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
|
39
|
|
40
|
Sandre SL, Tammaru T, Vanatoa A, Esperk T. Maintenance of larval color polymorphism in Orgyia antiqua (Lepidoptera: Lymantriidae): evaluating the role of thermal adaptation. ENVIRONMENTAL ENTOMOLOGY 2007; 36:1303-1309. [PMID: 18284757 DOI: 10.1603/0046-225x(2007)36[1303:molcpi]2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Intraspecific color polymorphism is widespread in insects, and various mechanisms have been proposed to explain its maintenance. Some explanations rely on the effect of body color on the organism's thermal physiology. Darker individuals accumulate solar energy more efficiently, and therefore, dark body coloration in insects is frequently presumed to be an adaptation to low temperature conditions. However, it is largely unclear what is the importance of the thermal biology in comparison to other potential selective forces on body coloration. In this study, we evaluated the role of temperature as a potential selective factor maintaining color polymorphism in aposematic larvae of the moth Orgyia antiqua L. It was found that darker, and thus less aposematic, larvae accumulated solar energy more efficiently. However, in a set of laboratory and outdoor experiments, we found no evidence of temperature-dependent performance of different color morphs or in development of different morphs induced by rearing temperature. We conclude that the effects related to thermal physiology are not likely important determinants of optimal coloration in O. antiqua. The reasons may lie in high mobility of the larvae, which allows for effective behavioral thermoregulation, which is also shown in this study. Our results caution against an uncritical extrapolation of results obtained for model organisms and indicate the need for giving more attention to the species-specific ecological background in ecophysiological studies.
Collapse
Affiliation(s)
- Siiri-Lii Sandre
- Institute of Zoology and Hydrobiology, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia.
| | | | | | | |
Collapse
|
41
|
Sasaki K, Nagao T. Reorganization of the Central Nervous Systems in Response to Changes in Social Environment Among Insects. JOURNAL OF ROBOTICS AND MECHATRONICS 2007. [DOI: 10.20965/jrm.2007.p0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Caste is a polyphenism for efficiently accomplishing various tasks in a group for social insects, and morphological differentiation is based on nutritional conditions in larval development. Adult worker insects can plastically convert part of their internal organs and behaviors to those of a queen while maintaining external morphology as is. Behavioral change together with caste transition is caused by physiological change in the brain, and behavioral change affects even the brain morphologically, eventually creating an “adaptive” brain specialized in caste. This phenomenon, a typical example of “mobiligence,” is a model case in which physiological and morphological transitions in the brain are detected.
Collapse
|
42
|
Downes S, Hoefer AM. An experimental study of the effects of weed invasion on lizard phenotypes. Oecologia 2007; 153:775-85. [PMID: 17541644 DOI: 10.1007/s00442-007-0775-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 05/09/2007] [Indexed: 10/23/2022]
Abstract
We examined how a weed affected the basking and activity of a diurnal lizard, and the potential cascading effects of these shifts for life history strategies and expression of morphology. Hatchlings of the diurnal lizard Lampropholis delicata were raised to maturity in outdoor enclosures that mimicked high, moderate and low invasion by a sprawling plant (blue periwinkle, Vinca major). Skinks depend on sunlight for growth and maintenance. Periwinkle differs from displaced grassland by being structurally complex and blocking sunlight. Lizards restricted to the enclosure floor achieved preferred body temperatures only when exposure to periwinkle was moderate or low. However, lizards in high invasion enclosures could reach preferred body temperatures by climbing plants and basking on exposed canopy. This shift in basking strategy resulted in lizards growing longer hind limbs compared with animals that rarely (moderate invasion) and never (low invasion) climbed plants. Consequently, lizards reared in high invasion enclosures sprinted faster than conspecifics reared in lower invasion environments. Throughout the study there was no significant variation among treatments in the tendency of animals to be moving when they were not hidden. However, lizards in high invasion treatments hid more often during the day, were lighter in body mass, and females had lighter clutch masses and offspring than did those from moderate and low invasion enclosures. Thus, microhabitat degradation can drive a cascade of changes to an animal's ecology.
Collapse
Affiliation(s)
- Sharon Downes
- School of Botany and Zoology, Australian National University, Canberra, Australia.
| | | |
Collapse
|
43
|
Fordyce JA, Nice CC, Shapiro AM. A novel trade-off of insect diapause affecting a sequestered chemical defense. Oecologia 2006; 149:101-6. [PMID: 16832650 DOI: 10.1007/s00442-006-0428-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 03/27/2006] [Indexed: 10/24/2022]
Abstract
Diapause allows insects to temporally avoid conditions that are unfavorable for development and reproduction. However, diapause may incur a cost in the form of reduced metabolic energy reserves, reduced potential fecundity, and missed reproductive opportunities. This study investigated a hitherto ignored consequence of diapause: trade-offs involving sequestered chemical defense. We examined the aristolochic acid defenses of diapausing and non-diapausing pipevine swallowtail butterflies, Battus philenor. Pipevine swallowtail larvae acquire these chemical defenses from their host plants. Butterflies that emerge following pupal diapause have significantly less fat, a female fitness correlate, compared to those that do not diapause. However, butterflies emerging from diapaused pupae are more chemically defended compared to those that have not undergone diapause. Furthermore, non-diapausing butterflies are confronted with older, lower quality host plants on which to oviposit. Thus, a trade-off exists where butterflies may have greater energy reserves at the cost of less chemical defense and sub-optimal food resources for their larvae, or have substantially less energetic reserves with the benefit of greater chemical defense and plentiful larval food resources.
Collapse
Affiliation(s)
- James A Fordyce
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA.
| | | | | |
Collapse
|