1
|
Leong RC, Bugnot AB, Ross PM, Erickson KR, Gibbs MC, Marzinelli EM, O'Connor WA, Parker LM, Poore AGB, Scanes E, Gribben PE. Recruitment of a threatened foundation oyster species varies with large and small spatial scales. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2968. [PMID: 38562000 DOI: 10.1002/eap.2968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/20/2023] [Accepted: 10/28/2023] [Indexed: 04/04/2024]
Abstract
Understanding how habitat attributes (e.g., patch area and sizes, connectivity) control recruitment and how this is modified by processes operating at larger spatial scales is fundamental to understanding population sustainability and developing successful long-term restoration strategies for marine foundation species-including for globally threatened reef-forming oysters. In two experiments, we assessed the recruitment and energy reserves of oyster recruits onto remnant reefs of the oyster Saccostrea glomerata in estuaries spanning 550 km of coastline in southeastern Australia. In the first experiment, we determined whether recruitment of oysters to settlement plates in three estuaries was correlated with reef attributes within patches (distances to patch edges and surface elevation), whole-patch attributes (shape and size of patches), and landscape attributes (connectivity). We also determined whether environmental factors (e.g., sedimentation and water temperature) explained the differences among recruitment plates. We also tested whether differences in energy reserves of recruits could explain the differences between two of the estuaries (one high- and one low-sedimentation estuary). In the second experiment, across six estuaries (three with nominally high and three with nominally low sedimentation rates), we tested the hypothesis that, at the estuary scale, recruitment and survival were negatively correlated to sedimentation. Overall, total oyster recruitment varied mostly at the scale of estuaries rather than with reef attributes and was negatively correlated with sedimentation. Percentage recruit survival was, however, similar among estuaries, although energy reserves and condition of recruits were lower at a high- compared to a low-sediment estuary. Within each estuary, total oyster recruitment increased with patch area and decreased with increasing tidal height. Our results showed that differences among estuaries have the largest influence on oyster recruitment and recruit health and this may be explained by environmental processes operating at the same scale. While survival was high across all estuaries, growth and reproduction of oysters on remnant reefs may be affected by sublethal effects on the health of recruits in high-sediment estuaries. Thus, restoration programs should consider lethal and sublethal effects of whole-estuary environmental processes when selecting sites and include environmental mitigation actions to maximize recruitment success.
Collapse
Affiliation(s)
- Rick C Leong
- Centre for Marine Science and Innovation, University of New South Wales Sydney, Kensington, New South Wales, Australia
| | - Ana B Bugnot
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
- CSIRO Environment, Saint Lucia, Queensland, Australia
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| | - Katherine R Erickson
- Centre for Marine Science and Innovation, University of New South Wales Sydney, Kensington, New South Wales, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Mitchell C Gibbs
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Ezequiel M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Anna Bay, New South Wales, Australia
| | - Laura M Parker
- Centre for Marine Science and Innovation, University of New South Wales Sydney, Kensington, New South Wales, Australia
| | - Alistair G B Poore
- Centre for Marine Science and Innovation, University of New South Wales Sydney, Kensington, New South Wales, Australia
| | - Elliot Scanes
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Paul E Gribben
- Centre for Marine Science and Innovation, University of New South Wales Sydney, Kensington, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| |
Collapse
|
2
|
Smith RS, Castorani MCN. Meta-analysis reveals drivers of restoration success for oysters and reef community. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023:e2865. [PMID: 37186401 DOI: 10.1002/eap.2865] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
Restoration aims to reverse global declines of foundation species, but it is unclear how project attributes, the physical setting, and antecedent conditions affect restoration success. In coastal seas worldwide, oyster reef restoration is increasing to counter historic habitat destruction and associated declines in fisheries production and biodiversity. Yet, restoration outcomes are highly variable and the factors that enhance oyster production and nekton abundance and diversity on restored reefs are unresolved. To quantify the drivers of oyster restoration success, we used meta-analysis to synthesize data from 158 restored reefs paired with unstructured habitats along the U.S. Gulf and Atlantic coasts. The average recovery of oyster production was 65% greater in subtidal (vs. intertidal) zones, 173% greater in polyhaline (vs. mesohaline) environments and increased with tidal range, demonstrating that physical conditions can strongly influence the restoration success of foundation species. Additionally, restoration increased the relative abundance and richness of nektonic fishes and invertebrates over time as reefs aged (at least 8 years post-construction). Thus, the restoration benefits for provisioning habitat and enhancing biodiversity accrue over time, highlighting that restoration projects need multiple years to maximize ecosystem functions. Furthermore, long-term monitoring of restored and control sites is needed to assess restoration outcomes and associated drivers. Lastly, our work reveals data constraints for several potential drivers of restoration outcomes, including reef construction material, reef dimensions, harvest pressure and disease prevalence. More experimental and observational studies are needed to target these factors and measure them with consistent methods across studies. Our findings indicate that the assisted recovery of foundation species yields several enhancements to ecosystem services, but such benefits are mediated by time and environmental conditions.
Collapse
Affiliation(s)
- Rachel S Smith
- Marine Science Institute, University of California, Santa Barbara, CA, USA
| | - Max C N Castorani
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
3
|
Wang ST, Wang W, Wang LP, Li L, Zhang GF. Tidal emersion effects on universal metrics, elemental contents, and health conditions of Pacific oyster (Crassostrea gigas) on artificial reefs in Yellow River Delta, China. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
4
|
Douglas EJ, Hewitt J, Lohrer AM, Stephenson F. Changing intra‐ and interspecific interactions across sedimentary and environmental stress gradients. Ecosphere 2023. [DOI: 10.1002/ecs2.4373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Emily J. Douglas
- National Institute of Water & Atmospheric Research Hamilton New Zealand
| | - Judi Hewitt
- National Institute of Water & Atmospheric Research Hamilton New Zealand
- Department of Statistics University of Auckland Auckland New Zealand
| | - Andrew M. Lohrer
- National Institute of Water & Atmospheric Research Hamilton New Zealand
| | | |
Collapse
|
5
|
Leong RC, Bugnot AB, Marzinelli EM, Figueira WF, Erickson KR, Poore AGB, Gribben PE. Variation in the density and body size of a threatened foundation species across multi‐spatial scales. Restor Ecol 2022. [DOI: 10.1111/rec.13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rick C. Leong
- Centre for Marine Science and Innovation University of New South Wales Sydney Kensington New South Wales 2052 Australia
- Evolution & Ecology Research Centre University of New South Wales Sydney Kensington New South Wales 2052 Australia
| | - Ana B. Bugnot
- Centre for Marine Science and Innovation University of New South Wales Sydney Kensington New South Wales 2052 Australia
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
- Sydney Institute of Marine Science 19 Chowder Bay Road Mosman New South Wales 2088 Australia
| | - Ezequiel M. Marzinelli
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
- Sydney Institute of Marine Science 19 Chowder Bay Road Mosman New South Wales 2088 Australia
- Singapore Centre for Environmental Life Sciences Engineering Nanyang Technological University, 637551 Singapore
| | - Will F. Figueira
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
- Sydney Institute of Marine Science 19 Chowder Bay Road Mosman New South Wales 2088 Australia
| | - Katherine R. Erickson
- Centre for Marine Science and Innovation University of New South Wales Sydney Kensington New South Wales 2052 Australia
- Evolution & Ecology Research Centre University of New South Wales Sydney Kensington New South Wales 2052 Australia
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
| | - Alistair G. B. Poore
- Centre for Marine Science and Innovation University of New South Wales Sydney Kensington New South Wales 2052 Australia
- Evolution & Ecology Research Centre University of New South Wales Sydney Kensington New South Wales 2052 Australia
| | - Paul E. Gribben
- Centre for Marine Science and Innovation University of New South Wales Sydney Kensington New South Wales 2052 Australia
- Evolution & Ecology Research Centre University of New South Wales Sydney Kensington New South Wales 2052 Australia
- Sydney Institute of Marine Science 19 Chowder Bay Road Mosman New South Wales 2088 Australia
| |
Collapse
|
6
|
Esquivel‐Muelbert JR, Lanham BS, Martínez‐Baena F, Dafforn KA, Gribben PE, Bishop MJ. Spatial variation in the biotic and abiotic filters of oyster recruitment: Implications for restoration. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Brendan S. Lanham
- Department of Biological Sciences Macquarie University Sydney NSW Australia
| | - Francisco Martínez‐Baena
- Department of Biological Sciences Macquarie University Sydney NSW Australia
- The Nature Conservancy Sydney NSW Australia
| | - Katherine A. Dafforn
- Department of Earth and Environmental Sciences Macquarie University Sydney NSW Australia
| | - Paul E. Gribben
- Centre for Marine Science and Innovation School of Earth, Environmental and Biological Sciences University of New South Wales Sydney NSW Australia
- Sydney Institute of Marine Science Sydney NSW Australia
| | - Melanie J. Bishop
- Department of Biological Sciences Macquarie University Sydney NSW Australia
| |
Collapse
|
7
|
Abstract
AbstractUnderstanding the effects of predicted rising sea levels, combined with changes in precipitation and freshwater inflow on key estuarine ecosystem engineers such as the eastern oyster would provide critical information to inform restoration design and predictive models. Using oyster ladders with shell bags placed at three heights to capture a range of inundation levels, oyster growth of naturally recruited spat was monitored over the course of 6 months. Oyster numbers and shell heights were consistently highest in bottom and mid bags experiencing greater than 50% inundation (mid: 63 ± 7%; bottom: 95 ± 3%). Identifying thresholds for optimal oyster growth and survival to enhance restoration engineering would require finer scale evaluation of inundation levels.
Collapse
|
8
|
Liu Z, Yu P, Chen M, Cai M, Fan B, Lv W, Huang Y, Li Y, Zhao Y. Macrobenthic community characteristics and ecological health of a constructed intertidal oyster reef in the Yangtze Estuary, China. MARINE POLLUTION BULLETIN 2018; 135:95-104. [PMID: 30301120 DOI: 10.1016/j.marpolbul.2018.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Development of substrate organisms (oysters, barnacles) and the health of a monitored oyster reef were investigated in the Yangtze Estuary. Very low salinity suppressed oyster survival. Nevertheless, middle- to high-salinity significantly increased the abundance and biomass of substrate organisms, and macrobenthos species and diversity. Long-term variation in substrate organisms was steady after a major fluctuation, yet the macrobenthic community structure lagged behind that of oysters. Overall, the oyster reef was in a healthy state. The M-AMBI results showed that its ecological status under high-salinity was better than medium-salinity conditions. Redundancy analysis indicated these results were associated with changes in water salinity and substrate factors. Taken together, our results suggest this constructed intertidal oyster reef has had a positive effect on the community and health status of macrobenthos in the Yangtze Estuary. Further, these ecological benefits increased going from medium- to high-salinity waters, but were generally absent under low salinity.
Collapse
Affiliation(s)
- Zhiquan Liu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Ping Yu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Minghai Chen
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Mingqi Cai
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Bin Fan
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Weiwei Lv
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agriculture Sciences, Shanghai 201403, China
| | - Youhui Huang
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Yiming Li
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
9
|
Sokolov EP, Sokolova IM. Compatible osmolytes modulate mitochondrial function in a marine osmoconformer Crassostrea gigas (Thunberg, 1793). Mitochondrion 2018; 45:29-37. [PMID: 29458112 DOI: 10.1016/j.mito.2018.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/22/2017] [Accepted: 02/15/2018] [Indexed: 12/31/2022]
Abstract
Salinity is an important environmental factor affecting physiology of marine organisms. Osmoconformers such as marine mollusks maintain metabolic function despite changes of the osmolarity and composition of the cytosol during salinity shifts. Currently, metabolic responses to the salinity-induced changes of the intracellular milieu are not well understood. We studied the effects of osmolarity (450 vs. 900 mOsm) and compatible osmolytes (70-590 mM of taurine or betaine) on isolated gill mitochondria of a marine osmoconformer, the Pacific oyster Crassostrea gigas. Physiological concentrations of taurine enhanced mitochondrial ATP synthesis and electron transport system (ETS) capacity, increased mitochondrial coupling and stimulated the forward flux through the Complex I. Notably, the stimulatory effects of taurine were more pronounced at 900 mOsm compared to 450 mOsm. In contrast, betaine proportionally increased the rates of the mitochondrial proton leak, oxidative phosphorylation and ETS flux (with no net effect on the mitochondrial coupling) and suppressed the activity of cytochrome c oxidase in oyster mitochondria. However, the effective concentration of betaine (590 mM) was higher than typically found in bivalves, and thus betaine is not likely to affect oyster mitochondria under the physiological conditions in vivo. Our findings indicate that taurine may support the mitochondrial bioenergetics during hyperosmotic stress in oysters. Compatibility of taurine with the metabolic functions and its beneficial effects on mitochondria may have contributed to its broad distribution as an osmolyte in marine osmoconformers and might explain the earlier reports of the positive effects of taurine supplementation on energy metabolism of other organisms, including mammals.
Collapse
Affiliation(s)
- Eugene P Sokolov
- Department of Applied Ecology, University of Rostock, Rostock, Germany.
| | - Inna M Sokolova
- Department of Marine Biology, University of Rostock, Rostock, Germany
| |
Collapse
|
10
|
Ziegler SL, Grabowski JH, Baillie CJ, Fodrie FJ. Effects of landscape setting on oyster reef structure and function largely persist more than a decade post‐restoration. Restor Ecol 2017. [DOI: 10.1111/rec.12651] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shelby L. Ziegler
- Institute of Marine Sciences University of North Carolina at Chapel Hill 3431 Arendell Street, Morehead City NC 28557 U.S.A
| | - Jonathan H. Grabowski
- Marine Science Center Northeastern University 430 Nahant Road, Nahant MA 01908 U.S.A
| | | | - F. J. Fodrie
- Institute of Marine Sciences University of North Carolina at Chapel Hill 3431 Arendell Street, Morehead City NC 28557 U.S.A
| |
Collapse
|
11
|
Oysters and the Ecosystem. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/b978-0-12-803472-9.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
12
|
The ecology, evolution, impacts and management of host-parasite interactions of marine molluscs. J Invertebr Pathol 2015; 131:177-211. [PMID: 26341124 DOI: 10.1016/j.jip.2015.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 11/22/2022]
Abstract
Molluscs are economically and ecologically important components of aquatic ecosystems. In addition to supporting valuable aquaculture and wild-harvest industries, their populations determine the structure of benthic communities, cycling of nutrients, serve as prey resources for higher trophic levels and, in some instances, stabilize shorelines and maintain water quality. This paper reviews existing knowledge of the ecology of host-parasite interactions involving marine molluscs, with a focus on gastropods and bivalves. It considers the ecological and evolutionary impacts of molluscan parasites on their hosts and vice versa, and on the communities and ecosystems in which they are a part, as well as disease management and its ecological impacts. An increasing number of case studies show that disease can have important effects on marine molluscs, their ecological interactions and ecosystem services, at spatial scales from centimeters to thousands of kilometers and timescales ranging from hours to years. In some instances the cascading indirect effects arising from parasitic infection of molluscs extend well beyond the temporal and spatial scales at which molluscs are affected by disease. In addition to the direct effects of molluscan disease, there can be large indirect impacts on marine environments resulting from strategies, such as introduction of non-native species and selective breeding for disease resistance, put in place to manage disease. Much of our understanding of impacts of molluscan diseases on the marine environment has been derived from just a handful of intensively studied marine parasite-host systems, namely gastropod-trematode, cockle-trematode, and oyster-protistan interactions. Understanding molluscan host-parasite dynamics is of growing importance because: (1) expanding aquaculture; (2) current and future climate change; (3) movement of non-native species; and (4) coastal development are modifying molluscan disease dynamics, ultimately leading to complex relationships between diseases and cultivated and natural molluscan populations. Further, in some instances the enhancement or restoration of valued ecosystem services may be contingent on management of molluscan disease. The application of newly emerging molecular tools and remote sensing techniques to the study of molluscan disease will be important in identifying how changes at varying spatial and temporal scales with global change are modifying host-parasite systems.
Collapse
|
13
|
Fodrie FJ, Rodriguez AB, Baillie CJ, Brodeur MC, Coleman SE, Gittman RK, Keller DA, Kenworthy MD, Poray AK, Ridge JT, Theuerkauf EJ, Lindquist NL. Classic paradigms in a novel environment: inserting food web and productivity lessons from rocky shores and saltmarshes into biogenic reef restoration. J Appl Ecol 2014. [DOI: 10.1111/1365-2664.12276] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- F. Joel Fodrie
- Institute of Marine Sciences; University of North Carolina at Chapel Hill; 3431 Arendell Street Morehead City NC 28557 USA
| | - Antonio B. Rodriguez
- Institute of Marine Sciences; University of North Carolina at Chapel Hill; 3431 Arendell Street Morehead City NC 28557 USA
| | | | - Michelle C. Brodeur
- Institute of Marine Sciences; University of North Carolina at Chapel Hill; 3431 Arendell Street Morehead City NC 28557 USA
| | - Sara E. Coleman
- Institute of Marine Sciences; University of North Carolina at Chapel Hill; 3431 Arendell Street Morehead City NC 28557 USA
| | - Rachel K. Gittman
- Institute of Marine Sciences; University of North Carolina at Chapel Hill; 3431 Arendell Street Morehead City NC 28557 USA
| | - Danielle A. Keller
- Institute of Marine Sciences; University of North Carolina at Chapel Hill; 3431 Arendell Street Morehead City NC 28557 USA
| | - Matthew D. Kenworthy
- Institute of Marine Sciences; University of North Carolina at Chapel Hill; 3431 Arendell Street Morehead City NC 28557 USA
| | - Abigail K. Poray
- Institute of Marine Sciences; University of North Carolina at Chapel Hill; 3431 Arendell Street Morehead City NC 28557 USA
| | - Justin T. Ridge
- Institute of Marine Sciences; University of North Carolina at Chapel Hill; 3431 Arendell Street Morehead City NC 28557 USA
| | - Ethan J. Theuerkauf
- Institute of Marine Sciences; University of North Carolina at Chapel Hill; 3431 Arendell Street Morehead City NC 28557 USA
| | - Niels. L. Lindquist
- Institute of Marine Sciences; University of North Carolina at Chapel Hill; 3431 Arendell Street Morehead City NC 28557 USA
| |
Collapse
|
14
|
Gestal C, Roch P, Renault T, Pallavicini A, Paillard C, Novoa B, Oubella R, Venier P, Figueras A. Study of Diseases and the Immune System of Bivalves Using Molecular Biology and Genomics. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10641260802325518] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|