1
|
Dai Y, Shen Y, Ke C, Luo X, Huang M, Huang H, You W. Carryover effects of embryonic hypoxia exposure on adult fitness of the Pacific abalone. ENVIRONMENTAL RESEARCH 2024; 260:119628. [PMID: 39048070 DOI: 10.1016/j.envres.2024.119628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
The widespread and severe drop in dissolved oxygen concentration in the open ocean and coastal waters has attracted much attention, but assessments of the impacts of environmental hypoxia on aquatic organisms have focused primarily on responses to current exposure. Past stress exposure might also affect the performance of aquatic organisms through carryover effects, and whether these effects scale from positive to negative based on exposure degree is unknown. We investigated the carryover effects of varying embryonic hypoxia levels (mediate hypoxia: 3.0-3.1 mg O2/L; severe hypoxia: 2.0-2.1 mg O2/L) on the fitness traits of adult Pacific abalone (Haliotis discus hannai), including growth, hypoxia tolerance, oxygen consumption, ammonia excretion rate, and biochemical responses to acute hypoxia. Moderate embryonic hypoxia exposure significantly improved the hypoxia tolerance of adult Pacific abalone without sacrificing growth and survival. Adult abalone exposed to embryonic hypoxia exhibited physiological plasticity, including decreased oxygen consumption rates under environmental stress, increased basal methylation levels, and a more active response to acute hypoxia, which might support their higher hypoxia tolerance. Thus, moderate oxygen declines in early life have persistent effects on the fitness of abalone even two years later, further affecting population dynamics. The results suggested that incorporating the carryover effects of embryonic hypoxia exposure into genetic breeding programs would be an important step toward rapidly improving the hypoxia tolerance of aquatic animals. The study also inspires the protection of endangered wild animals and other vulnerable species under global climate change.
Collapse
Affiliation(s)
- Yue Dai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yawei Shen
- State Key Laboratory of Marine Environmental Science, College of the Environmental and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China.
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Miaoqin Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Huoqing Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China.
| |
Collapse
|
2
|
Neptune TC, Benard MF. Longer days, larger grays: carryover effects of photoperiod and temperature in gray treefrogs, Hyla versicolor. Proc Biol Sci 2024; 291:20241336. [PMID: 38981527 PMCID: PMC11335022 DOI: 10.1098/rspb.2024.1336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
Environmental conditions like temperature and photoperiod can strongly shape organisms' growth and development. For many ectotherms with complex life cycles, global change will cause their offspring to experience warmer conditions and earlier-season photoperiods, two variables that can induce conflicting responses. We experimentally manipulated photoperiod and temperature during gray treefrog (Hyla versicolor) larval development to examine effects at metamorphosis and during short (10-day) and long (56-day) periods post-metamorphosis. Both early- and late-season photoperiods (April and August) decreased age and size at metamorphosis relative to the average-season (June) photoperiod, while warmer temperatures decreased age but increased size at metamorphosis. Warmer larval temperatures reduced short-term juvenile growth but had no long-term effect. Conversely, photoperiod had no short-term carryover effect, but juveniles from early- and late-season larval photoperiods had lower long-term growth rates than juveniles from the average-season photoperiod. Similar responses to early- and late-season photoperiods may be due to reduced total daylight compared with average-season photoperiods. However, juveniles from late-season photoperiods selected cooler temperatures than early-season juveniles, suggesting that not all effects of photoperiod were due to total light exposure. Our results indicate that despite both temperature and photoperiod affecting metamorphosis, the long-term effects of photoperiod may be much stronger than those of temperature.
Collapse
Affiliation(s)
- Troy C. Neptune
- Department of Biology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH44106-7080, USA
| | - Michael F. Benard
- Department of Biology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH44106-7080, USA
| |
Collapse
|
3
|
Crossland MR, Shine R. Intraspecific interference retards growth and development of cane toad tadpoles, but those effects disappear by the time of metamorphosis. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231380. [PMID: 38026033 PMCID: PMC10645094 DOI: 10.1098/rsos.231380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Competition among larval anurans can occur via interference as well as via a reduction in per-capita food supply. Previous research on intraspecific interference competition in cane toad (Rhinella marina) tadpoles found conflicting results, with one study detecting strong effects on tadpoles and another detecting no effects on metamorphs. A capacity to recover from competitive suppression by the time of metamorphosis might explain those contrasting impacts. In a laboratory experiment, we found that nine days of exposure to intraspecific interference competition strongly reduced tadpole growth and development, especially when the competing tadpoles were young (early-stage) individuals. Those competitive effects disappeared by the time of metamorphosis, with no significant effect of competition on metamorph body condition, size, larval period or survival. Temporal changes in the impact of competition were not related to tadpole density or to variation in water quality. The ability of larval cane toads to recover from intraspecific interference competition may enhance the invasive success of this species, because size at metamorphosis is a significant predictor of future fitness. Our study also demonstrates a cautionary tale: conclusions about the existence and strength of competitive interactions among anuran larvae may depend on which developmental stages are measured.
Collapse
Affiliation(s)
- M. R. Crossland
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - R. Shine
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
4
|
Ledón‐Rettig CC, Lagon SR. A novel larval diet interacts with nutritional stress to modify juvenile behaviors and glucocorticoid responses. Ecol Evol 2021; 11:10880-10891. [PMID: 34429887 PMCID: PMC8366881 DOI: 10.1002/ece3.7860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022] Open
Abstract
Developmental plasticity can allow the exploitation of alternative diets. While such flexibility during early life is often adaptive, it can leave a legacy in later life that alters the overall health and fitness of an individual. Species of the spadefoot toad genus Spea are uniquely poised to address such carryover effects because their larvae can consume drastically different diets: their ancestral diet of detritus or a derived shrimp diet. Here, we use Spea bombifrons to assess the effects of developmental plasticity in response to larval diet type and nutritional stress on juvenile behaviors and stress axis reactivity. We find that, in an open-field assay, juveniles fed shrimp as larvae have longer latencies to move, avoid prey items more often, and have poorer prey-capture abilities. While juveniles fed shrimp as larvae are more exploratory, this effect disappears if they also experienced a temporary nutritional stressor during early life. The larval shrimp diet additionally impairs juvenile jumping performance. Finally, larvae that were fed shrimp under normal nutritional conditions produce juveniles with higher overall glucocorticoid levels, and larvae that were fed shrimp and experienced a temporary nutritional stressor produce juveniles with higher stress-induced glucocorticoid levels. Thus, while it has been demonstrated that consuming the novel, alternative diet can be adaptive for larvae in nature, doing so has marked effects on juvenile phenotypes that may recalibrate an individual's overall fitness. Given that organisms often utilize diverse diets in nature, our study underscores the importance of considering how diet type interacts with early-life nutritional adversity to influence subsequent life stages.
Collapse
|
5
|
Complex hydroperiod induced carryover responses for survival, growth, and endurance of a pond-breeding amphibian. Oecologia 2021; 195:1071-1081. [PMID: 33635404 DOI: 10.1007/s00442-021-04881-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
Assessing carryover effects from the aquatic to the terrestrial stage of pond-breeding amphibians is critical as temperature and hydrologic regimes of temporary ponds continue to be altered as a result of climate change and other stressors. We evaluated carryover effects of hydroperiod length (50-62 days) on amphibian survival, developmental rates, and locomotor performance using a model organism, the wood frog (Rana sylvatica), through aquatic and terrestrial mesocosm experiments with individual tests of locomotor performance. We found that shorter hydroperiods (50 days) had low larval survival (0.44 ± 0.03) compared to the 62-day hydroperiod (0.91 ± 0.09) and increased developmental rates, resulting in smaller sizes at metamorphosis. We did not find evidence of carryover effects on terrestrial survival three months post-metamorphosis with all hydroperiod treatments showing high terrestrial survival (0.88 ± 0.07). However, post-metamorphic frogs from the longer hydroperiod treatments grew faster and larger compared to individuals from shortest hydroperiods and performed significantly better during endurance trials at 18 °C. Disentangling complex carryover effects across multiple life stages in species with high phenotypic plasticity can shed light on the physiological capacity of species to respond to changing environments and inform mechanistic predictions of persistence in the face of anthropogenic stressors.
Collapse
|
6
|
Paniw M, Childs DZ, Armitage KB, Blumstein DT, Martin JGA, Oli MK, Ozgul A. Assessing seasonal demographic covariation to understand environmental-change impacts on a hibernating mammal. Ecol Lett 2020; 23:588-597. [PMID: 31970918 DOI: 10.1111/ele.13459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022]
Abstract
Natural populations are exposed to seasonal variation in environmental factors that simultaneously affect several demographic rates (survival, development and reproduction). The resulting covariation in these rates determines population dynamics, but accounting for its numerous biotic and abiotic drivers is a significant challenge. Here, we use a factor-analytic approach to capture partially unobserved drivers of seasonal population dynamics. We use 40 years of individual-based demography from yellow-bellied marmots (Marmota flaviventer) to fit and project population models that account for seasonal demographic covariation using a latent variable. We show that this latent variable, by producing positive covariation among winter demographic rates, depicts a measure of environmental quality. Simultaneously, negative responses of winter survival and reproductive-status change to declining environmental quality result in a higher risk of population quasi-extinction, regardless of summer demography where recruitment takes place. We demonstrate how complex environmental processes can be summarized to understand population persistence in seasonal environments.
Collapse
Affiliation(s)
- Maria Paniw
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Ecological and Forestry Applications Research Centre (CREAF), Campus de Bellaterra (UAB) Edifici C, ES-08193, Cerdanyola del Vallès, Spain
| | - Dylan Z Childs
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Kenneth B Armitage
- Ecology & Evolutionary Biology Department, The University of Kansas, Lawrence, KS, 66045-7534, USA
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA.,The Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
| | - Julien G A Martin
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.,Department of Biology, University of Ottawa, Ottawa, K1N 9A7, Canada
| | - Madan K Oli
- Department of Wildlife Ecology, University of Florida, Gainesville, FL, 32611, USA
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
7
|
Leung JYS, McAfee D. Stress across life stages: Impacts, responses and consequences for marine organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134491. [PMID: 31629264 DOI: 10.1016/j.scitotenv.2019.134491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Population dynamics of marine organisms are strongly driven by their survival in early life stages. As life stages are tightly linked, environmental stress experienced by organisms in the early life stage can worsen their performance in the subsequent life stage (i.e. carry-over effect). However, stressful events can be ephemeral and hence organisms may be able to counter the harmful effects of transient stress. Here, we analysed the published data to examine the relative strength of carry-over effects on the juvenile growth of marine organisms, caused by different stressors (hypoxia, salinity, starvation, ocean acidification and stress-induced delayed metamorphosis) confronted in their larval stage. Based on 31 relevant published studies, we revealed that food limitation had the greatest negative carry-over effect on juvenile growth. In the laboratory, we tested the effects of short-term early starvation and hypoxia on the larval growth and development of a model organism, polychaete Hydroides elegans, and assessed whether the larvae can accommodate the early stress to maintain their performance as juveniles (settlement and juvenile growth). Results showed that early starvation for 3 days (∼50% of normal larval period) retarded larval growth and development, leading to subsequent reduced settlement rate and juvenile growth. When the starvation period decreased to 1 day, however, the larvae could recover from early starvation through compensatory growth and performed normal as juveniles (c.f. control). Early exposure to hypoxia for 3 days did not affect larval growth (body length) and juvenile growth (tube length), but caused malformation of larvae and reduced settlement rate. We conclude that the adverse effects of transient stress can be carried across life stages (e.g. larval to juvenile stage), but depend on the duration of stressful events relative to larval period. As carry-over effects are primarily driven by energy acquisition, how food availability varies over time and space is fundamental to the population dynamics of marine organisms.
Collapse
Affiliation(s)
- Jonathan Y S Leung
- Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; Department of Biology and Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region.
| | - Dominic McAfee
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
8
|
Ruthsatz K, Giertz LM, Schröder D, Glos J. Chemical composition of food induces plasticity in digestive morphology in larvae of Rana temporaria. Biol Open 2019; 8:bio048041. [PMID: 31852656 PMCID: PMC6955212 DOI: 10.1242/bio.048041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 11/26/2019] [Indexed: 11/20/2022] Open
Abstract
Food conditions are changing due to anthropogenic activities and natural sources and thus, many species are exposed to new challenges. Animals might cope with altered quantitative and qualitative composition [i.e. variable protein, nitrogen (N) and energy content] of food by exhibiting trophic and digestive plasticity. We examined experimentally whether tadpoles of the common frog (Rana temporaria) exhibit phenotypic plasticity of the oral apparatus and intestinal morphology when raised on a diet of either low (i.e. Spirulina algae) or high protein, N and energy content (i.e. Daphnia pulex). Whereas intestinal morphology was highly plastic, oral morphology did not respond plastically to different chemical compositions of food. Tadpoles that were fed food with low protein and N content and low-energy density developed significantly longer guts and a larger larval stomachs than tadpoles raised on high protein, N and an energetically dense diet, and developed a different intestinal surface morphology. Body sizes of the treatment groups were similar, indicating that tadpoles fully compensated for low protein, N and energy diet by developing longer intestines. The ability of a species, R. temporaria, to respond plastically to environmental variation indicates that this species might have the potential to cope with new conditions during climate change.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Department of Biology, Institute for Zoology, University of Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Lisa Marie Giertz
- Department of Biology, Institute for Zoology, University of Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Dominik Schröder
- Department of Biology, Institute for Zoology, University of Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Julian Glos
- Department of Biology, Institute for Zoology, University of Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| |
Collapse
|
9
|
Rumrill CT, Scott DE, Lance SL. Delayed effects and complex life cycles: How the larval aquatic environment influences terrestrial performance and survival. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2660-2669. [PMID: 29984847 DOI: 10.1002/etc.4228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 03/12/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Species with complex life cycles are susceptible to environmental stressors across life stages, but the carryover and latent effects between stages remain understudied. For species with biphasic life histories, such as pond-breeding amphibians, delayed effects of aquatic conditions can influence terrestrial juveniles and adults directly or indirectly, usually mediated through fitness correlates such as body size. We collected adult southern toads (Anaxyrus terrestris) from 2 source populations-a natural reference wetland and a metal-contaminated industrial wetland-and exposed their offspring to 2 aquatic stressors (a metal contaminant, copper [Cu], and a dragonfly predator cue) in outdoor mesocosms (n = 24). We then reared metamorphs in terraria for 5 mo to examine delayed effects of early life stage environmental conditions on juvenile performance, growth, and survival. Larval exposure to Cu, as well as having parents from a contaminated wetland, resulted in smaller size at metamorphosis-a response later negated by compensatory growth. Although Cu exposure and parental source did not affect larval survival, we observed latent effects of these stressors on juvenile survival, with elevated Cu conditions and metal-contaminated parents reducing postmetamorphic survival. Parental source and larval Cu exposure affected performance at metamorphosis through carryover effects on body size but, 1 mo later, latent effects of parental source and larval predator exposure directly (i.e., not via body size) influenced performance. The carryover and latent effects of parental source population and aquatic Cu level on postmetamorphic survival and juvenile performance highlight the importance of conducting studies across life stages and generations. Environ Toxicol Chem 2018;37:2660-2669. © 2018 SETAC.
Collapse
Affiliation(s)
- Caitlin T Rumrill
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | - David E Scott
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
| | - Stacey L Lance
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
| |
Collapse
|
10
|
Orizaola G, Richter-Boix A, Laurila A. Transgenerational effects and impact of compensatory responses to changes in breeding phenology on antipredator defenses. Ecology 2018; 97:2470-2478. [PMID: 27859081 DOI: 10.1002/ecy.1464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/17/2016] [Accepted: 04/19/2016] [Indexed: 12/19/2022]
Abstract
As organisms living in temperate environments often have only a short time window for growth and reproduction, their life-history strategies are expected to be influenced by these time constraints. Parents may alter the pace of offspring life-history as a response to changes in breeding phenology. However, the responses to changes in time constraints must be balanced with those against other stressors, such as predation, one of the strongest and more ubiquitous selective factors in nature. Here, after experimentally modifying the timing of breeding and hatching in the moor frog (Rana arvalis), we studied how compensatory responses to delayed breeding and hatching affect antipredator strategies in amphibian larvae. We examined the activity patterns, morphology and life-history responses in tadpoles exposed to different combinations of breeding and hatching delays in the presence and absence of predators. We found clear evidence of adaptive transgenerational effects since tadpoles from delayed breeding treatments increased growth and development independently of predation risk. The presence of predators reduced tadpole activity, tadpoles from delayed breeding treatments maintaining lower activity than non-delayed ones also in the absence of predators. Tadpoles reared with predators developed deeper tails and bodies, however, tadpoles from breeding delay treatments had reduced morphological defenses as compared to non-delayed individuals. No significant effects of hatching delay were detected in this study. Our study reveals that amphibian larvae exposed to breeding delay develop compensatory life-history responses even under predation risk, but these responses trade-off with the development of morphological antipredator defenses. These results suggest that under strong time constraints organisms are selected to develop fast growth and development responses, and rely on lower activity rates as their main antipredator defense. Examining how responses to changes in phenology affect species interactions is highly relevant for better understanding ecological responses to climate change.
Collapse
Affiliation(s)
- Germán Orizaola
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236, Sweden
| | - Alex Richter-Boix
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236, Sweden
| | - Anssi Laurila
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236, Sweden
| |
Collapse
|
11
|
Lindgren B, Orizaola G, Laurila A. Interacting effects of predation risk and resource level on escape speed of amphibian larvae along a latitudinal gradient. J Evol Biol 2018; 31:1216-1226. [PMID: 29802672 DOI: 10.1111/jeb.13298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 12/01/2022]
Abstract
Fast-growing genotypes living in time-constrained environments are often more prone to predation, suggesting that growth-predation risk trade-offs are important factors maintaining variation in growth along climatic gradients. However, the mechanisms underlying how fast growth increases predation-mediated mortality are not well understood. Here, we investigated if slow-growing, low-latitude individuals have faster escape swimming speed than fast-growing high-latitude individuals using common frog (Rana temporaria) tadpoles from eight populations collected along a 1500 km latitudinal gradient. We measured escape speed in terms of burst and endurance speeds in tadpoles raised in the laboratory at two food levels and in the presence and absence of a predator (Aeshna dragonfly larvae). We did not find any latitudinal trend in escape speed performance. In low food treatments, burst speed was higher in tadpoles reared with predators but did not differ between high-food treatments. Endurance speed, on the contrary, was lower in high-food tadpoles reared with predators and did not differ between treatments at low food levels. Tadpoles reared with predators showed inducible morphology (increased relative body size and tail depth), which had positive effects on speed endurance at low but not at high food levels. Burst speed was positively affected by tail length and tail muscle size in the absence of predators. Our results suggest that escape speed does not trade-off with fast growth along the latitudinal gradient in R. temporaria tadpoles. Instead, escape speed is a plastic trait and strongly influenced by the interaction between resource level and predation risk.
Collapse
Affiliation(s)
- Beatrice Lindgren
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Germán Orizaola
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Anssi Laurila
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Sniegula S, Golab MJ, Drobniak SM, Johansson F. The genetic variance but not the genetic covariance of life-history traits changes towards the north in a time-constrained insect. J Evol Biol 2018; 31:853-865. [PMID: 29569290 DOI: 10.1111/jeb.13269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 11/30/2022]
Abstract
Seasonal time constraints are usually stronger at higher than lower latitudes and can exert strong selection on life-history traits and the correlations among these traits. To predict the response of life-history traits to environmental change along a latitudinal gradient, information must be obtained about genetic variance in traits and also genetic correlation between traits, that is the genetic variance-covariance matrix, G. Here, we estimated G for key life-history traits in an obligate univoltine damselfly that faces seasonal time constraints. We exposed populations to simulated native temperatures and photoperiods and common garden environmental conditions in a laboratory set-up. Despite differences in genetic variance in these traits between populations (lower variance at northern latitudes), there was no evidence for latitude-specific covariance of the life-history traits. At simulated native conditions, all populations showed strong genetic and phenotypic correlations between traits that shaped growth and development. The variance-covariance matrix changed considerably when populations were exposed to common garden conditions compared with the simulated natural conditions, showing the importance of environmentally induced changes in multivariate genetic structure. Our results highlight the importance of estimating variance-covariance matrixes in environments that mimic selection pressures and not only trait variances or mean trait values in common garden conditions for understanding the trait evolution across populations and environments.
Collapse
Affiliation(s)
- Szymon Sniegula
- Department of Ecosystem Conservation, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Maria J Golab
- Department of Ecosystem Conservation, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Szymon M Drobniak
- Population Ecology Group, Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
| | - Frank Johansson
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Milosavljevic I, Amrich R, Strode V, Hoddle MS. Modeling the Phenology of Asian Citrus Psyllid (Hemiptera: Liviidae) in Urban Southern California: Effects of Environment, Habitat, and Natural Enemies. ENVIRONMENTAL ENTOMOLOGY 2018; 47:233-243. [PMID: 29373671 DOI: 10.1093/ee/nvx206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Modeling can be used to characterize the effects of environmental drivers and biotic factors on the phenology of arthropod pests. From a biological control perspective, population dynamics models may provide insights as to when the most vulnerable pest life stages are available for natural enemies to attack. Analyses presented here used temperature and habitat dependent, instar-specific, discrete models to investigate the population dynamics of Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). This pest is the target of a classical biological control program with the parasitoid Tamarixia radiata (Waterston) (Hymenoptera: Eulophidae). The population trends of D. citri eggs, nymphs, and adults, citrus flush growth patterns, and T. radiata activity were monitored monthly on orange and lemon trees at 10 urban sites in southern California for a 2-yr period. Cumulative D. citri egg, nymph, and adult days recorded at each site, were regressed against accumulated degree-days (DDs) to model the population dynamics of each development stage in relation to temperature. Using a biofix point of 1 January, the model predicted that 10% and 90% of eggs were laid by 198 and 2,255 DD, respectively. Populations of small and large D. citri nymphs increased slowly with 90% of the population recorded by 2,389 and 2,436 DD, respectively. D. citri adults were present year round with 10 and 90% of the population recorded by 95 and 2,687 DD, respectively. The potential implications of using DD models for optimizing inoculative releases of natural enemies, such as T. radiata into citrus habitat infested with D. citri, are discussed.
Collapse
Affiliation(s)
| | - Ruth Amrich
- Department of Entomology, University of California
| | | | - Mark S Hoddle
- Department of Entomology, University of California
- Center of Invasive Species Research, University of California
| |
Collapse
|
14
|
Voltinism-associated differences in winter survival across latitudes: integrating growth, physiology, and food intake. Oecologia 2018; 186:919-929. [DOI: 10.1007/s00442-018-4079-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/02/2018] [Indexed: 11/30/2022]
|
15
|
Ramirez L, Negri P, Sturla L, Guida L, Vigliarolo T, Maggi M, Eguaras M, Zocchi E, Lamattina L. Abscisic acid enhances cold tolerance in honeybee larvae. Proc Biol Sci 2018; 284:rspb.2016.2140. [PMID: 28381619 DOI: 10.1098/rspb.2016.2140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/08/2017] [Indexed: 12/14/2022] Open
Abstract
The natural composition of nutrients present in food is a key factor determining the immune function and stress responses in the honeybee (Apis mellifera). We previously demonstrated that a supplement of abscisic acid (ABA), a natural component of nectar, pollen, and honey, increases honeybee colony survival overwinter. Here we further explored the role of ABA in in vitro-reared larvae exposed to low temperatures. Four-day-old larvae (L4) exposed to 25°C for 3 days showed lower survival rates and delayed development compared to individuals growing at a standard temperature (34°C). Cold-stressed larvae maintained higher levels of ABA for longer than do larvae reared at 34°C, suggesting a biological significance for ABA. Larvae fed with an ABA-supplemented diet completely prevent the low survival rate due to cold stress and accelerate adult emergence. ABA modulates the expression of genes involved in metabolic adjustments and stress responses: Hexamerin 70b, Insulin Receptor Substrate, Vitellogenin, and Heat Shock Proteins 70. AmLANCL2, the honeybee ABA receptor, is also regulated by cold stress and ABA. These results support a role for ABA increasing the tolerance of honeybee larvae to low temperatures through priming effects.
Collapse
Affiliation(s)
- Leonor Ramirez
- Instituto de Investigaciones Biológicas, CONICET - Universidad Nacional de Mar del Plata (UNMdP), CC 1245, 7600 Mar del Plata, Argentina
| | - Pedro Negri
- Centro de Investigación en Abejas Sociales (CIAS), FCEyN, UNMdP, 7600 Mar del Plata, Argentina
| | - Laura Sturla
- DIMES-Sezione Biochimica, Università degli Studi di Genova, Viale Benedetto XV, 116132 Genova, Italia
| | - Lucrezia Guida
- DIMES-Sezione Biochimica, Università degli Studi di Genova, Viale Benedetto XV, 116132 Genova, Italia
| | - Tiziana Vigliarolo
- DIMES-Sezione Biochimica, Università degli Studi di Genova, Viale Benedetto XV, 116132 Genova, Italia
| | - Matías Maggi
- Centro de Investigación en Abejas Sociales (CIAS), FCEyN, UNMdP, 7600 Mar del Plata, Argentina
| | - Martín Eguaras
- Centro de Investigación en Abejas Sociales (CIAS), FCEyN, UNMdP, 7600 Mar del Plata, Argentina
| | - Elena Zocchi
- DIMES-Sezione Biochimica, Università degli Studi di Genova, Viale Benedetto XV, 116132 Genova, Italia
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas, CONICET - Universidad Nacional de Mar del Plata (UNMdP), CC 1245, 7600 Mar del Plata, Argentina
| |
Collapse
|
16
|
Anderson TL, Rowland FE, Semlitsch RD. Variation in phenology and density differentially affects predator-prey interactions between salamanders. Oecologia 2017; 185:475-486. [PMID: 28894959 DOI: 10.1007/s00442-017-3954-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/02/2017] [Indexed: 11/26/2022]
Abstract
Variation in the timing of breeding (i.e., phenological variation) can affect species interactions and community structure, in part by shifting body size differences between species. Body size differences can be further altered by density-dependent competition, though synergistic effects of density and phenology on species interactions are rarely evaluated. We tested how field-realistic variation in phenology and density affected ringed salamander (Ambystoma annulatum) predation on spotted salamanders (Ambystoma maculatum), and whether these altered salamander dynamics resulted in trophic cascades. In outdoor mesocosms, we experimentally manipulated ringed salamander density (low/high) and breeding phenology (early/late) of both species. Ringed salamander body size at metamorphosis, development, and growth were reduced at higher densities, while delayed phenology increased hatchling size and larval development, but reduced relative growth rates. Survival of ringed salamanders was affected by the interactive effects of phenology and density. In contrast, spotted salamander growth, size at metamorphosis, and survival, as well as the biomass of lower trophic levels, were negatively affected primarily by ringed salamander density. In an additional mesocosm experiment, we isolated whether ringed salamanders could deplete shared resources prior to their interactions with spotted salamanders, but instead found direct interactions (e.g., predation) were the more likely mechanism by which ringed salamanders limited spotted salamanders. Overall, our results indicate the effects of phenological variability on fitness-related traits can be modified or superseded by differences in density dependence. Identifying such context dependencies will lead to greater insight into when phenological variation will likely alter species interactions.
Collapse
Affiliation(s)
- Thomas L Anderson
- Division of Biological Sciences, University of Missouri, 105 Tucker Hall, Columbia, MO, 65211, USA.
- Department of Ecology and Evolutionary Biology, University of Kansas, 2101 Constant Ave, Lawrence, KS, 66047, USA.
| | - Freya E Rowland
- Division of Biological Sciences, University of Missouri, 105 Tucker Hall, Columbia, MO, 65211, USA
| | - Raymond D Semlitsch
- Division of Biological Sciences, University of Missouri, 105 Tucker Hall, Columbia, MO, 65211, USA
| |
Collapse
|
17
|
Kecko S, Mihailova A, Kangassalo K, Elferts D, Krama T, Krams R, Luoto S, Rantala MJ, Krams IA. Sex-specific compensatory growth in the larvae of the greater wax mothGalleria mellonella. J Evol Biol 2017; 30:1910-1918. [DOI: 10.1111/jeb.13150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 07/28/2017] [Indexed: 12/22/2022]
Affiliation(s)
- S. Kecko
- Department of Biotechnology; Institute of Life Sciences and Technology; Daugavpils University; Daugavpils Latvia
| | - A. Mihailova
- Department of Biotechnology; Institute of Life Sciences and Technology; Daugavpils University; Daugavpils Latvia
| | - K. Kangassalo
- Department of Biology; University of Turku; Turku Finland
| | - D. Elferts
- Department of Botany and Ecology; University of Latvia; Rīga Latvia
| | - T. Krama
- Department of Biotechnology; Institute of Life Sciences and Technology; Daugavpils University; Daugavpils Latvia
- Department of Plant Protection; Institute of Agricultural and Environmental Sciences; Estonian University of Life Science; Tartu Estonia
| | - R. Krams
- Department of Biotechnology; Institute of Life Sciences and Technology; Daugavpils University; Daugavpils Latvia
| | - S. Luoto
- English, Drama and Writing Studies; School of Psychology; University of Auckland; Auckland New Zealand
| | - M. J. Rantala
- Department of Biology; University of Turku; Turku Finland
| | - I. A. Krams
- Department of Zoology and Animal Ecology; University of Latvia; Rīga Latvia
- Institute of Ecology and Earth Sciences; University of Tartu; Tartu Estonia
| |
Collapse
|
18
|
Addis EA, Gangloff EJ, Palacios MG, Carr KE, Bronikowski AM. Merging the “Morphology–Performance–Fitness” Paradigm and Life-History Theory in the Eagle Lake Garter Snake Research Project. Integr Comp Biol 2017; 57:423-435. [DOI: 10.1093/icb/icx079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
19
|
Horváthová T, Antoł A, Czarnoleski M, Kozłowski J, Bauchinger U. An evolutionary solution of terrestrial isopods to cope with low atmospheric oxygen levels. J Exp Biol 2017; 220:1563-1567. [DOI: 10.1242/jeb.156661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/19/2017] [Indexed: 11/20/2022]
Abstract
The evolution of current terrestrial life was founded by major waves of land invasion coinciding with high atmospheric oxygen content. These waves were followed by periods with substantially reduced oxygen concentration and accompanied by evolution of novel traits. Reproduction and development are limiting factors for evolutionary water-land transitions, and brood care has likely facilitated land invasion. Peracarid crustaceans provide parental care for their offspring by brooding the early stages within the motherly pouch, marsupium. Terrestrial isopod progeny begins ontogenetic development within the marsupium in water, but conclude development within the marsupium in air. Our results for progeny growth until hatching from the marsupium provide evidence for the limiting effects of oxygen concentration and for a potentially adaptive solution. Inclusion of air within the marsupium compensates for initially constrained growth in water through catch-up growth, and it may explain how terrestrial isopods adapted to short- and long-term changes in oxygen concentration.
Collapse
Affiliation(s)
- Terézia Horváthová
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Andrzej Antoł
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Marcin Czarnoleski
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Jan Kozłowski
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
20
|
Vega-Trejo R, Jennions MD, Head ML. Are sexually selected traits affected by a poor environment early in life? BMC Evol Biol 2016; 16:263. [PMID: 27905874 PMCID: PMC5134236 DOI: 10.1186/s12862-016-0838-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/25/2016] [Indexed: 01/06/2023] Open
Abstract
Background Challenging conditions experienced early in life, such as a restricted diet, can detrimentally affect key life-history traits. Individuals can reduce these costs by delaying their sexual maturation, albeit at the price of the later onset of breeding, to eventually reach the same adult size as individuals that grow up in a benevolent environment. Delayed maturation can, however, still lead to other detrimental morphological and physiological changes that become apparent later in adulthood (e.g. shorter lifespan, faster senescence). In general, research focuses on the naturally selected costs of a poor early diet. In mosquitofish (Gambusia holbrooki), males with limited food intake early in life delay maturation to reach a similar adult body size to their well-fed counterparts (‘catch-up growth’). Here we tested whether a poor early diet is costly due to the reduced expression of sexually selected male characters, namely genital size and ejaculate traits. Results We found that a male’s diet early in life significantly influenced his sperm reserves and sperm replenishment rate. Shortly after maturation males with a restricted early diet had significantly lower sperm reserves and slower replenishment rates than control diet males, but this dietary difference was no longer detectable in older males. Conclusions Although delaying maturation to reach the same body size as well fed juveniles can ameliorate some costs of a poor start in life, our findings suggest that costs might still arise because of sexual selection against these males. It should be noted, however, that the observed effects are modest (Hedges’ g = 0.20–0.36), and the assumption that lower sperm production translates into a decline in fitness under sperm competition remains unconfirmed. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0838-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Regina Vega-Trejo
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia.
| | - Michael D Jennions
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia.,Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, 14193, Germany
| | - Megan L Head
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
21
|
Lee WS, Monaghan P, Metcalfe NB. Perturbations in growth trajectory due to early diet affect age-related deterioration in performance. Funct Ecol 2016; 30:625-635. [PMID: 27610000 PMCID: PMC4994260 DOI: 10.1111/1365-2435.12538] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/27/2015] [Indexed: 01/02/2023]
Abstract
Fluctuations in early developmental conditions can cause changes in growth trajectories that subsequently affect the adult phenotype. Here, we investigated whether compensatory growth has long-term consequences for patterns of senescence.Using three-spined sticklebacks (Gasterosteus aculeatus), we show that a brief period of dietary manipulation in early life affected skeletal growth rate not only during the manipulation itself, but also during a subsequent compensatory phase when fish caught up in size with controls.However, this growth acceleration influenced swimming endurance and its decline over the course of the breeding season, with a faster decline in fish that had undergone faster growth compensation.Similarly, accelerated growth led to a more pronounced reduction in the breeding period (as indicated by the duration of sexual ornamentation) over the following two breeding seasons, suggesting faster reproductive senescence. Parallel experiments showed a heightened effect of accelerated growth on these age-related declines in performance if the fish were under greater time stress to complete their compensation prior to the breeding season.Compensatory growth led to a reduction in median life span of 12% compared to steadily growing controls. While life span was independent of the eventual adult size attained, it was negatively correlated with the age-related decline in swimming endurance and sexual ornamentation.These results, complementary to those found when growth trajectories were altered by temperature rather than dietary manipulations, show that the costs of accelerated growth can last well beyond the time over which growth rates differ and are affected by the time available until an approaching life-history event such as reproduction.
Collapse
Affiliation(s)
- Who-Seung Lee
- Institute of Biodiversity Animal Health and Comparative Medicine College of Medical, Veterinary and Life Sciences University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK; Present address: Southwest Fisheries Science Cente NOAA Fisheries and Center for Stock Assessment Research University of California Santa Cruz CA 95064 USA
| | - Pat Monaghan
- Institute of Biodiversity Animal Health and Comparative Medicine College of Medical, Veterinary and Life Sciences University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Neil B Metcalfe
- Institute of Biodiversity Animal Health and Comparative Medicine College of Medical, Veterinary and Life Sciences University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| |
Collapse
|
22
|
Xie J, De Clercq P, Pan C, Li H, Zhang Y, Pang H. Physiological effects of compensatory growth during the larval stage of the ladybird, Cryptolaemus montrouzieri. JOURNAL OF INSECT PHYSIOLOGY 2015; 83:37-42. [PMID: 26546057 DOI: 10.1016/j.jinsphys.2015.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
The growth rate of insects may vary in response to shifty environments. They may achieve compensatory growth after a period of food restriction followed by ad libitum food, which may further affect the reproductive performance and lifespan of the resulting phenotypes. However, little is known about the physiological mechanisms associated with such growth acceleration in insects. The present study examined the metabolic rate, the antioxidant enzyme activity and the gene expression of adult Cryptolaemus montrouzieri (Coleoptera: Coccinellidae) after experiencing compensatory growth during its larval stages. Starved C. montrouzieri individuals achieved a similar developmental time and adult body mass as those supplied with ad libitum food during their entire larval stage, indicating that compensatory growth occurred as a result of the switch in larval food regime. Further, the compensatory growth was found to exert effects on the physiological functions of C. montrouzieri, in terms of its metabolic rates and enzyme activities. The adults undergoing compensatory growth were characterized by a higher metabolic rate, a lower activity of the antioxidant enzymes glutathione reductase, catalase, and superoxide dismutase and a lower gene expression of P450 and trehalase. Taken together, the results indicate that although compensatory growth following food restriction in early larval life prevents developmental delay and body mass loss, the resulting adults may encounter physiological challenges affecting their fitness.
Collapse
Affiliation(s)
- Jiaqin Xie
- State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institute, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou 510275, China; Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Patrick De Clercq
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium.
| | - Chang Pan
- State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institute, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou 510275, China
| | - Haosen Li
- State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institute, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuhong Zhang
- Guangdong Entomological Institute, Guangzhou 510260, China
| | - Hong Pang
- State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institute, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
23
|
Bouchard SS, O'Leary CJ, Wargelin LJ, Rodriguez WB, Jennings KX, Warkentin KM. Alternative competition-induced digestive strategies yield equal growth, but constrain compensatory growth in red-eyed treefrog larvae. ACTA ACUST UNITED AC 2015; 323:778-788. [PMID: 26423593 DOI: 10.1002/jez.1991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/05/2015] [Accepted: 09/13/2015] [Indexed: 11/08/2022]
Abstract
Compensatory growth is well documented across taxa and provides a fitness advantage to animals who would otherwise reach a smaller reproductive size. We investigated the role of competition-induced gut plasticity in facilitating a compensatory response in red-eyed treefrog larvae. We reared larvae at low, medium, and high densities with different per capita resources, environments known to produce individuals with long and short guts. We then transferred larvae to competitively equal environments to determine if longer guts provided an advantage when resources became available. We predicted that larvae from higher densities with longer guts would exhibit hyperphagia and compensatory growth. We measured growth over 1-week, as well as the time to and size at metamorphosis. To assess mechanisms underlying the growth response, we measured diet transit time and intake. Growth, development, and metamorph snout-vent length did not differ between larvae with long and short guts. Instead, different gut lengths were associated with dramatically different feeding strategies. Medium- and high-density larvae fed at rates far below what their guts could accommodate. However, the combination of low intake and longer guts extended diet transit times, presumably increasing digestibility. This unexpected strategy achieved the same results as that of low-density larvae, which ate twice as much food, but passed it more quickly through a shorter gut. The lack of a compensatory response may be attributed to the costs of accelerated growth and weak seasonal time constraints in the tropics. This suggests that although compensatory growth is widespread among animals, expression of the response may vary with environmental context. J. Exp. Zool. 323A: 778-788, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sarah S Bouchard
- Department of Biology and Earth Science, Otterbein University, Westerville, Ohio
| | - Chelsea J O'Leary
- Department of Biology and Earth Science, Otterbein University, Westerville, Ohio
| | - Lindsay J Wargelin
- Department of Biology and Earth Science, Otterbein University, Westerville, Ohio
| | - Whitney B Rodriguez
- Department of Biology and Earth Science, Otterbein University, Westerville, Ohio
| | - Kadeen X Jennings
- Department of Biology and Earth Science, Otterbein University, Westerville, Ohio
| | - Karen M Warkentin
- Department of Biology, Boston University, Boston, Massachusetts.,Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| |
Collapse
|
24
|
Nunes AL, Orizaola G, Laurila A, Rebelo R. Morphological and life-history responses of anurans to predation by an invasive crayfish: an integrative approach. Ecol Evol 2014; 4:1491-503. [PMID: 24834343 PMCID: PMC4020706 DOI: 10.1002/ece3.979] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 01/08/2014] [Accepted: 01/14/2014] [Indexed: 11/07/2022] Open
Abstract
Predator-induced phenotypic plasticity has been widely documented in response to native predators, but studies examining the extent to which prey can respond to exotic invasive predators are scarce. As native prey often do not share a long evolutionary history with invasive predators, they may lack defenses against them. This can lead to population declines and even extinctions, making exotic predators a serious threat to biodiversity. Here, in a community-wide study, we examined the morphological and life-history responses of anuran larvae reared with the invasive red swamp crayfish, Procambarus clarkii, feeding on conspecific tadpoles. We reared tadpoles of nine species until metamorphosis and examined responses in terms of larval morphology, growth, and development, as well as their degree of phenotypic integration. These responses were compared with the ones developed in the presence of a native predator, the larval dragonfly Aeshna sp., also feeding on tadpoles. Eight of the nine species altered their morphology or life history when reared with the fed dragonfly, but only four when reared with the fed crayfish, suggesting among-species variation in the ability to respond to a novel predator. While morphological defenses were generally similar across species (deeper tails) and almost exclusively elicited in the presence of the fed dragonfly, life-history responses were very variable and commonly elicited in the presence of the invasive crayfish. Phenotypes induced in the presence of dragonfly were more integrated than in crayfish presence. The lack of response to the presence of the fed crayfish in five of the study species suggests higher risk of local extinction and ultimately reduced diversity of the invaded amphibian communities. Understanding how native prey species vary in their responses to invasive predators is important in predicting the impacts caused by newly established predator–prey interactions following biological invasions.
Collapse
Affiliation(s)
- Ana L Nunes
- Centro de Biologia Ambiental, Departamento de Biologia Ambiental, Faculdade de Ciências da Universidade de Lisboa Lisbon, Portugal ; Animal Ecology/Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University Uppsala, Sweden
| | - Germán Orizaola
- Animal Ecology/Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University Uppsala, Sweden
| | - Anssi Laurila
- Animal Ecology/Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University Uppsala, Sweden
| | - Rui Rebelo
- Centro de Biologia Ambiental, Departamento de Biologia Ambiental, Faculdade de Ciências da Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|