1
|
Zhou Y, Chen C, Xiong Y, Xiao F, Wang Y. Heavy metal induced resistance to herbivore of invasive plant: implications from inter- and intraspecific comparisons. FRONTIERS IN PLANT SCIENCE 2023; 14:1222867. [PMID: 37649994 PMCID: PMC10464952 DOI: 10.3389/fpls.2023.1222867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023]
Abstract
Introduction Heavy metals can affect the content of secondary metabolites in plants, which are one of the important defenses of plants against herbivores. However, studies on the effects of heavy metals on secondary metabolites of invasive plants are scarce. Phytolacca americana is an invasive plant in China, which can hyperaccumulate the heavy metal Mn. Methods This study used two Mn treatments (control and treatment group) and four species from Phytolacca (including the native and introduced populations of P. americana, its native and exotic congeners in China) to investigate the impact of heavy metal Mn on the invasive ability of P. americana. Results The results show that heavy metal Mn can enhance the inhibitory effect of the introduced populations of P. americana on the growth of herbivore (the weight of herbivore has decreased by 66%), and altered the feeding preferences of herbivore. We also found that heavy metal Mn can significantly increase the content of quantitative resistance in the leaves of the introduced populations of P. americana and is higher than its native populations, native and exotic congeners. In addition, heavy metal Mn caused the quantitative resistance of the exotic congener significantly higher than that of the native congeners. Discussion In summary, the heavy metal Mn can increase the content of secondary metabolites in leaves to enhance the interspecific competitive advantage of P. americana and promote its invasion, and also increase the invasion risk of exotic species.
Collapse
Affiliation(s)
| | | | | | | | - Yi Wang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
2
|
Oduor AMO. Invasive plant species that experience lower herbivory pressure may evolve lower diversities of chemical defense compounds in the exotic range. AMERICAN JOURNAL OF BOTANY 2022; 109:1382-1393. [PMID: 36000500 DOI: 10.1002/ajb2.16053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Invasive plant species often escape from specialist herbivores and are more likely to be attacked by generalist herbivores in the exotic range. Consequently, the shifting defense hypothesis predicts that invasive plants will produce higher concentrations of qualitative defense compounds to deter dominant generalist herbivores in the exotic range. Here, I additionally propose a reduced chemical diversity hypothesis (RCDH), which predicts that reduced herbivory pressure will select for invasive plant genotypes that produce lower diversities of chemical defense compounds in the exotic range. METHODS I tested whether (1) invasive Brassica nigra populations express a lower diversity and an overall higher concentration of glucosinolate compounds than native-range B. nigra; (2) Brassica nigra individuals that express high diversities and concentrations of glucosinolate compounds are more attractive to specialist and deterrent to generalist herbivores; and (3) tissues of invasive B. nigra are less palatable than tissues of native-range B. nigra to the generalist herbivores Theba pisana and Helix aspersa. RESULTS Invasive B. nigra populations produced a significantly lower diversity of glucosinolate compounds, a marginally higher concentration of total glucosinolates, and a significantly higher concentration of sinigrin (the dominant glucosinolate). Leaf tissues of invasive B. nigra were significantly less palatable to T. pisana and marginally less so to H. aspersa. Brassica nigra individuals that expressed high concentrations of total glucosinolate compounds were visited by a low diversity of generalist herbivore species in the field. CONCLUSIONS In line with the RCDH, the lower diversity of glucosinolate compounds produced by invasive B. nigra populations likely resulted from selection imposed by reduced herbivory pressure in the exotic range.
Collapse
Affiliation(s)
- Ayub M O Oduor
- Department of Applied Biology, Technical University of Kenya, P.O. Box 52428-00200, Nairobi, Kenya
| |
Collapse
|
3
|
Li YP, Feng YL, Li WT, Tomlinson K, Liao ZY, Zheng YL, Zhang JL. Leaf trait association in relation to herbivore defense, drought resistance, and economics in a tropical invasive plant. AMERICAN JOURNAL OF BOTANY 2022; 109:910-921. [PMID: 35471767 DOI: 10.1002/ajb2.1858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
PREMISE Exploring how functional traits vary and covary is important to understand plant responses to environmental change. However, we have limited understanding of the ways multiple functional traits vary and covary within invasive species. METHODS We measured 12 leaf traits of an invasive plant Chromolaena odorata, associated with plant or leaf economics, herbivore defense, and drought resistance on 10 introduced populations from Asia and 12 native populations from South and Central America, selected across a broad range of climatic conditions, and grown in a common garden. RESULTS Species' range and climatic conditions influenced leaf traits, but trait variation across climate space differed between the introduced and native ranges. Traits that confer defense against herbivores and drought resistance were associated with economic strategy, but the patterns differed by range. Plants from introduced populations that were at the fast-return end of the spectrum (high photosynthetic capacity) had high physical defense traits (high trichome density), whereas plants from native populations that were at the fast-return end of the spectrum had high drought escape traits (early leaf senescence and high percentage of withered shoots). CONCLUSIONS Our results indicate that invasive plants can rapidly adapt to novel environmental conditions. Chromolaena odorata showed multiple different functional trait covariation patterns and clines in the native and introduced ranges. Our results emphasize that interaction between multiple traits or functions should be considered when investigating the adaptive evolution of invasive plants.
Collapse
Affiliation(s)
- Yang-Ping Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yu-Long Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Wei-Tao Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Kyle Tomlinson
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Zhi-Yong Liao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yu-Long Zheng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| |
Collapse
|
4
|
The Possibility of Using Paulownia elongata S. Y. Hu × Paulownia fortunei Hybrid for Phytoextraction of Toxic Elements from Post-Industrial Wastes with Biochar. PLANTS 2021; 10:plants10102049. [PMID: 34685857 PMCID: PMC8541643 DOI: 10.3390/plants10102049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 01/01/2023]
Abstract
The potential of the Paulownia hybrid for the uptake and transport of 67 elements along with the physiological response of plants cultivated in highly contaminated post-industrial wastes (flotation tailings—FT, and mining sludge—MS) was investigated. Biochar (BR) was added to substrates to limit metal mobility and facilitate plant survival. Paulownia could effectively uptake and translocate B, Ca, K, P, Rb, Re and Ta. Despite severe growth retardation, chlorophyll biosynthesis was not depleted, while an increased carotenoid content was noted for plants cultivated in waste materials. In Paulownia leaves and roots hydroxybenzoic acids (C6-C1) were dominant phenolics, and hydroxycinnamic acids/phenylpropanoids (C6-C3) and flavonoids (C6-C3-C6) were also detected. Plant cultivation in wastes resulted in quantitative changes in the phenolic fraction, and a significant drop or total inhibition of particular phenolics. Cultivation in waste materials resulted in increased biosynthesis of malic and succinic acids in the roots of FT-cultivated plants, and malic and acetic acids in the case of MS/BR substrate. The obtained results indicate that the addition of biochar can support the adaptation of Paulownia seedlings growing on MS, however, in order to limit unfavorable changes in the plant, an optimal addition of waste is necessary.
Collapse
|
5
|
Huang K, Kong DL, Lu XR, Feng WW, Liu MC, Feng YL. Lesser leaf herbivore damage and structural defense and greater nutrient concentrations for invasive alien plants: Evidence from 47 pairs of invasive and non-invasive plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137829. [PMID: 32203801 DOI: 10.1016/j.scitotenv.2020.137829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Empirical evidence of enemy release is still inconsistent for invasive alien plant species, although enemy release is the key assumption for both the enemy release hypothesis (ERH) and the evolution of increased competitive ability hypothesis (EICA). In addition, little effort has been made to test this assumption in terms of defense investment using a multi-species comparative approach. Using a phylogenetically controlled within-study meta-analytical approach, we compared leaf herbivore damage, structural defenses and nutrients between 47 pairs of invasive versus native and/or non-invasive alien plants in China. The invasive relative to the co-occurring native or non-invasive (native and non-invasive alien) plants incurred lesser leaf herbivore damage, had lesser leaf concentrations of cellulose, hemicellulose, lignin and carbon, lesser leaf density and carbon or lignin to nitrogen ratio but greater nutrients, which may facilitate success of the invasive plants. The lesser structural investment did not result in lesser leaf construction costs for the invaders, which may be associated with their greater leaf nitrogen concentration. However, the invasive plants were not significantly different from the non-invasive alien plants in any trait. Our results provide strong evidence for ERH, also are consistent with EICA, and indicate that enemy release may be an important factor in alien plant invasions.
Collapse
Affiliation(s)
- Kai Huang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - De-Liang Kong
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Xiu-Rong Lu
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Wei-Wei Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Ming-Chao Liu
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China.
| | - Yu-Long Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China.
| |
Collapse
|
6
|
Brandenburger CR, Kim M, Slavich E, Meredith FL, Salminen J, Sherwin WB, Moles AT. Evolution of defense and herbivory in introduced plants-Testing enemy release using a known source population, herbivore trials, and time since introduction. Ecol Evol 2020; 10:5451-5463. [PMID: 32607166 PMCID: PMC7319247 DOI: 10.1002/ece3.6288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/07/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
The enemy release hypothesis is often cited as a potential explanation for the success of introduced plants; yet, empirical evidence for enemy release is mixed. We aimed to quantify changes in herbivory and defense in introduced plants while controlling for three factors that might have confounded past studies: using a wide native range for comparison with the introduced range, measuring defense traits without determining whether they affect herbivore preferences, and not considering the effect of time since introduction. The first hypothesis we tested was that introduced plants will have evolved lower levels of plant defense compared to their source population. We grew South African (source) and Australian (introduced) beach daisies (Arctotheca populifolia) in a common-environment glasshouse experiment and measured seven defense traits. Introduced plants had more ash, alkaloids, and leaf hairs than source plants, but were also less tough, with a lower C:N ratio and less phenolics. Overall, we found no difference in defense between source and introduced plants. To determine whether the feeding habits of herbivores align with changes in defense traits, we conducted preference feeding trials using five different herbivore species. Herbivores showed no overall preference for leaves from either group. The second hypothesis we tested was that herbivory on introduced plant species will increase through time after introduction to a new range. We recorded leaf damage on herbarium specimens of seven species introduced to eastern Australia and three native control species. We found no change in the overall level of herbivory experienced by introduced plants since arriving in Australia. CONCLUSION In the field of invasion ecology, we need to rethink the paradigm that species introduced to a new range undergo simple decreases in defenses against herbivores. Instead, plants are likely to employ a range of defense traits that evolve in both coordinated and opposing ways in response to a plethora of different biotic and abiotic selective pressures.
Collapse
Affiliation(s)
- Claire R. Brandenburger
- Evolution and Ecology Research CentreSchool of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Martin Kim
- Evolution and Ecology Research CentreSchool of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Eve Slavich
- Stats CentralMark Wainwright Analytical CentreUniversity of New South WalesSydneyNSWAustralia
| | - Floret L. Meredith
- Evolution and Ecology Research CentreSchool of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Juha‐Pekka Salminen
- Natural Chemistry Research GroupDepartment of ChemistryUniversity of TurkuTurkuFinland
| | - William B. Sherwin
- Evolution and Ecology Research CentreSchool of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Angela T. Moles
- Evolution and Ecology Research CentreSchool of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSWAustralia
| |
Collapse
|
7
|
Li W, Zheng Y, Zhang L, Lei Y, Li Y, Liao Z, Li Z, Feng Y. Postintroduction evolution contributes to the successful invasion of Chromolaena odorata. Ecol Evol 2020; 10:1252-1263. [PMID: 32076511 PMCID: PMC7029091 DOI: 10.1002/ece3.5979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/03/2019] [Accepted: 12/04/2019] [Indexed: 11/10/2022] Open
Abstract
The evolution of increased competitive ability (EICA) hypothesis states that, when introduced in a novel habitat, invasive species may reallocate resources from costly quantitative defense mechanisms against enemies to dispersal and reproduction; meanwhile, the refinement of EICA suggests that concentrations of toxins used for qualitative defense against generalist herbivores may increase. Previous studies considered that only few genotypes were introduced to the new range, whereas most studies to test the EICA (or the refinement of EICA) hypotheses did not consider founder effects.In this study, genetic and phenotypic data of Chromolaena odorata populations sampled across native and introduced ranges were combined to investigate the role of postintroduction evolution in the successful invasion of C. odorata.Compared with native populations, the introduced populations exhibited lower levels of genetic diversity. Moreover, different founder effects events were interpreted as the main cause of the genetic structure observed in introduced ranges. Three Florida, two Trinidad, and two Puerto Rico populations may have been the sources of the invasive C. odorata in Asia.When in free of competition conditions, C. odorata plants from introduced ranges perform better than those from native ranges at high nutrient supply but not at low nutrient level. The differences in performance due to competition were significantly greater for C. odorata plants from the native range than those from the introduced range at both nutrient levels. Moreover, the differences in performance by competition were significantly greater for putative source populations than for invasive populations.Quantities of three types of secondary compounds in leaves of invasive C. odorata populations were significantly higher than those in putative source populations. These results provide more accurate evidence that the competitive ability of the introduced C. odorata is increased with postintroduction evolution.
Collapse
Affiliation(s)
- Weitao Li
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
- Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
- Center of Conservation BiologyCore Botanical GardensChinese Academy of SciencesMenglaChina
| | - Yulong Zheng
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
- University of Chinese Academy of SciencesBeijingChina
- Center of Conservation BiologyCore Botanical GardensChinese Academy of SciencesMenglaChina
| | - Likun Zhang
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
| | - Yanbao Lei
- University of Chinese Academy of SciencesBeijingChina
- Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengduChina
| | - Yangping Li
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
| | - Zhiyong Liao
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
- Center of Conservation BiologyCore Botanical GardensChinese Academy of SciencesMenglaChina
| | - Zhongpei Li
- Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yulong Feng
- Liaoning Key Laboratory for Biological Invasions and Global ChangesShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
8
|
Liao ZY, Scheepens JF, Li QM, Wang WB, Feng YL, Zheng YL. Founder effects, post-introduction evolution and phenotypic plasticity contribute to invasion success of a genetically impoverished invader. Oecologia 2019; 192:105-118. [PMID: 31792607 DOI: 10.1007/s00442-019-04566-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
Abstract
Multiple mechanisms may act synergistically to promote success of invasive plants. Here, we tested the roles of three non-mutually exclusive mechanisms-founder effects, post-introduction evolution and phenotypic plasticity-in promoting invasion of Chromolaena odorata. We performed a common garden experiment to investigate phenotypic diversification and phenotypic plasticity of the genetically impoverished invader in response to two rainfall treatments (ambient and 50% rainfall). We used ancestor-descendant comparisons to determine post-introduction evolution and the QST-FST approach to estimate past selection on phenotypic traits. We found that eight traits differed significantly between plants from the invasive versus native ranges, for two of which founder effects can be inferred and for six of which post-introduction evolution can be inferred. The invader experienced strong diversifying selection in the invasive range and showed clinal variations in six traits along water and/or temperature gradients. These clinal variations are likely attributed to post-introduction evolution rather than multiple introductions of pre-adapted genotypes, as most of the clinal variations were absent or in opposite directions from those for native populations. Compared with populations, rainfall treatments explained only small proportions of total variations in all studied traits for plants from both ranges, highlighting the importance of heritable phenotypic differentiation. In addition, phenotypic plasticity was similar for plants from both ranges although neutral genetic diversity was much lower for plants from the invasive range. Our results showed that founder effects, post-introduction evolution and phenotypic plasticity may function synergistically in promoting invasion success of C. odorata.
Collapse
Affiliation(s)
- Zhi-Yong Liao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.,Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - J F Scheepens
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Qiao-Ming Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Wei-Bin Wang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China
| | - Yu-Long Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China.
| | - Yu-Long Zheng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China. .,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
| |
Collapse
|
9
|
van Kleunen M, Bossdorf O, Dawson W. The Ecology and Evolution of Alien Plants. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062654] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We review the state of the art of alien plant research with emphasis on conceptual advances and knowledge gains on general patterns and drivers, biotic interactions, and evolution. Major advances include the identification of different invasion stages and invasiveness dimensions (geographic range, habitat specificity, local abundance) and the identification of appropriate comparators while accounting for propagule pressure and year of introduction. Developments in phylogenetic and functional trait research bear great promise for better understanding of the underlying mechanisms. Global patterns are emerging with propagule pressure, disturbance, increased resource availability, and climate matching as major invasion drivers, but species characteristics also play a role. Biotic interactions with resident communities shape invasion outcomes, with major roles for species diversity, enemies, novel weapons, and mutualists. Mounting evidence has been found for rapid evolution of invasive aliens and evolutionary responses of natives, but a mechanistic understanding requires tighter integration of molecular and phenotypic approaches. We hope the open questions identified in this review will stimulate further research on the ecology and evolution of alien plants.
Collapse
Affiliation(s)
- Mark van Kleunen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
- Ecology Group, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology Group, Institute of Evolution and Ecology, University of Tübingen, 72076 Tübingen, Germany
| | - Wayne Dawson
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
10
|
A meta-analysis of the evolution of increased competitive ability hypothesis: genetic-based trait variation and herbivory resistance trade-offs. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1724-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Rouifed S, Puijalon S, Bardon C, Meiffren G, Buonomo A, Sebei N, Poussineau S, Vallier F, Shimoda M, Piola F. Comparison of defence and performance traits between one widespread clone and native populations in a major invasive plant species. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Soraya Rouifed
- CNRS, ENTPE, UMR5023, LEHNA; Université Lyon 1, Villeurbanne; Villeurbanne Cedex France
| | - Sara Puijalon
- CNRS, ENTPE, UMR5023, LEHNA; Université Lyon 1, Villeurbanne; Villeurbanne Cedex France
| | - Clément Bardon
- CNRS, ENTPE, UMR5023, LEHNA; Université Lyon 1, Villeurbanne; Villeurbanne Cedex France
| | - Guillaume Meiffren
- CNRS UMR5557; Ecologie Microbienne; Université Lyon 1, Villeurbanne; Villeurbanne Cedex France
| | - Antoine Buonomo
- CNRS, ENTPE, UMR5023, LEHNA; Université Lyon 1, Villeurbanne; Villeurbanne Cedex France
| | - Nadia Sebei
- CNRS, ENTPE, UMR5023, LEHNA; Université Lyon 1, Villeurbanne; Villeurbanne Cedex France
| | - Sophie Poussineau
- CNRS, ENTPE, UMR5023, LEHNA; Université Lyon 1, Villeurbanne; Villeurbanne Cedex France
| | - Félix Vallier
- CNRS, ENTPE, UMR5023, LEHNA; Université Lyon 1, Villeurbanne; Villeurbanne Cedex France
| | - Michiko Shimoda
- Faculty of Social Environment; Tokoha University; Fuji Shizuoka Japan
| | - Florence Piola
- CNRS, ENTPE, UMR5023, LEHNA; Université Lyon 1, Villeurbanne; Villeurbanne Cedex France
| |
Collapse
|
12
|
Zheng Y, Liao Z. High-density native-range species affects the invasive plant Chromolaena odorata more strongly than species from its invasive range. Sci Rep 2017; 7:16075. [PMID: 29167530 PMCID: PMC5700193 DOI: 10.1038/s41598-017-16376-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/10/2017] [Indexed: 12/01/2022] Open
Abstract
Invasive plant species often form dense mono-dominant stands in areas they have invaded, while having only sparse distribution in their native ranges, and the reasons behind this phenomenon are a key point of research in invasive species biology. Differences in species composition between native and invasive ranges may contribute to the difference in distribution status. In this study, we found that the high-density condition had a more negative effect on C. odorata than the low-density condition when co-grown with neighbor plants from its native range in Mexico, while this pattern was not in evidence when it was grown with neighbors from its invasive range in China. Different competitive ability and coevolutionary history with C. odorata between native-range neighbors and invasive-range neighbors may lead to the inconsistent patterns.
Collapse
Affiliation(s)
- Yulong Zheng
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China.
| | - Zhiyong Liao
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| |
Collapse
|
13
|
Huang W, Ding J. Effects of generalist herbivory on resistance and resource allocation by the invasive plant, Phytolacca americana. INSECT SCIENCE 2016; 23:191-199. [PMID: 26097089 DOI: 10.1111/1744-7917.12244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/09/2015] [Indexed: 06/04/2023]
Abstract
Successful invasions by exotic plants are often attributed to a loss of co-evolved specialists and a re-allocation of resources from defense to growth and reproduction. However, invasive plants are rarely completely released from insect herbivory because they are frequently attacked by generalists in their introduced ranges. The novel generalist community may also affect the invasive plant's defensive strategies and resource allocation. Here, we tested this hypothesis using American pokeweed (Phytolacca americana L.), a species that has become invasive in China, which is native to North America. We examined resistance, tolerance, growth and reproduction of plant populations from both China and the USA when plants were exposed to natural generalist herbivores in China. We found that leaf damage was greater for invasive populations than for native populations, indicating that plants from invasive ranges had lower resistance to herbivory than those from native ranges. A regression of the percentage of leaf damage against mass showed that there was no significant difference in tolerance between invasive and native populations, even though the shoot, root, fruit and total mass were larger for invasive populations than for native populations. These results suggest that generalist herbivores are important drivers mediating the defensive strategies and resource allocation of the invasive American pokeweed.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jianqing Ding
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
14
|
Korell L, Schmidt R, Bruelheide H, Hensen I, Auge H. Mechanisms driving diversity-productivity relationships differ between exotic and native communities and are affected by gastropod herbivory. Oecologia 2015; 180:1025-36. [PMID: 26235964 PMCID: PMC4819496 DOI: 10.1007/s00442-015-3395-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 07/09/2015] [Indexed: 11/29/2022]
Abstract
Biodiversity experiments have shown that productivity usually increases with plant species richness. However, most of those studies disregarded the importance of trophic interactions to the diversity-productivity relationship, and focused on the loss of native species while ignoring invasions by exotic species. Yet, as functional complementarity and the impact of plant antagonists are likely to differ between native and exotic communities, the diversity-productivity relationship may change when native communities are invaded by exotic species. We conducted a mesocosm experiment to test how diversity effects, evenness, and productivity differed between exotic and native assemblages of grassland plants, and how these communities were influenced by slug herbivory. In line with other experiments, we found higher productivity in exotic than in native communities. However, different mechanisms (complementarity vs. selection effect) contributed to the positive diversity-productivity relationships in exotic vs. native communities. Against expectations, native communities showed much lower evenness and a greater selection effect, suggesting that competitive dominance among native species may be even stronger than among exotic species. Slug herbivory decreased productivity independently of species origin and species diversity. However, exotic communities showed a threefold higher complementarity effect than native communities in the absence of slugs, which was mainly driven by differences in the responses of native and exotic legumes and nonleguminous herbs. Our results imply that underlying mechanisms for the positive diversity-productivity relationship differ between native and exotic communities in the early stages of community development, and that differential responses of plant functional groups to generalist herbivory can contribute to this pattern.
Collapse
Affiliation(s)
- Lotte Korell
- Institute of Biology, Am Kirchtor 1, 06108, Halle, Germany. .,Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Straße 4, 06120, Halle, Germany. .,Institute of Biology, Philipps-University Marburg, Karl-von-Frisch-Straße 8, 35043, Marburg, Germany.
| | - Robin Schmidt
- Institute of Biology, Am Kirchtor 1, 06108, Halle, Germany.,Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Straße 4, 06120, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Helge Bruelheide
- Institute of Biology, Am Kirchtor 1, 06108, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Isabell Hensen
- Institute of Biology, Am Kirchtor 1, 06108, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Harald Auge
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Straße 4, 06120, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| |
Collapse
|
15
|
Zheng YL, Feng YL, Zhang LK, Callaway RM, Valiente-Banuet A, Luo DQ, Liao ZY, Lei YB, Barclay GF, Silva-Pereyra C. Integrating novel chemical weapons and evolutionarily increased competitive ability in success of a tropical invader. THE NEW PHYTOLOGIST 2015; 205:1350-1359. [PMID: 25367824 DOI: 10.1111/nph.13135] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/30/2014] [Indexed: 05/06/2023]
Abstract
The evolution of increased competitive ability (EICA) hypothesis and the novel weapons hypothesis (NWH) are two non-mutually exclusive mechanisms for exotic plant invasions, but few studies have simultaneously tested these hypotheses. Here we aimed to integrate them in the context of Chromolaena odorata invasion. We conducted two common garden experiments in order to test the EICA hypothesis, and two laboratory experiments in order to test the NWH. In common conditions, C. odorata plants from the nonnative range were better competitors but not larger than plants from the native range, either with or without the experimental manipulation of consumers. Chromolaena odorata plants from the nonnative range were more poorly defended against aboveground herbivores but better defended against soil-borne enemies. Chromolaena odorata plants from the nonnative range produced more odoratin (Eupatorium) (a unique compound of C. odorata with both allelopathic and defensive activities) and elicited stronger allelopathic effects on species native to China, the nonnative range of the invader, than on natives of Mexico, the native range of the invader. Our results suggest that invasive plants may evolve increased competitive ability after being introduced by increasing the production of novel allelochemicals, potentially in response to naïve competitors and new enemy regimes.
Collapse
Affiliation(s)
- Yu-Long Zheng
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, 650223, China
| | - Yu-Long Feng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, 110866, China
| | - Li-Kun Zhang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, 650223, China
| | - Ragan M Callaway
- Division of Biological Sciences and the Institute on Ecosystems, The University of Montana, Missoula, MT, 59812, USA
| | - Alfonso Valiente-Banuet
- Departamento de Ecologôa de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autônoma de Mexico, Apartado Postal 70-275, CP 04510, México DF, Mexico
| | - Du-Qiang Luo
- College of Life Sciences, Hebei University, Baoding, Hebei Province, 071002, China
| | - Zhi-Yong Liao
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, 650223, China
| | - Yan-Bao Lei
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, 650223, China
| | - Gregor F Barclay
- Department of Life Sciences, University of the West Indies, St Augustine, Trinidad and Tobago
| | - Carlos Silva-Pereyra
- Departamento de Ecologôa de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autônoma de Mexico, Apartado Postal 70-275, CP 04510, México DF, Mexico
| |
Collapse
|