1
|
Zhang W, Stelinski LL, Mohamed A, Wang G, Tettamanti G, Chen M, Hong M, Daly EZ, Bruin J, Renault D, Keyhani NO, Zhao Q. Unlocking agro-ecosystem sustainability: exploring the bottom-up effects of microbes, plants, and insect herbivores. Integr Zool 2024. [PMID: 39460505 DOI: 10.1111/1749-4877.12911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Agricultural ecosystem formation and evolution depend on interactions and communication between multiple organisms. Within this context, communication occurs between microbes, plants, and insects, often involving the release and perception of a wide range of chemical cues. Unraveling how this information is coded and interpreted is critical to expanding our understanding of how agricultural ecosystems function in terms of competition and cooperation. Investigations examining dual interactions (e.g. plant-microbe, insect-microbe, and insect-plant) have resolved some basic components of this communication. However, there is a need for systematically examining multitrophic interactions that occur simultaneously between microorganisms, insects, and plants. A more thorough understanding of these multitrophic interactions has been made possible by recent advancements in the study of such ecological interactions, which are based on a variety of contemporary technologies such as artificial intelligence sensors, multi-omics, metabarcoding, and others. Frequently, these developments have led to the discovery of startling examples of each member manipulating the other. Here, we review recent advances in the understanding of bottom-up chemical communication between microorganisms, plants, and insects, and their consequences. We discuss the components of these "chemo-languages" and how they modify outcomes of multi-species interactions across trophic levels. Further, we suggest prospects for translating the current basic understanding of multitrophic interactions into strategies that could be applied in agricultural ecosystems to increase food safety and security.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Lukasz L Stelinski
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Guangmin Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Napoli, Italy
| | - Moxian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Mingsheng Hong
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Ella Z Daly
- CNRS, ECOBIO (Ecosystems, biodiversity, evolution), UMR 6553, University of Rennes, Rennes, France
| | - Jan Bruin
- Institute for Biodiversity and Ecosystem Dynamics (IBED), Evolutionary Biology and Population Biology, University of Amsterdam, Amsterdam, The Netherlands
| | - David Renault
- CNRS, ECOBIO (Ecosystems, biodiversity, evolution), UMR 6553, University of Rennes, Rennes, France
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, Illinois, USA
| | - Qi Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|
2
|
Van Hee S, Alınç T, Weldegergis BT, Dicke M, Colazza S, Peri E, Jacquemyn H, Cusumano A, Lievens B. Differential effects of plant-beneficial fungi on the attraction of the egg parasitoid Trissolcus basalis in response to Nezara viridula egg deposition. PLoS One 2024; 19:e0304220. [PMID: 38771894 PMCID: PMC11108215 DOI: 10.1371/journal.pone.0304220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
There is increasing evidence that plant-associated microorganisms play important roles in defending plants against insect herbivores through both direct and indirect mechanisms. While previous research has shown that these microbes can modify the behaviour and performance of insect herbivores and their natural enemies, little is known about their effect on egg parasitoids which utilize oviposition-induced plant volatiles to locate their hosts. In this study, we investigated how root inoculation of sweet pepper (Capsicum annuum) with the plant-beneficial fungi Beauveria bassiana ARSEF 3097 or Trichoderma harzianum T22 influences the olfactory behaviour of the egg parasitoid Trissolcus basalis following egg deposition by its host Nezara viridula. Olfactometer assays showed that inoculation by T. harzianum significantly enhanced the attraction of the egg parasitoid, while B. bassiana had the opposite effect. However, no variation was observed in the chemical composition of plant volatiles. Additionally, fitness-related traits of the parasitoids (wasp body size) were not altered by any of the two fungi, suggesting that fungal inoculation did not indirectly affect host quality. Altogether, our results indicate that plant inoculation with T. harzianum T22 can be used to enhance attraction of egg parasitoids, which could be a promising strategy in manipulating early plant responses against pest species and improving sustainable crop protection. From a more fundamental point of view, our findings highlight the importance of taking into account the role of microorganisms when studying the intricate interactions between plants, herbivores and their associated egg parasitoids.
Collapse
Affiliation(s)
- Sara Van Hee
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Tuğcan Alınç
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | | | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Stefano Colazza
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Ezio Peri
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Antonino Cusumano
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Bustos-Segura C, Godschalx AL, Malacari L, Deiss F, Rasmann S, Ballhorn DJ, Benrey B. Rhizobia-legume symbiosis mediates direct and indirect interactions between plants, herbivores and their parasitoids. Heliyon 2024; 10:e27815. [PMID: 38524601 PMCID: PMC10957422 DOI: 10.1016/j.heliyon.2024.e27815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Microorganisms associated with plant roots significantly impact the quality and quantity of plant defences. However, the bottom-up effects of soil microbes on the aboveground multitrophic interactions remain largely under studied. To address this gap, we investigated the chemically-mediated effects of nitrogen-fixing rhizobia on legume-herbivore-parasitoid multitrophic interactions. To address this, we initially examined the cascading effects of the rhizobia bean association on herbivore caterpillars, their parasitoids, and subsequently investigated how rhizobia influence on plant volatiles and extrafloral nectar. Our goal was to understand how these plant-mediated effects can affect parasitoids. Lima bean plants (Phaseoulus lunatus) inoculated with rhizobia exhibited better growth, and the number of root nodules positively correlated with defensive cyanogenic compounds. Despite increase of these chemical defences, Spodoptera latifascia caterpillars preferred to feed and grew faster on rhizobia-inoculated plants. Moreover, the emission of plant volatiles after leaf damage showed distinct patterns between inoculation treatments, with inoculated plants producing more sesquiterpenes and benzyl nitrile than non-inoculated plants. Despite these differences, Euplectrus platyhypenae parasitoid wasps were similarly attracted to rhizobia- or no rhizobia-treated plants. Yet, the oviposition and offspring development of E. platyhypenae was better on caterpillars fed with rhizobia-inoculated plants. We additionally show that rhizobia-inoculated common bean plants (Phaseolus vulgaris) produced more extrafloral nectar, with higher hydrocarbon concentration, than non-inoculated plants. Consequently, parasitoids performed better when fed with extrafloral nectar from rhizobia-inoculated plants. While the overall effects of bean-rhizobia symbiosis on caterpillars were positive, rhizobia also indirectly benefited parasitoids through the caterpillar host, and directly through the improved production of high quality extrafloral nectar. This study underscores the importance of exploring diverse facets and chemical mechanisms that influence the dynamics between herbivores and predators. This knowledge is crucial for gaining a comprehensive understanding of the ecological implications of rhizobia symbiosis on these interactions.
Collapse
Affiliation(s)
- Carlos Bustos-Segura
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Sorbonne Université, Institut National de Recherche pour L'Agriculture, L'Alimentation et L'Environnement, CNRS, Institut de Recherche pour le Développement, Université Paris-Est-Créteil-Val-de-Marne, Université Paris Cité, Institut D’Ecologie et des Sciences de L’Environnement de Paris, Versailles, 78026, France
| | - Adrienne L. Godschalx
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Lucas Malacari
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Fanny Deiss
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sergio Rasmann
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | | | - Betty Benrey
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
4
|
Meesters C, Weldegergis BT, Dicke M, Jacquemyn H, Lievens B. Limited effects of plant-beneficial fungi on plant volatile composition and host-choice behavior of Nesidiocoris tenuis. FRONTIERS IN PLANT SCIENCE 2024; 14:1322719. [PMID: 38235197 PMCID: PMC10791865 DOI: 10.3389/fpls.2023.1322719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Biological control using plant-beneficial fungi has gained considerable interest as a sustainable method for pest management, by priming the plant for enhanced defense against pathogens and insect herbivores. However, despite promising outcomes, little is known about how different fungal strains mediate these beneficial effects. In this study, we evaluated whether inoculation of tomato seeds with the plant-beneficial fungi Beauveria bassiana ARSEF 3097, Metarhizium brunneum ARSEF 1095 and Trichoderma harzianum T22 affected the plant's volatile organic compound (VOC) profile and the host-choice behavior of Nesidiocoris tenuis, an emerging pest species in NW-European tomato cultivation, and the related zoophytophagous biocontrol agent Macrolophus pygmaeus. Results indicated that fungal inoculation did not significantly alter the VOC composition of tomato plants. However, in a two-choice cage assay where female insects were given the option to select between control plants and fungus-inoculated plants, N. tenuis preferred control plants over M. brunneum-inoculated plants. Nearly 72% of all N. tenuis individuals tested chose the control treatment. In all other combinations tested, no significant differences were found for none of the insects. We conclude that inoculation of tomato with plant-beneficial fungi had limited effects on plant volatile composition and host-choice behavior of insects. However, the observation that N. tenuis was deterred from the crop when inoculated with M. brunneum and attracted to non-inoculated plants may provide new opportunities for future biocontrol based on a push-pull strategy.
Collapse
Affiliation(s)
- Caroline Meesters
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (MS), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | | | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, Wageningen, Netherlands
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (MS), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Pan L, Gao W, Liu X, Qin D, Zhang T, Ren R, Zhang W, Sun M, Gao C, Bai P, You W, Zhu G, Li M. Parasitoids as taxonomists: how does the parasitoid Chouioia cunea distinguish between a host and a non-host? PEST MANAGEMENT SCIENCE 2023; 79:4547-4556. [PMID: 37427488 DOI: 10.1002/ps.7656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND How parasitoids distinguish hosts from non-hosts remains an unknown question. Chouioia cunea Yang (Eulophidae) is an important fall webworm parasitoid that attacks many forest and agricultural pests. To study the differences in the chemical clues used by C. cunea to distinguish host and non-host plants, we used gas chromatography-mass spectrometry (GC-MS) to identify volatile compounds of two C. cunea hosts (Hyphantria cunea and Helicoverpa armigera) and two non-hosts (Spodoptera exigua and Spodoptera frugiperda). Additionally, we used behavioral assays to compare the attraction of C. cunea to various compounds. RESULTS The two natural host species were more attractive than the two non-host species, in the following order: Hyphantria cunea > Helicoverpa armigera > S. exigua = S. frugiperda. The pupae of the natural hosts contained 1-dodecene, which was not produced by the two natural non-hosts. When the 'attractants' based on the difference between the species-specific blend emitted by pupae and the optimal blend were sprayed onto the natural non-host pupae, they significantly improved the attraction of C. cunea to the non-host pupae. CONCLUSION These results revealed that specific host-produced volatile compounds guide C. cunea to distinguish between natural hosts and non-hosts. Overall, this study provides a foundation for developing a behavior-modifying strategy to re-direct C. cunea attacks to control important non-host pests. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lina Pan
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Xinyu Liu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Dongyu Qin
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Tiantian Zhang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Rui Ren
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Weiyi Zhang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Meidi Sun
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Cuiqing Gao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Penghua Bai
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Wei You
- Institute of Landscape Science and Technology, Baotou, China
| | - Gengping Zhu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Min Li
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| |
Collapse
|
6
|
Zhu L, Huang J, Lu X, Zhou C. Development of plant systemic resistance by beneficial rhizobacteria: Recognition, initiation, elicitation and regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:952397. [PMID: 36017257 PMCID: PMC9396261 DOI: 10.3389/fpls.2022.952397] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
A plant growing in nature is not an individual, but it holds an intricate community of plants and microbes with relatively stable partnerships. The microbial community has recently been demonstrated to be closely linked with plants since their earliest evolution, to help early land plants adapt to environmental threats. Mounting evidence has indicated that plants can release diverse kinds of signal molecules to attract beneficial bacteria for mediating the activities of their genetics and biochemistry. Several rhizobacterial strains can promote plant growth and enhance the ability of plants to withstand pathogenic attacks causing various diseases and loss in crop productivity. Beneficial rhizobacteria are generally called as plant growth-promoting rhizobacteria (PGPR) that induce systemic resistance (ISR) against pathogen infection. These ISR-eliciting microbes can mediate the morphological, physiological and molecular responses of plants. In the last decade, the mechanisms of microbial signals, plant receptors, and hormone signaling pathways involved in the process of PGPR-induced ISR in plants have been well investigated. In this review, plant recognition, microbial elicitors, and the related pathways during plant-microbe interactions are discussed, with highlights on the roles of root hair-specific syntaxins and small RNAs in the regulation of the PGPR-induced ISR in plants.
Collapse
Affiliation(s)
- Lin Zhu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiameng Huang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Xiaoming Lu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Cheng Zhou
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Legume plant defenses and nutrients mediate indirect interactions between soil rhizobia and chewing herbivores. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Cusumano A, Bella P, Peri E, Rostás M, Guarino S, Lievens B, Colazza S. Nectar-Inhabiting Bacteria Affect Olfactory Responses of an Insect Parasitoid by Altering Nectar Odors. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02078-6. [PMID: 35913610 DOI: 10.1007/s00248-022-02078-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/15/2022] [Indexed: 05/28/2023]
Abstract
Floral nectar is ubiquitously colonized by a variety of microorganisms among which yeasts and bacteria are the most common. Microorganisms inhabiting floral nectar can alter several nectar traits, including nectar odor by producing microbial volatile organic compounds (mVOCs). Evidence showing that mVOCs can affect the foraging behavior of insect pollinators is increasing in the literature, whereas the role of mVOCs in altering the foraging behavior of third-trophic level organisms such as insect parasitoids is largely overlooked. Parasitoids are frequent visitors of flowers and are well known to feed on nectar. In this study, we isolated bacteria inhabiting floral nectar of buckwheat, Fagopyrum esculentum (Polygonales: Polygonaceae), to test the hypothesis that nectar bacteria affect the foraging behavior of the egg parasitoid Trissolcus basalis (Hymenoptera: Scelionidae) via changes in odors of nectar. In behavioral assays, we found that T. basalis wasps are attracted toward nectar fermented by 4 out of the 14 bacterial strains isolated, which belong to Staphylococcus epidermidis, Terrabacillus saccharophilus (both Firmicutes), Pantoea sp. (Proteobacteria), and Curtobacterium sp. (Actinobacteria). Results of chemical investigations revealed significant differences in the volatile blend composition of nectars fermented by the bacterial isolates. Our results indicate that nectar-inhabiting bacteria play an important role in the interactions between flowering plants and foraging parasitoids. These results are also relevant from an applied perspective as flowering resources, such as buckwheat, are largely used in agriculture to promote conservation biological control of insect pests.
Collapse
Affiliation(s)
- Antonino Cusumano
- Department of Agricultural, Food and Forest Sciences, University of Palermo Viale delle Scienze, Building 5, 90128, Palermo, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BATCenter), University of Napoli Federico II, 80055, Portici, Italy
| | - Patrizia Bella
- Department of Agricultural, Food and Forest Sciences, University of Palermo Viale delle Scienze, Building 5, 90128, Palermo, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BATCenter), University of Napoli Federico II, 80055, Portici, Italy
| | - Ezio Peri
- Department of Agricultural, Food and Forest Sciences, University of Palermo Viale delle Scienze, Building 5, 90128, Palermo, Italy.
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BATCenter), University of Napoli Federico II, 80055, Portici, Italy.
| | - Michael Rostás
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Grisebachstr. 6, 37077, Göttingen, Germany
| | - Salvatore Guarino
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), Corso Calatafimi 414, 90129, Palermo, Italy
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, Willem De Croylaan 46, Leuven, KU, 3001, Belgium
- Leuven Plant Institute (LPI), Leuven, KU, 3001, Belgium
| | - Stefano Colazza
- Department of Agricultural, Food and Forest Sciences, University of Palermo Viale delle Scienze, Building 5, 90128, Palermo, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BATCenter), University of Napoli Federico II, 80055, Portici, Italy
| |
Collapse
|
9
|
Barragán-Fonseca KY, Nurfikari A, van de Zande EM, Wantulla M, van Loon JJA, de Boer W, Dicke M. Insect frass and exuviae to promote plant growth and health. TRENDS IN PLANT SCIENCE 2022; 27:646-654. [PMID: 35248491 DOI: 10.1016/j.tplants.2022.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/28/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Beneficial soil microorganisms can contribute to biocontrol of plant pests and diseases, induce systemic resistance (ISR) against attackers, and enhance crop yield. Using organic soil amendments has been suggested to stimulate the abundance and/or activity of beneficial indigenous microbes in the soil. Residual streams from insect farming (frass and exuviae) contain chitin and other compounds that may stimulate beneficial soil microbes that have ISR and biocontrol activity. Additionally, changes in plant phenotype that are induced by beneficial microorganisms may directly influence plant-pollinator interactions, thus affecting plant reproduction. We explore the potential of insect residual streams derived from the production of insects as food and feed to promote plant growth and health, as well as their potential benefits for sustainable agriculture.
Collapse
Affiliation(s)
- Katherine Y Barragán-Fonseca
- Laboratory of Entomology, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands; Grupo en Conservación y Manejo de Vida Silvestre, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Azkia Nurfikari
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; Soil Biology Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Els M van de Zande
- Laboratory of Entomology, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands
| | - Max Wantulla
- Laboratory of Entomology, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; Soil Biology Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
10
|
Dabré ÉE, Brodeur J, Hijri M, Favret C. The Effects of an Arbuscular Mycorrhizal Fungus and Rhizobium Symbioses on Soybean Aphid Mostly Fail to Propagate to the Third Trophic Level. Microorganisms 2022; 10:microorganisms10061158. [PMID: 35744676 PMCID: PMC9230877 DOI: 10.3390/microorganisms10061158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
The cascading effects of microbe–plant symbioses on the second trophic level, such as phytophagous insects, have been most studied. However, few studies have examined the higher third trophic level, i.e., their natural enemies. We investigated the effects of the symbiotic associations between an arbuscular mycorrhizal (AM) fungus, Rhizophagus irregularis (Glomerales: Glomeraceae), a nitrogen-fixing bacterium, Bradyrhizobium japonicum (Rhizobiales: Bradyrhizobiaceae), and soybean, Glycine max (L.) Merr. (Fabaceae) on two natural enemies of the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), the ladybird beetle Coleomegilla maculata (De Geer) (Coleoptera: Coccinellidae), and the parasitoid Aphelinus certus Yasnosh (Hymenoptera: Aphelinidae). We measured the growth and survival in the predator and parasitoid reared on aphids feeding on soybean inoculated seedlings. The rhizobium symbiosis alone was affected with a decreased rate of parasitoid emergence, presumably due to decreased host quality. However, number of mummies, sex-ratio, development time, and parasitoid size were all unaffected by inoculation. AM fungus alone or co-inoculated with the rhizobium was unaffected with any of the parameters of the parasitoid. For the predator, none of the measured parameters was affected with any inoculant. Here, it appears that whatever benefits the microbe–plant symbioses confer on the second trophic level are little transferred up to the third.
Collapse
Affiliation(s)
- Élisée Emmanuel Dabré
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.B.); (M.H.); (C.F.)
- Correspondence: ; Tel.: +1-514-649-7152 or +226-71075150
| | - Jacques Brodeur
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.B.); (M.H.); (C.F.)
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.B.); (M.H.); (C.F.)
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Colin Favret
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.B.); (M.H.); (C.F.)
| |
Collapse
|
11
|
Koprivova A, Kopriva S. Plant secondary metabolites altering root microbiome composition and function. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102227. [PMID: 35525222 DOI: 10.1016/j.pbi.2022.102227] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Plants share their natural environment with numerous microorganisms, commensal as well as harmful. Plant fitness and performance are thus dependent on an efficient communication with such microbiota. The primary means of communication are metabolites exuded from roots, primarily diverse secondary metabolites. The exuded metabolites trigger changes in composition and function of plant associated microbiome. In the last few years, many metabolites were uncovered that are part of this communication network and modulate specific functions of the root microbiota. Here, we describe the progress in identification of such metabolites and their functions and outline the most significant knowledge gaps for future research.
Collapse
Affiliation(s)
- Anna Koprivova
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
| |
Collapse
|
12
|
Raglin SS, Kent AD, Ngumbi EN. Herbivory Protection via Volatile Organic Compounds Is Influenced by Maize Genotype, Not Bacillus altitudinis-Enriched Bacterial Communities. Front Microbiol 2022; 13:826635. [PMID: 35586862 PMCID: PMC9108721 DOI: 10.3389/fmicb.2022.826635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
Belowground, plants interact with beneficial soil microbes such as plant growth-promoting rhizobacteria (PGPR). PGPR are rhizosphere bacteria that colonize roots and elicit beneficial effects in plants such as improved plant growth, pathogen resistance, abiotic stress tolerance, and herbivore protection. Treatment of plants with PGPR has been shown to trigger the emission of volatile organic compounds (VOCs). Volatile emissions can also be triggered by herbivory, termed herbivore-induced plant volatiles (HIPV), with important ramifications for chemical-mediated plant and insect interactions. Much of our current understanding of PGPR and herbivore-induced volatiles is based on studies using one plant genotype, yet domestication and modern breeding has led to the development of diverse germplasm with altered phenotypes and chemistry. In this study, we investigated if volatile emissions triggered by PGPR colonization and herbivory varies by maize genotype and microbial community assemblages. Six maize genotypes representing three decades of crop breeding and two heterotic groups were used, with four microbiome treatments: live or sterilized soil, with or without a Bacillus inoculant. Soil sterilization was used to delay microbiome establishment, resulting in low-diversity treatments. At planting, maize seeds were inoculated with PGPR Bacillus altitudinis AP-283 and grown under greenhouse conditions. Four weeks post planting, plants were subjected to feeding by third instar Helicoverpa zea (Lepidoptera: Noctuidae) larvae. Volatiles were collected using solid phase microextraction and analyzed with gas chromatography-mass spectrometry. Illumina NovaSeq 16S rRNA amplicon sequencing was carried out to characterize the rhizosphere microbiome. Maize genotype significantly influenced total volatile emissions, and relative abundance of volatile classes. We did not document a strong influence of microbe treatment on plant VOC emissions. However, inoculating plants with PGPR improved plant growth under sterile conditions. Taken together, our results suggest that genotypic variation is the dominant driver in HIPV composition and individual HIPV abundances, and any bacterial-mediated benefit is genotype and HIPV-specific. Therefore, understanding the interplay of these factors is necessary to fully harness microbially-mediated benefits and improve agricultural sustainability.
Collapse
Affiliation(s)
- Sierra S. Raglin
- Microbial Ecology Laboratory, Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| | - Angela D. Kent
- Microbial Ecology Laboratory, Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| | - Esther N. Ngumbi
- Departments of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Esther N. Ngumbi,
| |
Collapse
|
13
|
Negative Effects of Rhizobacteria Association on Plant Recruitment of Generalist Predators. PLANTS 2022; 11:plants11070920. [PMID: 35406900 PMCID: PMC9003080 DOI: 10.3390/plants11070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
Plant-associated microbes can influence above- and belowground interactions between plants and other organisms and thus have significant potential for use in the management of agricultural ecosystems. However, fully realizing this potential will require improved understanding of the specific ways in which microbes influence plant ecology, which are both more complex and less well studied than the direct effects of microbes on host-plant physiology. Microbial effects on mutualistic and antagonistic interactions between plants and insects are of particular interest in this regard. This study examines the effects of two strains of Pseudomonas rhizobacteria on the direct and indirect (predator-mediated) resistance of tomato plants to a generalist herbivore (Spodoptera littoralis) and associated changes in levels of defense compounds. We observed no significant effects of rhizobacteria inoculation on caterpillar weight, suggesting that rhizobacteria did not influence direct resistance. However, the generalist predator Podisus maculiventris avoided plants inoculated with one of our rhizobacteria strains, Pseudomonas simiae. Consistent with these results, we found that inoculation with P. simiae influenced plant volatile emissions, but not levels of defense-related compounds. These findings show that rhizobacteria can negatively affect the attraction of generalist predators, while highlighting the complexity and context dependence of microbial effects on plant–insect interactions.
Collapse
|
14
|
Sharifi R, Jeon JS, Ryu CM. Belowground plant-microbe communications via volatile compounds. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:463-486. [PMID: 34727189 DOI: 10.1093/jxb/erab465] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Volatile compounds play important roles in rhizosphere biological communications and interactions. The emission of plant and microbial volatiles is a dynamic phenomenon that is affected by several endogenous and exogenous signals. Diffusion of volatiles can be limited by their adsorption, degradation, and dissolution under specific environmental conditions. Therefore, rhizosphere volatiles need to be investigated on a micro and spatiotemporal scale. Plant and microbial volatiles can expand and specialize the rhizobacterial niche not only by improving the root system architecture such that it serves as a nutrient-rich shelter, but also by inhibiting or promoting the growth, chemotaxis, survival, and robustness of neighboring organisms. Root volatiles play an important role in engineering the belowground microbiome by shaping the microbial community structure and recruiting beneficial microbes. Microbial volatiles are appropriate candidates for improving plant growth and health during environmental challenges and climate change. However, some technical and experimental challenges limit the non-destructive monitoring of volatile emissions in the rhizosphere in real-time. In this review, we attempt to clarify the volatile-mediated intra- and inter-kingdom communications in the rhizosphere, and propose improvements in experimental design for future research.
Collapse
Affiliation(s)
- Rouhallah Sharifi
- Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Je-Seung Jeon
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
- Biosystem and Bioengineering Program, University of Science and Technology (UST), Daejeon 34141, South Korea
| |
Collapse
|
15
|
Hosseini A, Hosseini M, Schausberger P. Plant Growth-Promoting Rhizobacteria Enhance Defense of Strawberry Plants Against Spider Mites. FRONTIERS IN PLANT SCIENCE 2022; 12:783578. [PMID: 35069641 PMCID: PMC8770953 DOI: 10.3389/fpls.2021.783578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/08/2021] [Indexed: 06/02/2023]
Abstract
Plants mediate interactions between below- and above-ground microbial and animal communities. Microbial communities of the rhizosphere commonly include mutualistic symbionts such as mycorrhizal fungi, rhizobia and free-living plant growth-promoting rhizobacteria (PGPR) that may influence plant growth and/or its defense system against aboveground pathogens and herbivores. Here, we scrutinized the effects of three PGPR, Azotobacter chroococcum, Azospirillum brasilense, and Pseudomonas brassicacearum, on life history and population dynamics of two-spotted spider mites, Tetranychus urticae, feeding on aboveground tissue of strawberry plants, and examined associated plant growth and physiology parameters. Our experiments suggest that these three species of free-living rhizobacteria strengthen the constitutive, and/or induce the direct, anti-herbivore defense system of strawberry plants. All three bacterial species exerted adverse effects on life history and population dynamics of T. urticae and positive effects on flowering and physiology of whole strawberry plants. Spider mites, in each life stage and in total, needed longer time to develop on PGPR-treated plants and had lower immature survival rates than those fed on chemically fertilized and untreated plants. Reduced age-specific fecundity, longer developmental time and lower age-specific survival rates of mites feeding on rhizobacteria treated plants reduced their intrinsic rate of increase as compared to mites feeding on chemically fertilized and control plants. The mean abundance was lower in spider mite populations feeding on PGPR-treated strawberries than in those feeding on chemically fertilized and untreated plants. We argue that the three studied PGPR systemically strengthened and/or induced resistance in above-ground plant parts and enhanced the level of biochemical anti-herbivore defense. This was probably achieved by inducing or upregulating the production of secondary plant metabolites, such as phenolics, flavonoids and anthocyanins, which were previously shown to be involved in induced systemic resistance of strawberry plants. Overall, our study emphasizes that PGPR treatment can be a favorable strawberry plant cultivation measure because providing essential nutrients needed for proper plant growth and at the same time decreasing the life history performance and population growth of the notorious herbivorous pest T. urticae.
Collapse
Affiliation(s)
- Afsane Hosseini
- Department of Plant Protection, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mojtaba Hosseini
- Department of Plant Protection, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Peter Schausberger
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Enders L, Begcy K. Unconventional routes to developing insect-resistant crops. MOLECULAR PLANT 2021; 14:1439-1453. [PMID: 34217871 DOI: 10.1016/j.molp.2021.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/26/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Concerns over widespread use of insecticides and heightened insect pest virulence under climate change continue to fuel the need for environmentally safe and sustainable control strategies. However, to develop such strategies, a better understanding of the molecular basis of plant-pest interactions is still needed. Despite decades of research investigating plant-insect interactions, few examples exist where underlying molecular mechanisms are well characterized, and even rarer are cases where this knowledge has been successfully applied to manage harmful agricultural pests. Consequently, the field appears to be static, urgently needing shifts in approaches to identify novel mechanisms by which insects colonize plants and plants avoid insect pressure. In this perspective, we outline necessary steps for advancing holistic methodologies that capture complex plant-insect molecular interactions. We highlight novel and underexploited approaches in plant-insect interaction research as essential routes to translate knowledge of underlying molecular mechanisms into durable pest control strategies, including embracing microbial partnerships, identifying what makes a plant an unsuitable host, capitalizing on tolerance of insect damage, and learning from cases where crop domestication and agronomic practices enhance pest virulence.
Collapse
Affiliation(s)
- Laramy Enders
- Purdue University, Department of Entomology, West Lafayette, IN 47907, USA.
| | - Kevin Begcy
- University of Florida, Environmental Horticulture Department, Gainesville, FL 32611, USA.
| |
Collapse
|
17
|
Shah A, Nazari M, Antar M, Msimbira LA, Naamala J, Lyu D, Rabileh M, Zajonc J, Smith DL. PGPR in Agriculture: A Sustainable Approach to Increasing Climate Change Resilience. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.667546] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Growing environmental concerns are potentially narrowing global yield capacity of agricultural systems. Climate change is the most significant problem the world is currently facing. To meet global food demand, food production must be doubled by 2050; over exploitation of arable lands using unsustainable techniques might resolve food demand issues, but they have negative environmental effects. Current crop production systems are a major reason for changing global climate through diminishing biodiversity, physical and chemical soil degradation, and water pollution. The over application of fertilizers and pesticides contribute to climate change through greenhouse gas emissions (GHG) and toxic soil depositions. At this crucial time, there is a pressing need to transition to more sustainable crop production practices, ones that concentrate more on promoting sustainable mechanisms, which enable crops to grow well in resource limited and environmentally challenging environments, and also develop crops with greater resource use efficiency that have optimum sustainable yields across a wider array of environmental conditions. The phytomicrobiome is considered as one of the best strategies; a better alternative for sustainable agriculture, and a viable solution to meet the twin challenges of global food security and environmental stability. Use of the phytomicrobiome, due to its sustainable and environmentally friendly mechanisms of plant growth promotion, is becoming more widespread in the agricultural industry. Therefore, in this review, we emphasize the contribution of beneficial phytomicrobiome members, particularly plant growth promoting rhizobacteria (PGPR), as a strategy to sustainable improvement of plant growth and production in the face of climate change. Also, the roles of soil dwelling microbes in stress amelioration, nutrient supply (nitrogen fixation, phosphorus solubilization), and phytohormone production along with the factors that could potentially affect their efficiency have been discussed extensively. Lastly, limitations to expansion and use of biobased techniques, for instance, the perspective of crop producers, indigenous microbial competition and regulatory approval are discussed. This review largely focusses on the importance and need of sustainable and environmentally friendly approaches such as biobased/PGPR-based techniques in our agricultural systems, especially in the context of current climate change conditions, which are almost certain to worsen in near future.
Collapse
|
18
|
Effects of Root-Colonizing Fluorescent Pseudomonas Strains on Arabidopsis Resistance to a Pathogen and an Herbivore. Appl Environ Microbiol 2021; 87:e0283120. [PMID: 33893115 DOI: 10.1128/aem.02831-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rhizobacteria in the genus Pseudomonas can enhance plant resistance to a range of pathogens and herbivores. However, resistance to these different classes of plant antagonists is mediated by different molecular mechanisms, and the extent to which induced systemic resistance by Pseudomonas can simultaneously protect plants against both pathogens and herbivores remains unclear. We screened 12 root-colonizing Pseudomonas strains to assess their ability to induce resistance in Arabidopsis thaliana against a foliar pathogen (Pseudomonas syringae DC3000) and a chewing herbivore (Spodoptera littoralis). None of our 12 strains increased plant resistance against herbivory; however, four strains enhanced pathogen resistance, and one of these (Pseudomonas strain P97-38) also made plants more susceptible to herbivory. Phytohormone analyses revealed stronger salicylic acid induction in plants colonized by P97-38 (versus controls) following subsequent pathogen infection but weaker induction of jasmonic acid (JA)-mediated defenses following herbivory. We found no effects of P97-38 inoculation on herbivore-relevant nutrients such as sugars and protein, suggesting that the observed enhancement of susceptibility to S. littoralis is due to effects on plant defense chemistry rather than nutrition. These findings suggest that Pseudomonas strains that enhance plant resistance to pathogens may have neutral or negative effects on resistance to herbivores and provide insight into potential mechanisms associated with effects on different classes of plant antagonists. Improved understanding of these effects has potentially important implications for the use of rhizobacteria inoculation in agriculture. IMPORTANCE Plant-associated microbes have significant potential to enhance agricultural production, for example, by enhancing plant resistance to pathogens and pests. Efforts to identify beneficial microbial strains typically focus on a narrow range of desirable plant traits; however, microbial symbionts can have complex effects on plant phenotypes, including susceptibility and resistance to different classes of plant antagonists. We examined the effects of 12 strains of Pseudomonas rhizobacteria on plant (Arabidopsis) resistance to a lepidopteran herbivore and a foliar pathogen. None of our strains increased plant resistance against herbivory; however, four strains enhanced pathogen resistance, and one of these made plants more susceptible to herbivory (likely via effects on plant defense chemistry). These findings indicate that microbial strains that enhance plant resistance to pathogens can have neutral or negative effects on resistance to herbivores, highlighting potential pitfalls in the application of beneficial rhizobacteria as biocontrol agents.
Collapse
|
19
|
Kong X, Zhang C, Zheng H, Sun M, Zhang F, Zhang M, Cui F, Lv D, Liu L, Guo S, Zhang Y, Yuan X, Zhao S, Tian H, Ding Z. Antagonistic Interaction between Auxin and SA Signaling Pathways Regulates Bacterial Infection through Lateral Root in Arabidopsis. Cell Rep 2021; 32:108060. [PMID: 32846118 DOI: 10.1016/j.celrep.2020.108060] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/24/2020] [Accepted: 07/31/2020] [Indexed: 01/05/2023] Open
Abstract
Pathogen entry into host tissues is a critical and first step in infections. In plants, the lateral roots (LRs) are a potential entry and colonization site for pathogens. Here, using a GFP-labeled pathogenic bacterium Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000), we observe that virulent Pto DC3000 invades plants through emerged LRs in Arabidopsis. Pto DC3000 strongly induced LR formation, a process that was dependent on the AUXIN RESPONSE FACTOR7 (ARF7)/ARF19-LATERAL ORGAN BOUNDARIES-DOMAIN (LBD) regulatory module. We show that salicylic acid (SA) represses LR formation, and several mutants defective in SA signaling are also involved in Pto DC3000-induced LR development. Significantly, ARF7, a well-documented positive regulator of LR development, directly represses the transcription of PR1 and PR2 to promote LR development. This study indicates that ARF7-mediated auxin signaling antagonizes with SA signaling to control bacterial infection through the regulation of LR development.
Collapse
Affiliation(s)
- Xiangpei Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China.
| | - Chunlei Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Huihui Zheng
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Min Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Feng Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Mengyue Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Fuhao Cui
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Dongping Lv
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Lijing Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Siyi Guo
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, China
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China.
| |
Collapse
|
20
|
Dudeja SS, Suneja-Madan P, Paul M, Maheswari R, Kothe E. Bacterial endophytes: Molecular interactions with their hosts. J Basic Microbiol 2021; 61:475-505. [PMID: 33834549 DOI: 10.1002/jobm.202000657] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 01/19/2023]
Abstract
Plant growth promotion has been found associated with plants on the surface (epiphytic), inside (endophytic), or close to the plant roots (rhizospheric). Endophytic bacteria mainly have been researched for their beneficial activities in terms of nutrient availability, plant growth hormones, and control of soil-borne and systemic pathogens. Molecular communications leading to these interactions between plants and endophytic bacteria are now being unrevealed using multidisciplinary approaches with advanced techniques such as metagenomics, metaproteomics, metatranscriptomics, metaproteogenomic, microRNAs, microarray, chips as well as the comparison of complete genome sequences. More than 400 genes in both the genomes of host plant and bacterial endophyte are up- or downregulated for the establishment of endophytism and plant growth-promoting activity. The involvement of more than 20 genes for endophytism, about 50 genes for direct plant growth promotion, about 25 genes for biocontrol activity, and about 10 genes for mitigation of different stresses has been identified in various bacterial endophytes. This review summarizes the progress that has been made in recent years by these modern techniques and approaches.
Collapse
Affiliation(s)
- Surjit S Dudeja
- Department of Bio & Nanotechnology, Guru Jambeshwar University of Science & Technology, Hisar, India
| | - Pooja Suneja-Madan
- Department of Microbiology, Maharishi Dayanand University, Rohtak, India
| | - Minakshi Paul
- Department of Bio & Nanotechnology, Guru Jambeshwar University of Science & Technology, Hisar, India
| | - Rajat Maheswari
- Department of Microbiology, Maharishi Dayanand University, Rohtak, India
| | - Erika Kothe
- Microbial Communication, Institute of Microbiology, Faculty for Biosciences, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
21
|
Achieving similar root microbiota composition in neighbouring plants through airborne signalling. ISME JOURNAL 2020; 15:397-408. [PMID: 32973341 PMCID: PMC8027813 DOI: 10.1038/s41396-020-00759-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 12/02/2022]
Abstract
The ability to recognize and respond to environmental signals is essential for plants. In response to environmental changes, the status of a plant is transmitted to other plants in the form of signals such as volatiles. Root-associated bacteria trigger the release of plant volatile organic compounds (VOCs). However, the impact of VOCs on the rhizosphere microbial community of neighbouring plants is not well understood. Here, we investigated the effect of VOCs on the rhizosphere microbial community of tomato plants inoculated with a plant growth-promoting rhizobacterium Bacillus amyloliquefaciens strain GB03 and that of their neighbouring plants. Interestingly, high similarity (up to 69%) was detected in the rhizosphere microbial communities of the inoculated and neighbouring plants. Leaves of the tomato plant treated with strain GB03-released β-caryophyllene as a signature VOC, which elicited the release of a large amount of salicylic acid (SA) in the root exudates of a neighbouring tomato seedling. The exposure of tomato leaves to β-caryophyllene resulted in the secretion of SA from the root. Our results demonstrate for the first time that the composition of the rhizosphere microbiota in surrounding plants is synchronized through aerial signals from plants.
Collapse
|
22
|
From Diverse Origins to Specific Targets: Role of Microorganisms in Indirect Pest Biological Control. INSECTS 2020; 11:insects11080533. [PMID: 32823898 PMCID: PMC7469166 DOI: 10.3390/insects11080533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/29/2023]
Abstract
Integrated pest management (IPM) is today a widely accepted pest management strategy to select and use the most efficient control tactics and at the same time reduce over-dependence on chemical insecticides and their potentially negative environmental effects. One of the main pillars of IPM is biological control. While biological control programs of pest insects commonly rely on natural enemies such as predatory insects, parasitoids and microbial pathogens, there is increasing evidence that plant, soil and insect microbiomes can also be exploited to enhance plant defense against herbivores. In this mini-review, we illustrate how microorganisms from diverse origins can contribute to plant fitness, functional traits and indirect defense responses against pest insects, and therefore be indirectly used to improve biological pest control practices. Microorganisms in the rhizosphere, phyllosphere and endosphere have not only been shown to enhance plant growth and plant strength, but also promote plant defense against herbivores both above- and belowground by providing feeding deterrence or antibiosis. Also, herbivore associated molecular patterns may be induced by microorganisms that come from oral phytophagous insect secretions and elicit plant-specific responses to herbivore attacks. Furthermore, microorganisms that inhabit floral nectar and insect honeydew produce volatile organic compounds that attract beneficial insects like natural enemies, thereby providing indirect pest control. Given the multiple benefits of microorganisms to plants, we argue that future IPMs should consider and exploit the whole range of possibilities that microorganisms offer to enhance plant defense and increase attraction, fecundity and performance of natural enemies.
Collapse
|
23
|
Relevance of Plant Growth Promoting Microorganisms and Their Derived Compounds, in the Face of Climate Change. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10081179] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change has already affected food security in many parts of the world, and this situation will worsen if nothing is done to combat it. Unfortunately, agriculture is a meaningful driver of climate change, through greenhouse gas emissions from nitrogen-based fertilizer, methane from animals and animal manure, as well as deforestation to obtain more land for agriculture. Therefore, the global agricultural sector should minimize greenhouse gas emissions in order to slow climate change. The objective of this review is to point out the various ways plant growth promoting microorganisms (PGPM) can be used to enhance crop production amidst climate change challenges, and effects of climate change on more conventional challenges, such as: weeds, pests, pathogens, salinity, drought, etc. Current knowledge regarding microbial inoculant technology is discussed. Pros and cons of single inoculants, microbial consortia and microbial compounds are discussed. A range of microbes and microbe derived compounds that have been reported to enhance plant growth amidst a range of biotic and abiotic stresses, and microbe-based products that are already on the market as agroinputs, are a focus. This review will provide the reader with a clearer understanding of current trends in microbial inoculants and how they can be used to enhance crop production amidst climate change challenges.
Collapse
|
24
|
Bell K, Naranjo-Guevara N, dos Santos RC, Meadow R, Bento JMS. Predatory Earwigs are Attracted by Herbivore-Induced Plant Volatiles Linked with Plant Growth-Promoting Rhizobacteria. INSECTS 2020; 11:E271. [PMID: 32365691 PMCID: PMC7290886 DOI: 10.3390/insects11050271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 11/16/2022]
Abstract
Plant-associated microbes may induce plant defenses against herbivores. Plants, in turn, can attract natural enemies, such as predators, using herbivore-induced plant volatiles. Intricate communication occurs between microorganisms, plants, and insects. Given that many aspects related to mechanisms involved in this symbiotic system remain unknown, we evaluated how beneficial soil-borne microorganisms can affect the interactions between plants, herbivores, and natural enemies. For this study, we established a multitrophic system composed of the predatory earwig Doru luteipes (Dermaptera: Forficulidae), arugula (Eruca sativa, Brassicaceae) as the host plant, Plutella xylostella (Lepidoptera: Plutellidae) larvae as a specialist herbivore, Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae as a generalist herbivore, and Bacillus amyloliquefaciens as the plant growth-promoting rhizobacteria (PGPR), in a series of nocturnal olfactometry experiments. By assessing earwig preference towards herbivore-induced and PGPR-inoculated plants in different combinations, we showed that the interaction between rhizobacteria, plants, and herbivores can affect the predatory earwig's behavior. Furthermore, we observed a synergistic effect in which earwigs were attracted by plants that presented as PGPR inoculated and herbivore damaged, for both specialist and generalist herbivores. Our findings help fill the important knowledge gap regarding multitrophic interactions and should provide useful guidelines for their application to agricultural fields.
Collapse
Affiliation(s)
- Kim Bell
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway; (K.B.); (R.M.)
| | - Natalia Naranjo-Guevara
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo State 13418-900, Brazil; (N.N.-G.); (R.C.d.S.)
- Fontys International Business School Venlo, Fontys University of Applied Sciences, 5912 Venlo, The Netherlands
| | - Rafaela C. dos Santos
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo State 13418-900, Brazil; (N.N.-G.); (R.C.d.S.)
| | - Richard Meadow
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway; (K.B.); (R.M.)
| | - José M. S. Bento
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo State 13418-900, Brazil; (N.N.-G.); (R.C.d.S.)
| |
Collapse
|
25
|
Raza W, Shen Q. Volatile organic compounds mediated plant-microbe interactions in soil. MOLECULAR ASPECTS OF PLANT BENEFICIAL MICROBES IN AGRICULTURE 2020. [DOI: 10.1016/b978-0-12-818469-1.00018-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
26
|
Pulido H, Mauck KE, De Moraes CM, Mescher MC. Combined effects of mutualistic rhizobacteria counteract virus-induced suppression of indirect plant defences in soya bean. Proc Biol Sci 2019; 286:20190211. [PMID: 31113327 PMCID: PMC6545077 DOI: 10.1098/rspb.2019.0211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/02/2019] [Indexed: 11/12/2022] Open
Abstract
It is increasingly clear that microbial plant symbionts can influence interactions between their plant hosts and other organisms. However, such effects remain poorly understood, particularly under ecologically realistic conditions where plants simultaneously interact with diverse mutualists and antagonists. Here, we examine how the effects of a plant virus on indirect plant defences against its insect vector are influenced by co-occurrence of other microbial plant symbionts. Using a multi-factorial design, we manipulated colonization of soya bean using three different microbes: a pathogenic plant virus (bean pod mottle virus (BPMV)), a nodule-forming beneficial rhizobacterium ( Bradyrhizobium japonicum) and a plant growth-promoting rhizobacterium ( Delftia acidovorans). We then assessed recruitment of parasitoids ( Pediobious foveolatus (Eulophidae)) and parasitism rates following feeding by the BPMV vector Epilachna varivestis (Coccinellidae). BPMV infection suppressed parasitoid recruitment, prolonged parasitoid foraging time and reduced parasitism rates in semi-natural foraging assays. However, simultaneous colonization of BPMV-infected hosts by both rhizobacteria restored parasitoid recruitment and rates of parasitism to levels similar to uninfected controls. Co-colonization by the two rhizobacteria also enhanced parasitoid recruitment in the absence of BPMV infection. These results illustrate the potential of plant-associated microbes to influence indirect plant defences, with implications for disease transmission and herbivory, but also highlight the potential complexity of such interactions.
Collapse
Affiliation(s)
- Hannier Pulido
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH Zürich), 8092 Zürich, Switzerland
| | - Kerry E. Mauck
- Department of Entomology, University of California, Riverside, CA, USA
| | - Consuelo M. De Moraes
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH Zürich), 8092 Zürich, Switzerland
| | - Mark C. Mescher
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH Zürich), 8092 Zürich, Switzerland
| |
Collapse
|
27
|
Sharifi R, Lee SM, Ryu CM. Microbe-induced plant volatiles. THE NEW PHYTOLOGIST 2018; 220:684-691. [PMID: 29266296 DOI: 10.1111/nph.14955] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/13/2017] [Indexed: 05/20/2023]
Abstract
Plants emit a plethora of volatile organic compounds in response to biotic and abiotic stresses. These compounds act as infochemicals for ecological communication in the phytobiome. This study reviews the role of microbe-induced plant volatiles (MIPVs) in plant-microbe interactions. MIPVs are affected by the taxonomic position of the microbe, the identity of the plant and the type of interaction. Plants also emit exclusive blends of volatiles in response to nonhost and host interactions, as well as to beneficial microbes and necrotrophic/biotrophic pathogens. These MIPVs directly inhibit pathogen growth and indirectly promote resistance/susceptibility to subsequent plant pathogen attack. Viruses and phloem-limiting bacteria modify plant volatiles to attract insect vectors. Susceptible plants can respond to MIPVs from resistant plants and become resistant. Recent advances in our understanding of the molecular mechanisms of MIPV synthesis in plants and how plant pathogen effectors manipulate their biosynthesis are discussed. This knowledge will help broaden our understanding of plant-microbe interactions and should facilitate the development of new emerging techniques for sustainable plant disease management.
Collapse
Affiliation(s)
- Rouhallah Sharifi
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon, 34141, South Korea
- Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, 6715685438, Iran
| | - Sang-Moo Lee
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon, 34141, South Korea
- Biosystems and Bioengineering Program, University of Science and Technology, Daejeon, 34242, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon, 34141, South Korea
- Biosystems and Bioengineering Program, University of Science and Technology, Daejeon, 34242, South Korea
| |
Collapse
|
28
|
Gadhave KR, Gange AC. Interactions Involving Rhizobacteria and Foliar-Feeding Insects. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-91614-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
29
|
Gadhave KR, Devlin PF, Ebertz A, Ross A, Gange AC. Soil Inoculation with Bacillus spp. Modifies Root Endophytic Bacterial Diversity, Evenness, and Community Composition in a Context-Specific Manner. MICROBIAL ECOLOGY 2018; 76:741-750. [PMID: 29511840 PMCID: PMC6132550 DOI: 10.1007/s00248-018-1160-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/13/2018] [Indexed: 05/22/2023]
Abstract
The use of microbial inoculants containing plant growth-promoting rhizobacteria as a promoter of plant fitness and health is becoming increasingly popular in agriculture. However, whether and how these bacteria affect indigenous bacterial communities in field conditions is sparsely explored. We studied the effects of seed inoculation and field soil application of ubiquitous soil bacteria, B. cereus, B. subtilis, and B. amyloliquefaciens, on the diversity, evenness, and richness of endophytic bacterial communities in sprouting broccoli roots using high-throughput metagenome sequencing. The multiple operational taxonomic units (OTUs) assigned to different bacterial taxa clearly showed changes in ecological measures and relative abundances of certain taxa between control and treatment groups. The Bacillus inocula, themselves, failed to flourish as endophytes; however, the effects they extended on the endophytic bacterial community were both generic as well as species specific. In each case, Pseudomonadales, Rhizobiales, Xanthomonadales, and Burkholderiales were the most abundant orders in the endosphere. B. amyloliquefaciens drastically reduced the most abundant genus, Pseudomonas, while increasing the relative abundance of a range of minor taxa. The Shannon-Weiner diversity and Buzas and Gibson's evenness indices showed that the diversity and evenness were increased in both B. amyloliquefaciens and mixed treated plants. The UniFrac measurement of beta diversity showed that all treatments affected the specific composition of the endophytic bacterial community, with an apparent interspecies competition in the mixed treatment. Taken together, Bacillus species influenced the diversity, evenness, and composition of the endophytic bacterial community. However, these effects varied between different Bacillus spp. in a context-specific manner.
Collapse
Affiliation(s)
- Kiran R Gadhave
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Paul F Devlin
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
- Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
| | - Andreas Ebertz
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Arabella Ross
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Alan C Gange
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
30
|
Sharifi R, Ryu CM. Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. ANNALS OF BOTANY 2018; 122:349-358. [PMID: 29982345 PMCID: PMC6110341 DOI: 10.1093/aob/mcy108] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/02/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Bacterial volatile compounds (BVCs) are important mediators of beneficial plant-bacteria interactions. BVCs promote above-ground plant growth by stimulating photosynthesis and sugar accumulation and by modulating phytohormone signalling. These compounds also improve below-ground mineral uptake and modify root system architecture. SCOPE We review advances in our understanding of the mode of action and practical applications of BVCs since the discovery of BVC-mediated plant growth promotion in 2003. We also discuss unanswered questions about the identity of plant receptors, the effectiveness of combination of two or more BVCs on plant growth, and the potential side effects of these compounds for human and animal health. CONCLUSION BVCs have good potential for use as biostimulants and protectants to improve plant health. Further advances in the development of suitable technologies and preparing standards and guidelines will help in the application of BVCs in crop protection and health.
Collapse
Affiliation(s)
- Rouhallah Sharifi
- Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Biosystem and Bioengineering Program, University of Science and Technology (UST), Daejeon, South Korea
- For correspondence. E-mail
| |
Collapse
|
31
|
Ourry M, Lebreton L, Chaminade V, Guillerm-Erckelboudt AY, Hervé M, Linglin J, Marnet N, Ourry A, Paty C, Poinsot D, Cortesero AM, Mougel C. Influence of Belowground Herbivory on the Dynamics of Root and Rhizosphere Microbial Communities. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00091] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Chiriboga M X, Guo H, Campos-Herrera R, Röder G, Imperiali N, Keel C, Maurhofer M, Turlings TCJ. Root-colonizing bacteria enhance the levels of (E)-β-caryophyllene produced by maize roots in response to rootworm feeding. Oecologia 2018; 187:459-468. [PMID: 29423754 DOI: 10.1007/s00442-017-4055-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
Abstract
When larvae of rootworms feed on maize roots they induce the emission of the sesquiterpene (E)-β-caryophyllene (EβC). EβC is attractive to entomopathogenic nematodes, which parasitize and rapidly kill the larvae, thereby protecting the roots from further damage. Certain root-colonizing bacteria of the genus Pseudomonas also benefit plants by promoting growth, suppressing pathogens or inducing systemic resistance (ISR), and some strains also have insecticidal activity. It remains unknown how these bacteria influence the emissions of root volatiles. In this study, we evaluated how colonization by the growth-promoting and insecticidal bacteria Pseudomonas protegens CHA0 and Pseudomonas chlororaphis PCL1391 affects the production of EβC upon feeding by larvae of the banded cucumber beetle, Diabrotica balteata Le Conte (Coleoptera: Chrysomelidae). Using chemical analysis and gene expression measurements, we found that EβC production and the expression of the EβC synthase gene (tps23) were enhanced in Pseudomonas protegens CHA0-colonized roots after 72 h of D. balteata feeding. Undamaged roots colonized by Pseudomonas spp. showed no measurable increase in EβC production, but a slight increase in tps23 expression. Pseudomonas colonization did not affect root biomass, but larvae that fed on roots colonized by P. protegens CHA0 tended to gain more weight than larvae that fed on roots colonized by P. chlororaphis PCL1391. Larvae mortality on Pseudomonas spp. colonized roots was slightly, but not significantly higher than on non-colonized control roots. The observed enhanced production of EβC upon Pseudomonas protegens CHA0 colonization may enhance the roots' attractiveness to entomopathogenic nematodes, but this remains to be tested.
Collapse
Affiliation(s)
- Xavier Chiriboga M
- Fundamental and Applied Research in Chemical Ecology (FARCE Lab), Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Huijuan Guo
- Fundamental and Applied Research in Chemical Ecology (FARCE Lab), Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000, Neuchâtel, Switzerland.,State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijin, 100101, China
| | - Raquel Campos-Herrera
- Fundamental and Applied Research in Chemical Ecology (FARCE Lab), Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000, Neuchâtel, Switzerland.,Centro para os Recursos Biológicos e Alimentos Mediterrânicos (MeditBio), FCT, Universidade do Algarve, Campus Gambelas, Edf. 8, 8005-139, Faro, Portugal
| | - Gregory Röder
- Fundamental and Applied Research in Chemical Ecology (FARCE Lab), Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Nicola Imperiali
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology, 8092, Zurich, Switzerland
| | - Ted C J Turlings
- Fundamental and Applied Research in Chemical Ecology (FARCE Lab), Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
33
|
Tao L, Hunter MD, de Roode JC. Microbial Root Mutualists Affect the Predators and Pathogens of Herbivores above Ground: Mechanisms, Magnitudes, and Missing Links. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
34
|
Rasmann S, Bennett A, Biere A, Karley A, Guerrieri E. Root symbionts: Powerful drivers of plant above- and belowground indirect defenses. INSECT SCIENCE 2017; 24:947-960. [PMID: 28374534 DOI: 10.1111/1744-7917.12464] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/08/2017] [Accepted: 03/15/2017] [Indexed: 05/04/2023]
Abstract
Soil microbial mutualists of plants, including mycorrhizal fungi, non-mycorrhizal fungi and plant growth promoting rhizobacteria, have been typically characterized for increasing nutrient acquisition and plant growth. More recently, soil microbes have also been shown to increase direct plant defense against above- and belowground herbivores. Plants, however, do not only rely on direct defenses when attacked, but they can also recruit pest antagonists such as predators and parasitoids, both above and belowground, mainly via the release of volatile organic compounds (i.e., indirect defenses). In this review, we illustrate the main features and effects of soil microbial mutualists of plants on plant indirect defenses and discuss possible applications within the framework of sustainable crop protection against root- and shoot-feeding arthropod pests. We indicate the main knowledge gaps and the future challenges to be addressed in the study and application of these multifaceted interactions.
Collapse
Affiliation(s)
- Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Alison Bennett
- Department of Ecological Sciences, James Hutton Institute, Dundee, UK
| | - Arjen Biere
- Netherlands Institute of Ecology, Wageningen, the Netherlands
| | - Alison Karley
- Department of Ecological Sciences, James Hutton Institute, Dundee, UK
| | - Emilio Guerrieri
- Institute for Sustainable Plant Protection, National Research Council of Italy, Portici, Italy
| |
Collapse
|
35
|
de Bobadilla MF, Friman J, Pangesti N, Dicke M, van Loon JJA, Pineda A. Does drought stress modify the effects of plant-growth promoting rhizobacteria on an aboveground chewing herbivore? INSECT SCIENCE 2017; 24:1034-1044. [PMID: 28498521 DOI: 10.1111/1744-7917.12477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/10/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Soil microbes have important effects on the interactions of plants with their environment, by promoting plant growth, inducing resistance to pests or by conferring tolerance to abiotic stress. However, their effects are variable and the factors responsible for this variation are mainly unknown. Our aim was to assess how drought stress modifies the effect of the nonpathogenic rhizobacterium Pseudomonas simiae WCS417r on plant growth and resistance against the generalist leaf-chewing caterpillar Mamestra brassicae. We studied Arabidopsis thaliana Col-0 plants, as well as mutants altered in the biosynthesis of the phytohormones jasmonic acid (JA) and abscisic acid (ABA). Caterpillars did not prefer rhizobacteria-treated plants, independently of drought stress. Rhizobacteria colonization had a variable effect on caterpillar performance, which ranged from positive in one experiment to neutral in a second one. Drought had a consistent negative effect on herbivore performance; however, it did not modify the effect of rhizobacteria on herbivore performance. The effect of drought on herbivore performance was JA-mediated (confirmed with the use of the dde2-2 mutant), but it was still present in the ABA-deficient mutant aba2-1. Plant biomass was reduced by both drought and herbivory but it was enhanced by rhizobacterial colonization. Pseudomonas simiae WCS417r is able to promote plant growth even when plants are suffering herbivory. Nevertheless, the microbial effect on the herbivore is variable, independently of drought stress. To get the best possible outcome from the rhizobacteria-plant mutualism it is important to understand which other factors may be responsible for its context-dependency.
Collapse
Affiliation(s)
| | - Julia Friman
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Nurmi Pangesti
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Terrestrial Ecology, Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Ana Pineda
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Terrestrial Ecology, Wageningen, The Netherlands
| |
Collapse
|
36
|
Kroes A, Weldegergis BT, Cappai F, Dicke M, van Loon JJA. Terpenoid biosynthesis in Arabidopsis attacked by caterpillars and aphids: effects of aphid density on the attraction of a caterpillar parasitoid. Oecologia 2017; 185:699-712. [PMID: 29052769 PMCID: PMC5681606 DOI: 10.1007/s00442-017-3985-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022]
Abstract
One of the responses of plants to insect attack is the production of volatile organic compounds that mediate indirect defence of plants by attracting natural enemies of the attacking herbivores. Herbivore-induced plant volatiles (HIPVs) include terpenoids that play key roles in the attraction of natural enemies. Crosstalk between phytohormonal signalling pathways is well known to affect the regulation of plant defences, including the emission of HIPVs. Thus, simultaneous feeding on the same plant by caterpillars and aphids, can affect the attraction of parasitoids by the plant compared to single insect attack. The role of aphid density in the regulation of HIPV emission by plants under dual attack has not been studied previously. Here, we investigated the attraction of Diadegma semiclausum, a parasitoid of the Diamondback moth Plutella xylostella, to volatiles emitted by Arabidopsis thaliana plants, simultaneously attacked by host caterpillars, and by the non-host aphid Brevicoryne brassicae. Our study shows that the effect of aphid infestation on parasitoid attraction is influenced by the density of the aphids. Biosynthesis and emission of (E,E)-α-farnesene could be linked to the observed preference of D. semiclausum parasitoids for the HIPV blend emitted by plants dually infested by caterpillars and aphids at a high density compared to dually infested plants with a low aphid density. Parasitoids such as D. semiclausum are important enemies of herbivorous insects and a better understanding of how plants express indirect defence mechanisms in response to multiple insect attack will provide important knowledge on plant-herbivore-parasitoid interactions under multiple stress conditions.
Collapse
Affiliation(s)
- Anneke Kroes
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Berhane T Weldegergis
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Francesco Cappai
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
37
|
Rashid MHO, Chung YR. Induction of Systemic Resistance against Insect Herbivores in Plants by Beneficial Soil Microbes. FRONTIERS IN PLANT SCIENCE 2017; 8:1816. [PMID: 29104585 PMCID: PMC5654954 DOI: 10.3389/fpls.2017.01816] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/06/2017] [Indexed: 05/08/2023]
Abstract
Soil microorganisms with growth-promoting activities in plants, including rhizobacteria and rhizofungi, can improve plant health in a variety of different ways. These beneficial microbes may confer broad-spectrum resistance to insect herbivores. Here, we provide evidence that beneficial microbes modulate plant defenses against insect herbivores. Beneficial soil microorganisms can regulate hormone signaling including the jasmonic acid, ethylene and salicylic acid pathways, thereby leading to gene expression, biosynthesis of secondary metabolites, plant defensive proteins and different enzymes and volatile compounds, that may induce defenses against leaf-chewing as well as phloem-feeding insects. In this review, we discuss how beneficial microbes trigger induced systemic resistance against insects by promoting plant growth and highlight changes in plant molecular mechanisms and biochemical profiles.
Collapse
Affiliation(s)
| | - Young R. Chung
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
38
|
Godschalx AL, Tran V, Ballhorn DJ. Host plant cyanotype determines degree of rhizobial symbiosis. Ecosphere 2017. [DOI: 10.1002/ecs2.1929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
| | - Vy Tran
- Department of Biology Portland State University Portland Oregon 97201 USA
| | - Daniel J. Ballhorn
- Department of Biology Portland State University Portland Oregon 97201 USA
| |
Collapse
|
39
|
Shikano I, Rosa C, Tan CW, Felton GW. Tritrophic Interactions: Microbe-Mediated Plant Effects on Insect Herbivores. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:313-331. [PMID: 28590879 DOI: 10.1146/annurev-phyto-080516-035319] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
It is becoming abundantly clear that the microbes associated with plants and insects can profoundly influence plant-insect interactions. Here, we focus on recent findings and propose directions for future research that involve microbe-induced changes to plant defenses and nutritive quality as well as the consequences of these changes for the behavior and fitness of insect herbivores. Insect (herbivore and parasitoid)-associated microbes can favor or improve insect fitness by suppressing plant defenses and detoxifying defensive phytochemicals. Phytopathogens can influence or manipulate insect behavior and fitness by altering plant quality and defense. Plant-beneficial microbes can promote plant growth and influence plant nutritional and phytochemical composition that can positively or negatively influence insect fitness. Lastly, we suggest that entomopathogens have the potential to influence plant defenses directly as endophytes or indirectly by altering insect physiology.
Collapse
Affiliation(s)
- Ikkei Shikano
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Ching-Wen Tan
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Gary W Felton
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, Pennsylvania 16802;
| |
Collapse
|
40
|
Finkel OM, Castrillo G, Herrera Paredes S, Salas González I, Dangl JL. Understanding and exploiting plant beneficial microbes. CURRENT OPINION IN PLANT BIOLOGY 2017; 38:155-163. [PMID: 28622659 PMCID: PMC5561662 DOI: 10.1016/j.pbi.2017.04.018] [Citation(s) in RCA: 293] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/25/2017] [Indexed: 05/18/2023]
Abstract
After a century of incremental research, technological advances, coupled with a need for sustainable crop yield increases, have reinvigorated the study of beneficial plant-microbe interactions with attention focused on how microbiomes alter plant phenotypes. We review recent advances in plant microbiome research, and describe potential applications for increasing crop productivity. The phylogenetic diversity of plant microbiomes is increasingly well characterized, and their functional diversity is becoming more accessible. Large culture collections are available for controlled experimentation, with more to come. Genetic resources are being brought to bear on questions of microbiome function. We expect that microbial amendments of varying complexities will expose rules governing beneficial plant-microbe interactions contributing to plant growth promotion and disease resistance, enabling more sustainable agriculture.
Collapse
Affiliation(s)
- Omri M Finkel
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA; Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| | - Gabriel Castrillo
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA; Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Sur Herrera Paredes
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA; Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599-3280, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Isai Salas González
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA; Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599-3280, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA; Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599-3280, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA; Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599-3280, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
41
|
Benítez E, Paredes D, Rodríguez E, Aldana D, González M, Nogales R, Campos M, Moreno B. Bottom-up effects on herbivore-induced plant defences: a case study based on compositional patterns of rhizosphere microbial communities. Sci Rep 2017; 7:6251. [PMID: 28740172 PMCID: PMC5524984 DOI: 10.1038/s41598-017-06714-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/16/2017] [Indexed: 11/21/2022] Open
Abstract
Below-ground soil microorganisms can modulate above-ground plant-insect interactions. It still needs to be determined whether this is a direct effect of single species or an indirect effect of shifts in soil microbial community assemblages. Evaluation of the soil microbiome as a whole is critical for understanding multi-trophic interactions, including those mediated by volatiles involving plants, herbivorous insects, predators/parasitoids and microorganisms. We implemented a regulated system comprising Nerium oleander plants grown in soil initially containing a sterile/non sterile inoculum, herbivore Aphis nerii and predator Chrysoperla carnea. After aphid attack, plants emitted a characteristic blend of volatiles derived from two biosynthetic classes: fatty acid catabolites and aromatic-derived products. Three aliphatic compounds were mainly detected in plants grown in the inoculated microbial soil, a blend which was preferentially chosen by C. carnea adult females. The contrasting effect of the initial inocula was attributed to the different microbial consortia developed in each treatment. We argue that differences in the relative abundance of the active microbial communities in the rhizosphere correlate with those in the emission of selected volatile compounds by attacked plants. The mechanisms involved in how the functional soil microbiome modulates inducible indirect defence of plants are discussed.
Collapse
Affiliation(s)
- Emilio Benítez
- Estación Experimental del Zaidín (EEZ), CSIC, 18008, Granada, Spain.
| | - Daniel Paredes
- Estación Experimental del Zaidín (EEZ), CSIC, 18008, Granada, Spain
| | - Estefanía Rodríguez
- Instituto de Investigación y Formación Agraria y Pesquera, Centro IFAPA La Mojonera, Almería, Spain
| | - Diana Aldana
- Estación Experimental del Zaidín (EEZ), CSIC, 18008, Granada, Spain
| | - Mónica González
- Estación Experimental Las Palmerillas, Cajamar, Almería, Spain
| | - Rogelio Nogales
- Estación Experimental del Zaidín (EEZ), CSIC, 18008, Granada, Spain
| | - Mercedes Campos
- Estación Experimental del Zaidín (EEZ), CSIC, 18008, Granada, Spain
| | - Beatriz Moreno
- Estación Experimental del Zaidín (EEZ), CSIC, 18008, Granada, Spain
| |
Collapse
|
42
|
Dicke M. Plant phenotypic plasticity in the phytobiome: a volatile issue. CURRENT OPINION IN PLANT BIOLOGY 2016; 32:17-23. [PMID: 27267277 DOI: 10.1016/j.pbi.2016.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 05/09/2023]
Abstract
Plants live in a diverse and dynamic phytobiome, consisting of a microbiome as well as a macrobiome. They respond to arthropod herbivory with the emission of herbivore-induced plant volatiles (HIPV) that are public information and can be used by any member of the phytobiome. Other members of the phytobiome, which do not directly participate in the interaction, may both modulate the induction of HIPV in the plant, as well as respond to the volatiles. The use of HIPV by individual phytobiome members may have beneficial as well as detrimental consequences for the plant. The collective result of phytobiome-modulated HIPV emission on the responses of phytobiome members and the resulting phytobiome dynamics will determine whether and under which circumstances HIPV emission has a net benefit to the plant or not. Only when we understand HIPV emission in the total phytobiome context can we understand the evolutionary consequences of HIPV emission by plants.
Collapse
Affiliation(s)
- Marcel Dicke
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands.
| |
Collapse
|
43
|
Davila Olivas NH, Coolen S, Huang P, Severing E, van Verk MC, Hickman R, Wittenberg AHJ, de Vos M, Prins M, van Loon JJA, Aarts MGM, van Wees SCM, Pieterse CMJ, Dicke M. Effect of prior drought and pathogen stress on Arabidopsis transcriptome changes to caterpillar herbivory. THE NEW PHYTOLOGIST 2016; 210:1344-56. [PMID: 26847575 DOI: 10.1111/nph.13847] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/06/2015] [Indexed: 05/07/2023]
Abstract
In nature, plants are exposed to biotic and abiotic stresses that often occur simultaneously. Therefore, plant responses to combinations of stresses are most representative of how plants respond to stresses. We used RNAseq to assess temporal changes in the transcriptome of Arabidopsis thaliana to herbivory by Pieris rapae caterpillars, either alone or in combination with prior exposure to drought or infection with the necrotrophic fungus Botrytis cinerea. Pre-exposure to drought stress or Botrytis infection resulted in a significantly different timing of the caterpillar-induced transcriptional changes. Additionally, the combination of drought and P. rapae induced an extensive downregulation of A. thaliana genes involved in defence against pathogens. Despite a more substantial growth reduction observed for plants exposed to drought plus P. rapae feeding compared with P. rapae feeding alone, this did not affect weight increase of this specialist caterpillar. Plants respond to combined stresses with phenotypic and transcriptional changes that differ from the single stress situation. The effect of a previous exposure to drought or B. cinerea infection on transcriptional changes to caterpillars is largely overridden by the stress imposed by caterpillars, indicating that plants shift their response to the most recent stress applied.
Collapse
Affiliation(s)
- Nelson H Davila Olivas
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, the Netherlands
| | - Silvia Coolen
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
| | - Pingping Huang
- Laboratory of Genetics, Wageningen University, PO Box 16, 6700 AA, Wageningen, the Netherlands
| | - Edouard Severing
- Laboratory of Genetics, Wageningen University, PO Box 16, 6700 AA, Wageningen, the Netherlands
| | - Marcel C van Verk
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
- Bioinformatics, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
| | - Richard Hickman
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
| | | | - Martin de Vos
- Keygene N.V., PO Box 216, 6700 AE, Wageningen, the Netherlands
| | - Marcel Prins
- Keygene N.V., PO Box 216, 6700 AE, Wageningen, the Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, the Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University, PO Box 16, 6700 AA, Wageningen, the Netherlands
| | - Saskia C M van Wees
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
44
|
Gadhave KR, Hourston JE, Gange AC. Developing Soil Microbial Inoculants for Pest Management: Can One Have Too Much of a Good Thing? J Chem Ecol 2016; 42:348-56. [DOI: 10.1007/s10886-016-0689-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 03/20/2016] [Accepted: 03/29/2016] [Indexed: 01/31/2023]
|
45
|
Gadhave KR, Hourston JE, Gange AC. Developing Soil Microbial Inoculants for Pest Management: Can One Have Too Much of a Good Thing? J Chem Ecol 2016. [PMID: 27059329 DOI: 10.1007/s10886-016-0689-688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Soil microbes present a novel and cost-effective method of increasing plant resistance to insect pests and thus create a sustainable opportunity to reduce current pesticide application. However, the use of microbes in integrated pest management programs is still in its infancy. This can be attributed primarily to the variations in microbial inoculum performance under laboratory and field conditions. Soil inoculants containing single, indigenous microbial species have shown promising results in increasing chemical defenses of plants against foliar feeding insects. Conversely, commercial inoculants containing multiple species tend to show no effects on herbivore infestation in the field. We present here a simple model that endeavours to explain how single and multiple species in microbial inoculants differentially govern insect population dynamics via changes in plant chemical profiles. We discuss further how this knowledge can be applied to manipulate soil microbial species and develop 'tailored' microbial inoculants that could be used in plant protection against antagonists.
Collapse
Affiliation(s)
- Kiran R Gadhave
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK.
- Department of Entomology, University of Georgia, Tifton, GA, 31793, USA.
| | - James E Hourston
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Alan C Gange
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
46
|
The Gastropod Menace: Slugs on Brassica Plants Affect Caterpillar Survival through Consumption and Interference with Parasitoid Attraction. J Chem Ecol 2016; 42:183-92. [PMID: 27002323 DOI: 10.1007/s10886-016-0682-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/29/2016] [Accepted: 03/08/2016] [Indexed: 10/22/2022]
Abstract
Terrestrial molluscs and insect herbivores play a major role as plant consumers in a number of ecosystems, but their direct and indirect interactions have hardly been explored. The omnivorous nature of slugs makes them potential disrupters of predator-prey relationships, as a direct threat to small insects and through indirect, plant-mediated effects. Here, we examined the effects of the presence of two species of slugs, Arion rufus (native) and A. vulgaris (invasive) on the survivorship of young Pieris brassicae caterpillars when feeding on Brassica rapa plants, and on plant attractiveness to the main natural enemy of P. brassicae, the parasitoid Cotesia glomerata. In two separate predation experiments, caterpillar mortality was significantly higher on plants co-infested with A. rufus or A. vulgaris. Moreover, caterpillar mortality correlated positively with slug mass and leaf consumption by A. vulgaris. At the third trophic level, plants infested with slugs and plants co-infested with slugs and caterpillars were far less attractive to parasitoids than plants damaged by caterpillars only, independently of slug species. Chemical analyses confirmed that volatile emissions, which provide foraging cues for parasitoids, were strongly reduced in co-infested plants. Our study shows that the presence of slugs has the potential to affect insect populations, directly via consumptive effects, and indirectly via changes in plant volatiles that result in a reduced attraction of natural enemies. The fitness cost for P. brassicae imposed by increased mortality in presence of slugs may be counterbalanced by the benefit of escaping its parasitoids.
Collapse
|
47
|
Khaitov B, Patiño-Ruiz JD, Pina T, Schausberger P. Interrelated effects of mycorrhiza and free-living nitrogen fixers cascade up to aboveground herbivores. Ecol Evol 2015; 5:3756-68. [PMID: 26380703 PMCID: PMC4567878 DOI: 10.1002/ece3.1654] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 07/15/2015] [Accepted: 07/22/2015] [Indexed: 12/16/2022] Open
Abstract
Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen-fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinct belowground microorganisms commonly co-occur in the rhizosphere, their combined effects, and relative contributions, respectively, on performance of aboveground plant-associated organisms are virtually unexplored. Here, we scrutinized and disentangled the effects of free-living nitrogen-fixing (diazotrophic) bacteria Azotobacter chroococcum (DB) and arbuscular mycorrhizal fungi Glomus mosseae (AMF) on host plant choice and reproduction of the herbivorous two-spotted spider mite Tetranychus urticae on common bean plants Phaseolus vulgaris. Additionally, we assessed plant growth, and AMF and DB occurrence and density as affected by each other. Both AMF alone and DB alone increased spider mite reproduction to similar levels, as compared to the control, and exerted additive effects under co-occurrence. These effects were similarly apparent in host plant choice, that is, the mites preferred leaves from plants with both AMF and DB to plants with AMF or DB to plants grown without AMF and DB. DB, which also act as AMF helper bacteria, enhanced root colonization by AMF, whereas AMF did not affect DB abundance. AMF but not DB increased growth of reproductive plant tissue and seed production, respectively. Both AMF and DB increased the biomass of vegetative aboveground plant tissue. Our study breaks new ground in multitrophic belowground-aboveground research by providing first insights into the fitness implications of plant-mediated interactions between interrelated belowground fungi-bacteria and aboveground herbivores.
Collapse
Affiliation(s)
- Botir Khaitov
- Group of Arthropod Ecology and Behavior, Department of Crop Sciences, University of Natural Resources and Life Sciences Peter Jordanstrasse 82, 1190, Vienna, Austria ; Division of Legume Crops, Department of Plant Sciences, Tashkent State Agrarian University Universitetskaya street 2a, 370, Tashkent, Uzbekistan
| | - José David Patiño-Ruiz
- Group of Arthropod Ecology and Behavior, Department of Crop Sciences, University of Natural Resources and Life Sciences Peter Jordanstrasse 82, 1190, Vienna, Austria
| | - Tatiana Pina
- Group of Arthropod Ecology and Behavior, Department of Crop Sciences, University of Natural Resources and Life Sciences Peter Jordanstrasse 82, 1190, Vienna, Austria ; Departament de Ciències Agràries i del Medi Natural, Unitat Associada d'Entomologia UJI/IVIA, Universitat Jaume I Campus del Riu Sec, 12071, Castelló de la Plana, Spain
| | - Peter Schausberger
- Group of Arthropod Ecology and Behavior, Department of Crop Sciences, University of Natural Resources and Life Sciences Peter Jordanstrasse 82, 1190, Vienna, Austria
| |
Collapse
|