1
|
Gutiérrez-Carrillo DA, Mateus-Aguilar B, Gómez C, Cadena CD. Records from Neotropical non-breeding grounds reveal shifts in bird migration phenology over six decades. Curr Biol 2024; 34:4845-4851.e3. [PMID: 39332402 DOI: 10.1016/j.cub.2024.08.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/13/2024] [Accepted: 08/30/2024] [Indexed: 09/29/2024]
Abstract
Changes in the migration phenology of birds linked to global change are extensively documented. Longitudinal studies from temperate breeding grounds have mostly shown earlier arrivals in the spring and a variety of patterns during fall migration,1,2 yet no studies have addressed whether and how migration phenology has changed using data from the tropical non-breeding grounds. Understanding whether changes in migratory phenology are also evident in non-breeding sites is essential to determining the underlying causes of patterns documented in breeding areas. Using data from historical scientific collections and modern repositories of community science records, we assessed changes in the migration phenology of 12 Nearctic-Neotropical long-distance migratory birds in Colombia over six decades. We also explored whether shared breeding and non-breeding climatic niches explained variation in the phenological patterns observed among species. All species showed shifts in spring (range -37 to 9 days from peak passage date) or fall (range -26 to 36 days) migration, but patterns differed among species in ways partly attributable to shared breeding or wintering climatic niches. Our results, although not yet broadly generalizable, suggest that birds use cues to time their migration at their non-breeding grounds, which are most likely different to those they use on their breeding grounds. To better understand the effects of global change on biodiversity, exploring the underlying drivers of phenological changes with further research integrating more long-term datasets available through scientific collections and community science platforms should be a priority.
Collapse
Affiliation(s)
- Daniel A Gutiérrez-Carrillo
- Laboratorio de Biología Evolutiva de Vertebrados, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá 111711, Colombia; Department of Biological Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Bryam Mateus-Aguilar
- Laboratorio de Biología Evolutiva de Vertebrados, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá 111711, Colombia
| | - Camila Gómez
- SELVA: Investigación para la conservación en el Neotrópico, Bogotá 111311, Colombia.
| | - Carlos Daniel Cadena
- Laboratorio de Biología Evolutiva de Vertebrados, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá 111711, Colombia
| |
Collapse
|
2
|
Fu YH, Geng X, Chen S, Wu H, Hao F, Zhang X, Wu Z, Zhang J, Tang J, Vitasse Y, Zohner CM, Janssens I, Stenseth NC, Peñuelas J. Global warming is increasing the discrepancy between green (actual) and thermal (potential) seasons of temperate trees. GLOBAL CHANGE BIOLOGY 2023; 29:1377-1389. [PMID: 36459482 DOI: 10.1111/gcb.16545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 05/26/2023]
Abstract
Over the past decades, global warming has led to a lengthening of the time window during which temperatures remain favorable for carbon assimilation and tree growth, resulting in a lengthening of the green season. The extent to which forest green seasons have tracked the lengthening of this favorable period under climate warming, however, has not been quantified to date. Here, we used remote sensing data and long-term ground observations of leaf-out and coloration for six dominant species of European trees at 1773 sites, for a total of 6060 species-site combinations, during 1980-2016 and found that actual green season extensions (GS: 3.1 ± 0.1 day decade-1 ) lag four times behind extensions of the potential thermal season (TS: 12.6 ± 0.1 day decade-1 ). Similar but less pronounced differences were obtained using satellite-derived vegetation phenology observations, that is, a lengthening of 4.4 ± 0.13 and 7.5 ± 0.13 day decade-1 for GS and TS, respectively. This difference was mainly driven by the larger advance in the onset of the thermal season compared to the actual advance of leaf-out dates (spring mismatch: 7.2 ± 0.1 day decade-1 ), but to a less extent caused by a phenological mismatch between GS and TS in autumn (2.4 ± 0.1 day decade-1 ). Our results showed that forest trees do not linearly track the new thermal window extension, indicating more complex interactions between winter and spring temperatures and photoperiod and a justification of demonstrating that using more sophisticated models that include the influence of chilling and photoperiod is needed to accurately predict spring phenological changes under warmer climate. They urge caution if such mechanisms are omitted to predict, for example, how vegetative health and growth, species distribution and crop yields will change in the future.
Collapse
Affiliation(s)
- Yongshuo H Fu
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Xiaojun Geng
- College of Water Sciences, Beijing Normal University, Beijing, China
- General Institute of Water Resources and Hydropower Planning and Design (GIWP), Ministry of Water Resources, Beijing, China
| | - Shouzhi Chen
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Hao Wu
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
| | - Fanghua Hao
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
| | - Xuan Zhang
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Zhaofei Wu
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Jing Zhang
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Jing Tang
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yann Vitasse
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Constantin M Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Ivan Janssens
- Plants and Ecosystems, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Nils Chr Stenseth
- CREAF, Cerdanyola del Vallès, Barcelona, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
| | - Josep Peñuelas
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Pendleton DE, Tingley MW, Ganley LC, Friedland KD, Mayo C, Brown MW, McKenna BE, Jordaan A, Staudinger MD. Decadal-scale phenology and seasonal climate drivers of migratory baleen whales in a rapidly warming marine ecosystem. GLOBAL CHANGE BIOLOGY 2022; 28:4989-5005. [PMID: 35672922 PMCID: PMC9541444 DOI: 10.1111/gcb.16225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Species' response to rapid climate change can be measured through shifts in timing of recurring biological events, known as phenology. The Gulf of Maine is one of the most rapidly warming regions of the ocean, and thus an ideal system to study phenological and biological responses to climate change. A better understanding of climate-induced changes in phenology is needed to effectively and adaptively manage human-wildlife conflicts. Using data from a 20+ year marine mammal observation program, we tested the hypothesis that the phenology of large whale habitat use in Cape Cod Bay has changed and is related to regional-scale shifts in the thermal onset of spring. We used a multi-season occupancy model to measure phenological shifts and evaluate trends in the date of peak habitat use for North Atlantic right (Eubalaena glacialis), humpback (Megaptera novaeangliae), and fin (Balaenoptera physalus) whales. The date of peak habitat use shifted by +18.1 days (0.90 days/year) for right whales and +19.1 days (0.96 days/year) for humpback whales. We then evaluated interannual variability in peak habitat use relative to thermal spring transition dates (STD), and hypothesized that right whales, as planktivorous specialist feeders, would exhibit a stronger response to thermal phenology than fin and humpback whales, which are more generalist piscivorous feeders. There was a significant negative effect of western region STD on right whale habitat use, and a significant positive effect of eastern region STD on fin whale habitat use indicating differential responses to spatial seasonal conditions. Protections for threatened and endangered whales have been designed to align with expected phenology of habitat use. Our results show that whales are becoming mismatched with static seasonal management measures through shifts in their timing of habitat use, and they suggest that effective management strategies may need to alter protections as species adapt to climate change.
Collapse
Affiliation(s)
- Daniel E. Pendleton
- Anderson Cabot Center for Ocean LifeNew England AquariumBostonMassachusettsUSA
| | - Morgan W. Tingley
- Ecology and Evolutionary BiologyUniversity of California – Los AngelesLos AngelesCaliforniaUSA
| | - Laura C. Ganley
- Anderson Cabot Center for Ocean LifeNew England AquariumBostonMassachusettsUSA
| | | | - Charles Mayo
- Center for Coastal StudiesProvincetownMassachusettsUSA
| | | | | | - Adrian Jordaan
- Department of Environmental ConservationUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Michelle D. Staudinger
- Department of Environmental ConservationUniversity of Massachusetts AmherstAmherstMassachusettsUSA
- U.S. Geological SurveyDepartment of the Interior Northeast Climate Adaptation Science CenterAmherstMassachusettsUSA
| |
Collapse
|
4
|
Barboutis C, Navarrete E, Karris G, Xirouchakis S, Fransson T, Bounas A. Arriving depleted after crossing of the Mediterranean: obligatory stopover patterns underline the importance of Mediterranean islands for migrating birds. ANIMAL MIGRATION 2022. [DOI: 10.1515/ami-2022-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Hundreds of millions of birds reach the Mediterranean islands or Mediterranean coast of Europe every spring after having crossed the Sahara Desert and the Mediterranean Sea. Using data from three small insular stopover sites, we calculated body mass without fuel for 18 trans-Saharan passerine migrants. We subsequently used arrival fuel loads coupled with potential flight range estimates to assess the percentage of birds that are forced to perform an obligatory stopover after crossing the Mediterranean Sea due to fuel depletion. Average arrival fuel loads were among the lowest ever recorded in the Mediterranean region and minimum body mass values recorded for several species were lower than any other individual value reported. The percentage of birds that needed to replenish their energy stores before resuming their northward migration journey varied from 0% to 50% depending on the species and locality studied. Based on conservative estimates at least 180 million birds of our study species are expected to migrate through Greece, 14% of which would not be able to resume their migration without refueling. The significance of small islands and coastal sites in the Mediterranean as obligatory refuelling sites is discussed and their conservation value for migratory birds is highlighted under the perspective of climate change.
Collapse
Affiliation(s)
- Christos Barboutis
- Department of Biological Applications and Technology , University of Ioannina , Ioannina , GR-45110 , Greece
- Antikythira Bird Observatory, Hellenic Ornithological Society/BirdLife Greece , Themistokleous 80 , Athens , GR-10681 , Greece
| | - Elisabeth Navarrete
- Antikythira Bird Observatory, Hellenic Ornithological Society/BirdLife Greece , Themistokleous 80 , Athens , GR-10681 , Greece
| | - Georgios Karris
- Lab of Environmental Physics, Energy and Environmental Biology, Department of Environment, Faculty of Environment , Ionian University , Panagoula, GR-29100, Zakynthos , Greece
| | - Stavros Xirouchakis
- Natural History Museum of Crete , University of Crete, University Campus (Knossos) , GR-71409 Heraklion, Crete , Greece
| | - Thord Fransson
- Department of Environmental Research and Monitoring , Swedish Museum of Natural History , , Stockholm , Sweden
| | - Anastasios Bounas
- Department of Biological Applications and Technology , University of Ioannina , Ioannina , , Greece
| |
Collapse
|
5
|
Birnie-Gauvin K, Lennox RJ, Guglielmo CG, Teffer AK, Crossin GT, Norris DR, Aarestrup K, Cooke SJ. The Value of Experimental Approaches in Migration Biology. Physiol Biochem Zool 2020; 93:210-226. [DOI: 10.1086/708455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Bell JR, Botham MS, Henrys PA, Leech DI, Pearce‐Higgins JW, Shortall CR, Brereton TM, Pickup J, Thackeray SJ. Spatial and habitat variation in aphid, butterfly, moth and bird phenologies over the last half century. GLOBAL CHANGE BIOLOGY 2019; 25:1982-1994. [PMID: 30761691 PMCID: PMC6563090 DOI: 10.1111/gcb.14592] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 01/18/2019] [Accepted: 01/31/2019] [Indexed: 05/12/2023]
Abstract
Global warming has advanced the timing of biological events, potentially leading to disruption across trophic levels. The potential importance of phenological change as a driver of population trends has been suggested. To fully understand the possible impacts, there is a need to quantify the scale of these changes spatially and according to habitat type. We studied the relationship between phenological trends, space and habitat type between 1965 and 2012 using an extensive UK dataset comprising 269 aphid, bird, butterfly and moth species. We modelled phenologies using generalized additive mixed models that included covariates for geographical (latitude, longitude, altitude), temporal (year, season) and habitat terms (woodland, scrub, grassland). Model selection showed that a baseline model with geographical and temporal components explained the variation in phenologies better than either a model in which space and time interacted or a habitat model without spatial terms. This baseline model showed strongly that phenologies shifted progressively earlier over time, that increasing altitude produced later phenologies and that a strong spatial component determined phenological timings, particularly latitude. The seasonal timing of a phenological event, in terms of whether it fell in the first or second half of the year, did not result in substantially different trends for butterflies. For moths, early season phenologies advanced more rapidly than those recorded later. Whilst temporal trends across all habitats resulted in earlier phenologies over time, agricultural habitats produced significantly later phenologies than most other habitats studied, probably because of nonclimatic drivers. A model with a significant habitat-time interaction was the best-fitting model for birds, moths and butterflies, emphasizing that the rates of phenological advance also differ among habitats for these groups. Our results suggest the presence of strong spatial gradients in mean seasonal timing and nonlinear trends towards earlier seasonal timing that varies in form and rate among habitat types.
Collapse
Affiliation(s)
- James R. Bell
- Rothamsted Insect Survey, Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
| | | | - Peter A. Henrys
- Centre for Ecology & Hydrology, Lancaster Environment CentreLancasterLancashireUK
| | | | | | - Chris R. Shortall
- Rothamsted Insect Survey, Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
| | | | | | - Stephen J. Thackeray
- Centre for Ecology & Hydrology, Lancaster Environment CentreLancasterLancashireUK
| |
Collapse
|
7
|
Walsh ES, Vierling KT, Strand E, Bartowitz K, Hudiburg TW. Climate change, woodpeckers, and forests: Current trends and future modeling needs. Ecol Evol 2019; 9:2305-2319. [PMID: 30847111 PMCID: PMC6392386 DOI: 10.1002/ece3.4876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/24/2018] [Accepted: 11/27/2018] [Indexed: 01/20/2023] Open
Abstract
The structure and composition of forest ecosystems are expected to shift with climate-induced changes in precipitation, temperature, fire, carbon mitigation strategies, and biological disturbance. These factors are likely to have biodiversity implications. However, climate-driven forest ecosystem models used to predict changes to forest structure and composition are not coupled to models used to predict changes to biodiversity. We proposed integrating woodpecker response (biodiversity indicator) with forest ecosystem models. Woodpeckers are a good indicator species of forest ecosystem dynamics, because they are ecologically constrained by landscape-scale forest components, such as composition, structure, disturbance regimes, and management activities. In addition, they are correlated with forest avifauna community diversity. In this study, we explore integrating woodpecker and forest ecosystem climate models. We review climate-woodpecker models and compare the predicted responses to observed climate-induced changes. We identify inconsistencies between observed and predicted responses, explore the modeling causes, and identify the models pertinent to integration that address the inconsistencies. We found that predictions in the short term are not in agreement with observed trends for 7 of 15 evaluated species. Because niche constraints associated with woodpeckers are a result of complex interactions between climate, vegetation, and disturbance, we hypothesize that the lack of adequate representation of these processes in the current broad-scale climate-woodpecker models results in model-data mismatch. As a first step toward improvement, we suggest a conceptual model of climate-woodpecker-forest modeling for integration. The integration model provides climate-driven forest ecosystem modeling with a measure of biodiversity while retaining the feedback between climate and vegetation in woodpecker climate change modeling.
Collapse
Affiliation(s)
- Eric S. Walsh
- Forest, Rangeland, and Fire Sciences DepartmentUniversity of IdahoMoscowIdaho
| | - Kerri T. Vierling
- Department of Fish and Wildlife SciencesUniversity of IdahoMoscowIdaho
| | - Eva Strand
- Forest, Rangeland, and Fire Sciences DepartmentUniversity of IdahoMoscowIdaho
| | - Kristina Bartowitz
- Forest, Rangeland, and Fire Sciences DepartmentUniversity of IdahoMoscowIdaho
| | - Tara W. Hudiburg
- Forest, Rangeland, and Fire Sciences DepartmentUniversity of IdahoMoscowIdaho
| |
Collapse
|
8
|
Avery JD, Keller GS. Spring Migration Patterns of Birds In Montane Habitats of the Southwestern United States. SOUTHWEST NAT 2018. [DOI: 10.1894/0038-4909-63.1.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Julian D. Avery
- Department of Biology, Station 33, Eastern New Mexico University, Portales, NM 88130
- Present address of JDA: Department of Ecosystem Science and Management, Penn State University, 412 Forest Resources Building, University Park, PA 16802
- Present address of GSK: Department of Biology, Gordon College, Wenham, MA 01984
| | - Gregory S. Keller
- Department of Biology, Station 33, Eastern New Mexico University, Portales, NM 88130
- Present address of JDA: Department of Ecosystem Science and Management, Penn State University, 412 Forest Resources Building, University Park, PA 16802
- Present address of GSK: Department of Biology, Gordon College, Wenham, MA 01984
| |
Collapse
|
9
|
Feldman RE, Žemaitė I, Miller-Rushing AJ. How training citizen scientists affects the accuracy and precision of phenological data. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2018; 62:1421-1435. [PMID: 29732472 DOI: 10.1007/s00484-018-1540-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Monitoring plant and animal phenology is a critical step to anticipating and predicting changes in species interactions and biodiversity. Because phenology necessarily involves frequent and repeated observations over time, citizen scientists have become a vital part of collecting phenological data. However, there is still concern over the accuracy and precision of citizen science data. It is possible that training citizen scientists can improve data quality though there are few comparisons of trained and untrained citizen scientists in the ability of each to accurately and precisely measure phenology. We assessed how three types of observers-experts, trained citizen scientists that make repeated observations, and untrained citizen scientists making once-per-year observations-differ in quantifying temporal change in flower and fruit abundance of American mountain ash trees (Sorbus americana Marsh.) and arthropods in Acadia National Park, Maine, USA. We found that trained more so than untrained citizen science observers over- or under-estimated abundances leading to precise but inaccurate characterizations of phenological patterns. Our results suggest a new type of bias induced by repeated observations: A type of learning takes place that reduces the independence of observations taken on different trees or different dates. Thus, in this and many other cases, having individuals make one-off observations of marked plants may produce data as good if not better than individuals making repeated observations. For citizen science programs related to phenology, our results underscore the importance of (a) attracting the most number of observers possible even if they only make one observation, (b) producing easy-to-use and informative data sheets, and
Collapse
Affiliation(s)
- Richard E Feldman
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Calle 43 #130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
- Schoodic Institute at Acadia National Park, Winter Harbor, ME, 04693, USA.
- Department of Environmental Conservation, University of Massachusetts, 160 Holdsworth Hall, Amherst, MA, 01003, USA.
| | - Irma Žemaitė
- Department of Environmental Sciences, Vytautas Magnus University, Vileika St. 8, 44404, Kaunas, Lithuania
| | | |
Collapse
|
10
|
Huang J, Hao H. Detecting mismatches in the phenology of cotton bollworm larvae and cotton flowering in response to climate change. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2018; 62:1507-1520. [PMID: 29752540 DOI: 10.1007/s00484-018-1552-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/09/2018] [Accepted: 04/18/2018] [Indexed: 05/12/2023]
Abstract
Current evidence suggests that climate change has directly affected the phenology of many invertebrate species associated with agriculture. Such changes in phenology have the potential to cause temporal mismatches between predators and prey and may lead to a disruption in natural pest control ecosystem. Understanding the synchrony between pest insects and host plant responses to climate change is a key step to improve integrated pest management strategies. Cotton bollworm larvae damage cotton, and thus, data from Magaiti County, China, collected during the period of 1990-2015 were analyzed to assess the effects of climate change on cotton bollworm larvae and cotton flowering. The results showed that a warming climate advanced the phenology of cotton bollworm larvae and cotton flowering. However, the phenological rate of change was faster in cotton bollworm larvae than that in cotton flowering, and the larval period was prolonged, resulting in a great increase of the larval population. The abrupt phenological changes in cotton bollworm larvae occurred earlier than that in cotton, and the abrupt phenological changes in cotton flowering occurred earlier than that in larval abundance. However, the timing of abrupt changes in larval abundance all occurred later than that in temperature. Thus, the abrupt changes that occurred in larvae, cotton flowering and climate were asynchronous. The interval days between the cotton flowering date (CFD) and the half-amount larvae date (HLD) expanded by 3.41 and 4.41 days with a 1 °C increase of Tmean in May and June, respectively. The asynchrony between cotton bollworm larvae and cotton flowering will likely broaden as the climate changes. The effective temperature in March and April and the end date of larvae (ED) were the primary factors affecting asynchrony.
Collapse
Affiliation(s)
- Jian Huang
- China Meteorological Administration, Institute of Desert and Meteorology, Urumqi, 830002, China.
- Central Asian Research Center for Atmospheric Sciences, Urumqi, 830002, China.
| | - HongFei Hao
- Bachu Meteorological Administration, Bachu, 843800, China
| |
Collapse
|
11
|
Gallant AL, Sadinski W, Brown JF, Senay GB, Roth MF. Challenges in Complementing Data from Ground-Based Sensors with Satellite-Derived Products to Measure Ecological Changes in Relation to Climate-Lessons from Temperate Wetland-Upland Landscapes. SENSORS 2018; 18:s18030880. [PMID: 29547531 PMCID: PMC5876606 DOI: 10.3390/s18030880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/22/2018] [Accepted: 03/13/2018] [Indexed: 11/16/2022]
Abstract
Assessing climate-related ecological changes across spatiotemporal scales meaningful to resource managers is challenging because no one method reliably produces essential data at both fine and broad scales. We recently confronted such challenges while integrating data from ground- and satellite-based sensors for an assessment of four wetland-rich study areas in the U.S. Midwest. We examined relations between temperature and precipitation and a set of variables measured on the ground at individual wetlands and another set measured via satellite sensors within surrounding 4 km2 landscape blocks. At the block scale, we used evapotranspiration and vegetation greenness as remotely sensed proxies for water availability and to estimate seasonal photosynthetic activity. We used sensors on the ground to coincidentally measure surface-water availability and amphibian calling activity at individual wetlands within blocks. Responses of landscape blocks generally paralleled changes in conditions measured on the ground, but the latter were more dynamic, and changes in ecological conditions on the ground that were critical for biota were not always apparent in measurements of related parameters in blocks. Here, we evaluate the effectiveness of decisions and assumptions we made in applying the remotely sensed data for the assessment and the value of integrating observations across scales, sensors, and disciplines.
Collapse
Affiliation(s)
- Alisa L Gallant
- Earth Resources Observation and Science Center, US Geological Survey, 47914 252nd Street, Sioux Falls, SD 57198, USA.
| | - Walt Sadinski
- Upper Midwest Environmental Sciences Center, US Geological Survey, 2630 Fanta Reed Road, La Crosse, WI 54603, USA.
| | - Jesslyn F Brown
- Earth Resources Observation and Science Center, US Geological Survey, 47914 252nd Street, Sioux Falls, SD 57198, USA.
| | - Gabriel B Senay
- Earth Resources Observation and Science Center, US Geological Survey, 47914 252nd Street, Sioux Falls, SD 57198, USA.
| | - Mark F Roth
- Upper Midwest Environmental Sciences Center, US Geological Survey, 2630 Fanta Reed Road, La Crosse, WI 54603, USA.
| |
Collapse
|
12
|
Jimenez AG, Jayawardene S, Alves S, Dallmer J, Dowd WW. Micro-scale environmental variation amplifies physiological variation among individual mussels. Proc Biol Sci 2017; 282:20152273. [PMID: 26645201 DOI: 10.1098/rspb.2015.2273] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The contributions of temporal and spatial environmental variation to physiological variation remain poorly resolved. Rocky intertidal zone populations are subjected to thermal variation over the tidal cycle, superimposed with micro-scale variation in individuals' body temperatures. Using the sea mussel (Mytilus californianus), we assessed the consequences of this micro-scale environmental variation for physiological variation among individuals, first by examining the latter in field-acclimatized animals, second by abolishing micro-scale environmental variation via common garden acclimation, and third by restoring this variation using a reciprocal outplant approach. Common garden acclimation reduced the magnitude of variation in tissue-level antioxidant capacities by approximately 30% among mussels from a wave-protected (warm) site, but it had no effect on antioxidant variation among mussels from a wave-exposed (cool) site. The field-acclimatized level of antioxidant variation was restored only when protected-site mussels were outplanted to a high, thermally stressful site. Variation in organismal oxygen consumption rates reflected antioxidant patterns, decreasing dramatically among protected-site mussels after common gardening. These results suggest a highly plastic relationship between individuals' genotypes and their physiological phenotypes that depends on recent environmental experience. Corresponding context-dependent changes in the physiological mean-variance relationships within populations complicate prediction of responses to shifts in environmental variability that are anticipated with global change.
Collapse
Affiliation(s)
- Ana Gabriela Jimenez
- Department of Biology, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| | - Sarah Jayawardene
- Department of Chemistry and Biochemistry, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| | - Shaina Alves
- Department of Chemistry and Biochemistry, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| | - Jeremiah Dallmer
- Department of Biology, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| | - W Wesley Dowd
- Department of Biology, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| |
Collapse
|
13
|
Wood EM, Pidgeon AM. Extreme variations in spring temperature affect ecosystem regulating services provided by birds during migration. Ecosphere 2015. [DOI: 10.1890/es15-00397.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|