1
|
Mayombo NAS, Burfeid-Castellanos AM, Vermiert AM, Pimentel IM, Rehsen PM, Dani M, Jasinski C, Spyra MA, Kloster M, Vidaković D, Buchner D, Beszteri B. Functional and compositional responses of stream microphytobenthic communities to multiple stressors increase and release in a mesocosm experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173670. [PMID: 38838995 DOI: 10.1016/j.scitotenv.2024.173670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Field observations form the basis of the majority of studies on microphytobenthic algal communities in freshwater ecosystems. Controlled mesocosm experiments data are comparatively uncommon. The few experimental mesocosm studies that have been conducted provide valuable insights into how multiple stressors affect the community structures and photosynthesis-related traits of benthic microalgae. The recovery process after the stressors have subsided, however, has received less attention in mesocosm studies. To close this gap, here we present the results of a riparian mesocosm experiment designed to investigate the effects of reduced flow velocity, increased salinity and increased temperature on microphytobenthic communities. We used a full factorial design with a semi-randomised distribution of treatments consisting of two levels of each stressor (2 × 2 × 2 treatments), with eight replicates making a total of 64 circular mesocosms, allowing a nuanced examination of their individual and combined influences. We aimed to elucidate the responses of microalgae communities seeded from stream water to the applied environmental stressors. Our results showed significant effects of reduced flow velocity and increased temperature on microphytobenthic communities. Recovery after stressor treatment led to a convergence in community composition, with priority effects (hypothesized to reflect competition for substrate between resident and newly arriving immigrant taxa) slowing down community shifts and biomass increase. Our study contributes to the growing body of literature on the ecological dynamics of microphytobenthos and emphasises the importance of rigorous experiments to validate hypotheses. These results encourage further investigation into the nuanced interactions between microphytobenthos and their environment and shed light on the complexity of ecological responses in benthic systems.
Collapse
Affiliation(s)
| | | | - Anna-Maria Vermiert
- Department of Animal Ecology, Evolution and Biodiversity, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Iris Madge Pimentel
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Philipp M Rehsen
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Mimoza Dani
- Phycology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Christina Jasinski
- Phycology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Michael Kloster
- Phycology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Danijela Vidaković
- Phycology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dominik Buchner
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Bánk Beszteri
- Phycology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Gaudin M, Eveillard D, Chaffron S. Ecological associations distribution modelling of marine plankton at a global scale. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230169. [PMID: 39034696 PMCID: PMC11293856 DOI: 10.1098/rstb.2023.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 07/23/2024] Open
Abstract
Marine plankton communities form intricate networks of interacting organisms at the base of the food chain, and play a central role in regulating ocean biogeochemical cycles and climate. However, predicting plankton community shifts in response to climate change remains challenging. While species distribution models are valuable tools for predicting changes in species biogeography under climate change scenarios, they generally overlook the key role of biotic interactions, which can significantly shape ecological processes and ecosystem responses. Here, we introduce a novel statistical framework, association distribution modelling (ADM), designed to model and predict ecological associations distribution in space and time. Applied on a Tara Oceans genome-resolved metagenomics dataset, the present-day biogeography of ADM-inferred marine plankton associations revealed four major biogeographic biomes organized along a latitudinal gradient. We predicted the evolution of these biome-specific communities in response to a climate change scenario, highlighting differential responses to environmental change. Finally, we explored the functional potential of impacted plankton communities, focusing on carbon fixation, outlining the predicted evolution of its geographical distribution and implications for ecosystem function.This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Collapse
Affiliation(s)
- Marinna Gaudin
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, Nantes44000, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris75016, France
| | - Damien Eveillard
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, Nantes44000, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris75016, France
| | - Samuel Chaffron
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, Nantes44000, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris75016, France
| |
Collapse
|
3
|
Ahme A, Happe A, Striebel M, Cabrerizo MJ, Olsson M, Giesler J, Schulte-Hillen R, Sentimenti A, Kühne N, John U. Warming increases the compositional and functional variability of a temperate protist community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171971. [PMID: 38547992 DOI: 10.1016/j.scitotenv.2024.171971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Phototrophic protists are a fundamental component of the world's oceans by serving as the primary source of energy, oxygen, and organic nutrients for the entire ecosystem. Due to the high thermal seasonality of their habitat, temperate protists could harbour many well-adapted species that tolerate ocean warming. However, these species may not sustain ecosystem functions equally well. To address these uncertainties, we conducted a 30-day mesocosm experiment to investigate how moderate (12 °C) and substantial (18 °C) warming compared to ambient conditions (6 °C) affect the composition (18S rRNA metabarcoding) and ecosystem functions (biomass, gross oxygen productivity, nutritional quality - C:N and C:P ratio) of a North Sea spring bloom community. Our results revealed warming-driven shifts in dominant protist groups, with haptophytes thriving at 12 °C and diatoms at 18 °C. Species responses primarily depended on the species' thermal traits, with indirect temperature effects on grazing being less relevant and phosphorus acting as a critical modulator. The species Phaeocystis globosa showed highest biomass on low phosphate concentrations and relatively increased in some replicates of both warming treatments. In line with this, the C:P ratio varied more with the presence of P. globosa than with temperature. Examining further ecosystem responses under warming, our study revealed lowered gross oxygen productivity but increased biomass accumulation whereas the C:N ratio remained unaltered. Although North Sea species exhibited resilience to elevated temperatures, a diminished functional similarity and heightened compositional variability indicate potential ecosystem repercussions for higher trophic levels. In conclusion, our research stresses the multifaceted nature of temperature effects on protist communities, emphasising the need for a holistic understanding that encompasses trait-based responses, indirect effects, and functional dynamics in the face of exacerbating temperature changes.
Collapse
Affiliation(s)
- Antonia Ahme
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | - Anika Happe
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany
| | - Maren Striebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany
| | - Marco J Cabrerizo
- Department of Ecology, University of Granada, Campus Fuentenueva s/n 1, 18071 Granada, Spain; Department of Ecology and Animal Biology, University of Vigo, Campus Lagoas Marcosende s/n, 36310 Vigo, Spain
| | - Markus Olsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, 106 91 Stockholm, Sweden
| | - Jakob Giesler
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Ruben Schulte-Hillen
- Albert-Ludwigs-Universität Freiburg, Fahnenbergplatz, 79104 Freiburg i.Br., Germany
| | - Alexander Sentimenti
- Albert-Ludwigs-Universität Freiburg, Fahnenbergplatz, 79104 Freiburg i.Br., Germany
| | - Nancy Kühne
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Uwe John
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Ammerländer Heersstraße 231, 26129 Oldenburg, Germany
| |
Collapse
|
4
|
Locke H, Bidle KD, Thamatrakoln K, Johns CT, Bonachela JA, Ferrell BD, Wommack KE. Marine viruses and climate change: Virioplankton, the carbon cycle, and our future ocean. Adv Virus Res 2022; 114:67-146. [PMID: 39492214 DOI: 10.1016/bs.aivir.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interactions between marine viruses and microbes are a critical part of the oceanic carbon cycle. The impacts of virus-host interactions range from short-term disruptions in the mobility of microbial biomass carbon to higher trophic levels through cell lysis (i.e., the viral shunt) to long-term reallocation of microbial biomass carbon to the deep sea through accelerating the biological pump (i.e., the viral shuttle). The biogeochemical backdrop of the ocean-the physical, chemical, and biological landscape-influences the likelihood of both virus-host interactions and particle formation, and the fate and flow of carbon. As climate change reshapes the oceanic landscape through large-scale shifts in temperature, circulation, stratification, and acidification, virus-mediated carbon flux is likely to shift in response. Dynamics in the directionality and magnitude of changes in how, where, and when viruses mediate the recycling or storage of microbial biomass carbon is largely unknown. Integrating viral infection dynamics data obtained from experimental models and field systems, with particle motion microphysics and global observations of oceanic biogeochemistry, into improved ecosystem models will enable viral oceanographers to better predict the role of viruses in marine carbon cycling in the future ocean.
Collapse
Affiliation(s)
- Hannah Locke
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States
| | - Kay D Bidle
- Rutgers Univ., Dept. of Marine & Coastal Sciences, New Brunswick, NJ, United States
| | | | - Christopher T Johns
- Rutgers Univ., Dept. of Marine & Coastal Sciences, New Brunswick, NJ, United States
| | - Juan A Bonachela
- Rutgers Univ., Dept. of Ecology, Evolution & Natural Resources, New Brunswick, NJ, United States
| | - Barbra D Ferrell
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States
| | - K Eric Wommack
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States.
| |
Collapse
|
5
|
González-Olalla JM, Medina-Sánchez JM, Carrillo P. Fluctuation at High Temperature Combined with Nutrients Alters the Thermal Dependence of Phytoplankton. MICROBIAL ECOLOGY 2022; 83:555-567. [PMID: 34145482 DOI: 10.1007/s00248-021-01787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
The Metabolic Theory of Ecology (MTE) predicts that the temperature increases exert a common effect on organisms stimulating metabolic rates, this being stronger for a heterotrophic than for an autotrophic metabolism. However, no available studies within the MTE framework have focused on organisms' response under fluctuation at high temperature interacting with factors such as nutrient availability, or how this interaction could affect the coexistence between mixotrophic and strict autotrophic phytoplankton. Hence, we assess how the phytoplankton metabolism and species composition are affected under scenarios of high temperature and fluctuation at high temperature, and how nutrients alter the direction and magnitude of such impact. For that, we use a mixed culture composed of two phytoplankton species: a strict autotrophic species and a mixotrophic species. Our results indicate that, in agreement with the MTE, only fluctuation at high temperature treatment registered a greater activation energy (Ea) value for respiration than for primary production and stimulated mixotrophic over strict autotrophic species abundance compared to control treatment. Remarkably, fluctuation at high temperature had a strong negative impact on the total abundance of the mixed-culture. The interaction between nutrient enrichment and fluctuation at high temperature increased abundance of the strict autotrophic species and overall species abundance, and led to Ea values that were higher in primary production than in respiration. Changes in community composition, enhanced by nutrient enrichment, could be behind this response, which can have implications in ecosystem functioning in a changing world.
Collapse
Affiliation(s)
- Juan Manuel González-Olalla
- University Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071, Granada, Spain
- Department of Ecology, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - Juan Manuel Medina-Sánchez
- Department of Ecology, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain.
| | - Presentación Carrillo
- University Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071, Granada, Spain
- Department of Ecology, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| |
Collapse
|
6
|
Sweet JA, Bargu S, Morrison WL, Parsons M, Pathare MG, Roberts BJ, Soniat TM, Stauffer BA. Phytoplankton dynamics in Louisiana estuaries: Building a baseline to understand current and future change. MARINE POLLUTION BULLETIN 2022; 175:113344. [PMID: 35124379 DOI: 10.1016/j.marpolbul.2022.113344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Louisiana estuaries are important habitats in the northern Gulf of Mexico, a region undergoing significant and sustained human- and climate-driven changes. This paper synthesizes data collected over multiple years from four Louisiana estuaries - Breton Sound, Terrebonne Bay, the Atchafalaya River Delta Estuary, and Vermilion Bay - to characterize trends in phytoplankton biomass, community composition, and the environmental factors influencing them. Results highlight similarities in timing and composition of maximum chlorophyll, with salinity variability often explaining biomass trends. Distinct drivers for biomass versus community structure were observed in all four estuarine systems. Systems shared a lack of significant correlation between river discharge and overall phytoplankton biomass, while discharge was important for understanding community composition. Temperature was a significant explanatory variable for both biomass and community composition in only one system. These results provide a regional view of phytoplankton dynamics in Louisiana estuaries critical to understanding and predicting the effects of ongoing change.
Collapse
Affiliation(s)
- Julia A Sweet
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA.
| | - Sibel Bargu
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Wendy L Morrison
- Louisiana Universities Marine Consortium, Cocodrie, LA 70344, USA
| | - Michael Parsons
- Coastal Watershed Institute, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| | - Mrunmayee G Pathare
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
| | - Brian J Roberts
- Louisiana Universities Marine Consortium, Cocodrie, LA 70344, USA
| | - Thomas M Soniat
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Beth A Stauffer
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
| |
Collapse
|
7
|
Hong P, Schmid B, De Laender F, Eisenhauer N, Zhang X, Chen H, Craven D, De Boeck HJ, Hautier Y, Petchey OL, Reich PB, Steudel B, Striebel M, Thakur MP, Wang S. Biodiversity promotes ecosystem functioning despite environmental change. Ecol Lett 2021; 25:555-569. [PMID: 34854529 PMCID: PMC9300022 DOI: 10.1111/ele.13936] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 12/27/2022]
Abstract
Three decades of research have demonstrated that biodiversity can promote the functioning of ecosystems. Yet, it is unclear whether the positive effects of biodiversity on ecosystem functioning will persist under various types of global environmental change drivers. We conducted a meta‐analysis of 46 factorial experiments manipulating both species richness and the environment to test how global change drivers (i.e. warming, drought, nutrient addition or CO2 enrichment) modulated the effect of biodiversity on multiple ecosystem functions across three taxonomic groups (microbes, phytoplankton and plants). We found that biodiversity increased ecosystem functioning in both ambient and manipulated environments, but often not to the same degree. In particular, biodiversity effects on ecosystem functioning were larger in stressful environments induced by global change drivers, indicating that high‐diversity communities were more resistant to environmental change. Using a subset of studies, we also found that the positive effects of biodiversity were mainly driven by interspecific complementarity and that these effects increased over time in both ambient and manipulated environments. Our findings support biodiversity conservation as a key strategy for sustainable ecosystem management in the face of global environmental change.
Collapse
Affiliation(s)
- Pubin Hong
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Bernhard Schmid
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Zurich, Switzerland
| | - Frederik De Laender
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Namur, Belgium
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Xingwen Zhang
- School of Mathematics and Statistics, Yunnan University, China
| | - Haozhen Chen
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Dylan Craven
- Centro de Modelación y Monitoreo de Ecosistemas, Universidad Mayor, Santiago de Chile, Chile
| | - Hans J De Boeck
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, CH, The Netherlands
| | - Owen L Petchey
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St Paul, Minnesota, USA.,Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.,Institute for Global Change Biology, and School for the Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Bastian Steudel
- Department of Health and Environmental Sciences, Xi'an Jiaotong- Liverpool University, Suzhou, Jiangsu Province, China
| | - Maren Striebel
- Institute for Chemistry and Biology of the Marine Environment, Carl Von Ossietzky Universität Oldenburg, Wilhelmshaven, Germany
| | - Madhav P Thakur
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
8
|
Páramo Lakes of Colombia: An Overview of Their Geographical Distribution and Physicochemical Characteristics. WATER 2021. [DOI: 10.3390/w13162175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The páramo lakes, Colombia, situated in the neotropical region, are of great value both as natural heritage and as water source to the most populated areas of the Andes, but are threatened by expanding agriculture, livestock, mining, and landscape fragmentation. Nonetheless, a general assessment of the lakes’ distribution and biogeochemical characteristics was lacking. We made a complete inventory of the Colombian páramo lakes and characterized their morphometry and water chemistry based on a survey of 51 lakes in the Eastern Cordillera. There are 3250 lakes distributed across 28 páramo complexes in Colombia, mainly located between 3600 and 4400 m a.s.l. The lakes are usually small (<10 ha) and shallow (<10 m). Most of them are slightly acidic (average pH~6), with high nutrient (total phosphorus ~0.6 mg/L, total nitrogen ~1 mg/L) and total organic carbon (~6 mg/L) concentrations and low oxygen (~3.5 mg/L) at the bottom. Water chemistry varies according to two main independent gradients related to watershed bedrock geology and trophic state. Global change pressures may be challenging the preservation of these unique ecosystems. Increasing the protection of more lake watersheds should reduce these potential impacts by mitigating negative synergies with local pressures.
Collapse
|
9
|
Chaffron S, Delage E, Budinich M, Vintache D, Henry N, Nef C, Ardyna M, Zayed AA, Junger PC, Galand PE, Lovejoy C, Murray AE, Sarmento H, Acinas SG, Babin M, Iudicone D, Jaillon O, Karsenti E, Wincker P, Karp-Boss L, Sullivan MB, Bowler C, de Vargas C, Eveillard D. Environmental vulnerability of the global ocean epipelagic plankton community interactome. SCIENCE ADVANCES 2021; 7:eabg1921. [PMID: 34452910 PMCID: PMC8397264 DOI: 10.1126/sciadv.abg1921] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/09/2021] [Indexed: 05/05/2023]
Abstract
Marine plankton form complex communities of interacting organisms at the base of the food web, which sustain oceanic biogeochemical cycles and help regulate climate. Although global surveys are starting to reveal ecological drivers underlying planktonic community structure and predicted climate change responses, it is unclear how community-scale species interactions will be affected by climate change. Here, we leveraged Tara Oceans sampling to infer a global ocean cross-domain plankton co-occurrence network-the community interactome-and used niche modeling to assess its vulnerabilities to environmental change. Globally, this revealed a plankton interactome self-organized latitudinally into marine biomes (Trades, Westerlies, Polar) and more connected poleward. Integrated niche modeling revealed biome-specific community interactome responses to environmental change and forecasted the most affected lineages for each community. These results provide baseline approaches to assess community structure and organismal interactions under climate scenarios while identifying plausible plankton bioindicators for ocean monitoring of climate change.
Collapse
Affiliation(s)
- Samuel Chaffron
- Université de Nantes, CNRS UMR 6004, LS2N, F-44000 Nantes, France.
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
| | - Erwan Delage
- Université de Nantes, CNRS UMR 6004, LS2N, F-44000 Nantes, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
| | - Marko Budinich
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Damien Vintache
- Université de Nantes, CNRS UMR 6004, LS2N, F-44000 Nantes, France
| | - Nicolas Henry
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Charlotte Nef
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Mathieu Ardyna
- Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230, Villefranche-sur-Mer, Paris, France
| | - Ahmed A Zayed
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Pedro C Junger
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, 13565-905 São Carlos, SP, Brazil
| | - Pierre E Galand
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Banyuls-sur-Mer, 66500 Paris, France
| | - Connie Lovejoy
- Département de biologie, Faculté des sciences et Institut de biologie intégrative et des systèmes (IBIS) 1030, ave de la Médecine, Université Laval, Québec, QC, Canada
| | - Alison E Murray
- Division of Earth and Ecosystem Science, Desert Research Institute, Reno, NV 89512, USA
| | - Hugo Sarmento
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, 13565-905 São Carlos, SP, Brazil
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona 08003, Spain
| | - Marcel Babin
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230, Villefranche-sur-Mer, Paris, France
- Takuvik International Research Laboratory, Université Laval and CNRS, Québec, QC, Canada
| | - Daniele Iudicone
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy
| | - Olivier Jaillon
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, 91057 Paris, France
| | - Eric Karsenti
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Patrick Wincker
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, 91057 Paris, France
| | - Lee Karp-Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA
| | - Chris Bowler
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Colomban de Vargas
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Damien Eveillard
- Université de Nantes, CNRS UMR 6004, LS2N, F-44000 Nantes, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
| |
Collapse
|
10
|
A New, Catchment-Scale Integrated Water Quality Model of Phosphorus, Dissolved Oxygen, Biochemical Oxygen Demand and Phytoplankton: INCA-Phosphorus Ecology (PEco). WATER 2021. [DOI: 10.3390/w13050723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Process-based models are commonly used to design management strategies to reduce excessive algal growth and subsequent hypoxia. However, management targets typically focus on phosphorus control, under the assumption that successful nutrient reduction will solve hypoxia issues. Algal responses to nutrient drivers are not linear and depend on additional biotic and abiotic controls. In order to generate a comprehensive assessment of the effectiveness of nutrient control strategies, independent nutrient, dissolved oxygen (DO), temperature and algal models must be coupled, which can increase overall uncertainty. Here, we extend an existing process-based phosphorus model (INtegrated CAtchment model of Phosphorus dynamics) to include biological oxygen demand (BOD), dissolved oxygen (DO) and algal growth and decay (INCA-PEco). We applied the resultant model in two eutrophied mesoscale catchments with continental and maritime climates. We assessed effects of regional differences in climate and land use on parameter importance during calibration using a generalised sensitivity analysis. We successfully reproduced in-stream total phosphorus (TP), suspended sediment, DO, BOD and chlorophyll-a (chl-a) concentrations across a range of temporal scales, land uses and climate regimes. While INCA-PEco is highly parameterized, model uncertainty can be significantly reduced by focusing calibration and monitoring efforts on just 18 of those parameters. Specifically, calibration time could be optimized by focusing on hydrological parameters (base flow, Manning’s n and river depth). In locations with significant inputs of diffuse nutrients, e.g., in agricultural catchments, detailed data on crop growth and nutrient uptake rates are also important. The remaining parameters provide flexibility to the user, broaden model applicability, and maximize its functionality under a changing climate.
Collapse
|
11
|
Bestion E, Barton S, García FC, Warfield R, Yvon-Durocher G. Abrupt declines in marine phytoplankton production driven by warming and biodiversity loss in a microcosm experiment. Ecol Lett 2020; 23:457-466. [PMID: 31925914 PMCID: PMC7007813 DOI: 10.1111/ele.13444] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/12/2019] [Accepted: 11/27/2019] [Indexed: 01/19/2023]
Abstract
Rising sea surface temperatures are expected to lead to the loss of phytoplankton biodiversity. However, we currently understand very little about the interactions between warming, loss of phytoplankton diversity and its impact on the oceans' primary production. We experimentally manipulated the species richness of marine phytoplankton communities under a range of warming scenarios, and found that ecosystem production declined more abruptly with species loss in communities exposed to higher temperatures. Species contributing positively to ecosystem production in the warmed treatments were those that had the highest optimal temperatures for photosynthesis, implying that the synergistic impacts of warming and biodiversity loss on ecosystem functioning were mediated by thermal trait variability. As species were lost from the communities, the probability of taxa remaining that could tolerate warming diminished, resulting in abrupt declines in ecosystem production. Our results highlight the potential for synergistic effects of warming and biodiversity loss on marine primary production.
Collapse
Affiliation(s)
- Elvire Bestion
- Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9EZ, UK.,Station d'Ecologie Théorique et Expérimentale, UMR 5321, Université Paul Sabatier, Moulis, 09200, France
| | - Samuel Barton
- Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9EZ, UK
| | - Francisca C García
- Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9EZ, UK
| | - Ruth Warfield
- Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9EZ, UK
| | - Gabriel Yvon-Durocher
- Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9EZ, UK
| |
Collapse
|
12
|
Gerhard M, Koussoroplis AM, Hillebrand H, Striebel M. Phytoplankton community responses to temperature fluctuations under different nutrient concentrations and stoichiometry. Ecology 2019; 100:e02834. [DOI: 10.1002/ecy.2834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/25/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Miriam Gerhard
- Institute for Chemistry and Biology of the Marine Environment (ICBM) University of Oldenburg, Schleusenstrsse 1, 26382 Wilhelmshaven Germany
| | - Apostolos Manuel Koussoroplis
- Laboratoire Microorganismes Génome et Environnement (LMGE) UMR CNRS 6023 Université Clermont Auvergne, 1 ImpasseAmélie Murat, F‐63178 Aubière cedex France
- Theoretical Aquatic Ecology and Ecophysiology Group Institute of Biochemistry and Biology University of Potsdam, Am Neuen Palais 10, Maulbeerallee 2, D‐14469 Potsdam Germany
| | - Helmut Hillebrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM) University of Oldenburg, Schleusenstrsse 1, 26382 Wilhelmshaven Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB) University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg Germany
| | - Maren Striebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM) University of Oldenburg, Schleusenstrsse 1, 26382 Wilhelmshaven Germany
| |
Collapse
|
13
|
Trends in Diatom Research Since 1991 Based on Topic Modeling. Microorganisms 2019; 7:microorganisms7080213. [PMID: 31344825 PMCID: PMC6722707 DOI: 10.3390/microorganisms7080213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 01/29/2023] Open
Abstract
Diatoms are fundamental carbon sources in a wide range of aquatic food webs and have the potential for wide application in addressing environmental change. Understanding the evolution of topics in diatom research will provide a clear and needed guide to strengthen research on diatoms. However, such an overview remains unavailable. In this study, we used Latent Dirichlet Allocation (LDA), a generative model, to identify topics and determine their trends (i.e., cold and hot topics) by analyzing the abstracts of 19,000 publications from the Web of Science that were related to diatoms during 1991–2018. A total of 116 topics were identified from a Bayesian model selection. The hot topics (diversity, environmental indicator, climate change, land use, and water quality) that were identified by LDA indicated that diatoms are increasingly used as indicators to assess water quality and identify modern climate change impacts due to intensive anthropogenic activities. In terms of cold topics (growth rate, culture growth, cell life history, copepod feeding, grazing by microzooplankton, zooplankton predation, and primary productivity) and hot topics (spatial-temporal distribution, morphology, molecular identification, gene expression, and review), we determined that basic studies on diatoms have decreased and that studies tend to be more comprehensive. This study notes that future directions in diatom research will be closely associated with the application of diatoms in environmental management and climate change to cope with environmental challenges, and more comprehensive issues related to diatoms should be considered.
Collapse
|
14
|
Hao B, Wu H, Jeppesen E, Li W. The response of phytoplankton communities to experimentally elevated temperatures in the presence and absence of Potamogeton crispus. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.09.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Morán XAG, Calvo-Díaz A, Arandia-Gorostidi N, Huete-Stauffer TM. Temperature sensitivities of microbial plankton net growth rates are seasonally coherent and linked to nutrient availability. Environ Microbiol 2018; 20:3798-3810. [PMID: 30159999 DOI: 10.1111/1462-2920.14393] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/24/2018] [Indexed: 11/27/2022]
Abstract
Recent work suggests that temperature effects on marine heterotrophic bacteria are strongly seasonal, but few attempts have been made to concurrently assess them across trophic levels. Here, we estimated the temperature sensitivities (using activation energies, E) of autotrophic and heterotrophic microbial plankton net growth rates over an annual cycle in NE Atlantic coastal waters. Phytoplankton grew in winter and late autumn (0.41 ± 0.16 SE d-1 ) and decayed in the remaining months (-0.42 ± 0.10 d-1 ). Heterotrophic microbes shared a similar seasonality, with positive net growth for bacteria (0.14-1.48 d-1 ), while nanoflagellates had higher values (> 0.4 d-1 ) in winter and spring relative to the rest of the year (-0.46 to 0.29 d-1 ). Net growth rates activation energies showed similar dynamics in the three groups (-1.07 to 1.51 eV), characterized by maxima in winter, minima in summer and resumed increases in autumn. Microbial plankton E values were significantly correlated with nitrate concentrations as a proxy for nutrient availability. Nutrient-sufficiency (i.e., > 1 μmol l-1 nitrate) resulted in significantly higher activation energies of phytoplankton and heterotrophic nanoflagellates relative to nutrient-limited conditions. We suggest that only within spatio-temporal windows of both moderate bottom-up and top-down controls will temperature have a major enhancing effect on microbial growth.
Collapse
Affiliation(s)
- Xosé Anxelu G Morán
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Alejandra Calvo-Díaz
- Centro Oceanográfico de Gijón/Xixón, Instituto Español de Oceanografía (IEO), Gijón/Xixón, Spain
| | - Nestor Arandia-Gorostidi
- Centro Oceanográfico de Gijón/Xixón, Instituto Español de Oceanografía (IEO), Gijón/Xixón, Spain.,Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Tamara Megan Huete-Stauffer
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia.,Centro Oceanográfico de Gijón/Xixón, Instituto Español de Oceanografía (IEO), Gijón/Xixón, Spain
| |
Collapse
|
16
|
Verbeek L, Gall A, Hillebrand H, Striebel M. Warming and oligotrophication cause shifts in freshwater phytoplankton communities. GLOBAL CHANGE BIOLOGY 2018; 24:4532-4543. [PMID: 29856108 DOI: 10.1111/gcb.14337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 05/06/2023]
Abstract
While there is a lot of data on interactive effects of eutrophication and warming, to date, we lack data to generate reliable predictions concerning possible effects of nutrient decrease and temperature increase on community composition and functional responses. In recent years, a wide-ranging trend of nutrient decrease (re-oligotrophication) was reported for freshwater systems. Small lakes and ponds, in particular, show rapid responses to anthropogenic pressures and became model systems to investigate single as well as synergistic effects of warming and fertilization in situ and in experiments. Therefore, we set up an experiment to investigate the single as well as the interactive effects of nutrient reduction and gradual temperature increase on a natural freshwater phytoplankton community, using an experimental indoor mesocosm setup. Biomass production initially increased with warming but decreased with nutrient depletion. If nutrient supply was constant, biomass increased further, especially under warming conditions. Under low nutrient supply, we found a sharp transition from initially positive effects of warming to negative effects when resources became scarce. Warming reduced phytoplankton richness and evenness, whereas nutrient reduction at ambient temperature had positive effects on diversity. Our results indicate that temperature effects on freshwater systems will be altered by nutrient availability. These interactive effects of energy increase and resource decrease have major impacts on biodiversity and ecosystem function and thus need to be considered in environmental management plans.
Collapse
Affiliation(s)
- Laura Verbeek
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshaven, Germany
| | - Andrea Gall
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshaven, Germany
| | - Helmut Hillebrand
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| | - Maren Striebel
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshaven, Germany
| |
Collapse
|
17
|
Zhang Y, Peng C, Wang Z, Zhang J, Li L, Huang S, Li D. The Species-Specific Responses of Freshwater Diatoms to Elevated Temperatures Are Affected by Interspecific Interactions. Microorganisms 2018; 6:microorganisms6030082. [PMID: 30087310 PMCID: PMC6163879 DOI: 10.3390/microorganisms6030082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/30/2018] [Accepted: 08/03/2018] [Indexed: 11/29/2022] Open
Abstract
Numerous experimental simulations with different warming scenarios have been conducted to predict how algae will respond to warming, but their conclusions are sometimes contradictory to each other. This might be due to a failure to consider interspecific interactions. In this study, the dominant diatom species in a seasonal succession were isolated and verified to adapt to different temperature ranges by constant temperature experiment. Both unialgal and mixed cultures were exposed to two fluctuant temperature treatments that simulated the temperature variations from early spring to summer, with one treatment 4 °C higher (warming scenario) than the other. We found that the specific response of diatoms to warming was affected by interspecific interactions. Spring warming had no significant effect on eurythermal species and had a positive effect on the abundance of warm-adapted diatom species, but interspecific interactions reduced this promotional effect. Cold-adapted species had a negative response to spring warming in the presence of other diatom species but had a positive response to early spring warming in the absence of interspecific interactions. In addition, warming resulted in the growth of all diatom species peaking earlier in unialgal cultures, but this effect could be weakened or amplified by interspecies interactions in mixed cultures. Our results suggest that the specific diatom species with different optimal growth temperature ranges responding to warming were expected if there were no interspecific interactions. However, in natural environments, the inevitable and complex interspecific interactions will influence the responses of diatoms to warming. This important factor should not be ignored in the prediction of organism responses to climate warming.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chengrong Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Zhicong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jinli Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lijie Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shun Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|