1
|
Messier J, Becker-Scarpitta A, Li Y, Violle C, Vellend M. Root and biomass allocation traits predict changes in plant species and communities over four decades of global change. Ecology 2024; 105:e4389. [PMID: 39252476 DOI: 10.1002/ecy.4389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/12/2024] [Accepted: 04/28/2024] [Indexed: 09/11/2024]
Abstract
Global change is affecting the distribution and population dynamics of plant species across the planet, leading to trends such as shifts in distribution toward the poles and to higher elevations. Yet, we poorly understand why individual species respond differently to warming and other environmental changes, or how the trait composition of communities responds. Here we ask two questions regarding plant species and community changes over 42 years of global change in a temperate montane forest in Québec, Canada: (1) How did the trait composition, alpha diversity, and beta diversity of understory vascular plant communities change between 1970 and 2010, a period over which the region experienced 1.5°C of warming and changes in nitrogen deposition? (2) Can traits predict shifts in species elevation and abundance over this time period? For 46 understory vascular species, we locally measured six aboveground traits, and for 36 of those (not including shrubs), we also measured five belowground traits. Collectively, they capture leading dimensions of phenotypic variation that are associated with climatic and resource niches. At the community level, the trait composition of high-elevation plots shifted, primarily for two root traits: specific root length decreased and rooting depth increased. The mean trait values of high-elevation plots shifted over time toward values initially associated with low-elevation plots. These changes led to trait homogenization across elevations. The community-level shifts in traits mirrored the taxonomic shifts reported elsewhere for this site. At the species level, two of the three traits predicting changes in species elevation and abundance were belowground traits (low mycorrhizal fraction and shallow rooting). These findings highlight the importance of root traits, which, along with leaf mass fraction, were associated with shifts in distribution and abundance over four decades. Community-level trait changes were largely similar across the elevational and temporal gradients. In contrast, traits typically associated with lower elevations at the community level did not predict differences among species in their shift in abundance or distribution, indicating a decoupling between species- and community-level responses. Overall, changes were consistent with some influence of both climate warming and increased nitrogen availability.
Collapse
Affiliation(s)
- Julie Messier
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Antoine Becker-Scarpitta
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Agriculture, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Department of Vegetation Ecology, Institute of Botany, Czech Academy of Sciences, Brno, Czech Republic
| | - Yuanzhi Li
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Cyrille Violle
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France
| | - Mark Vellend
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
2
|
Wang J, Wen X. Limiting resource and leaf functional traits jointly determine distribution patterns of leaf intrinsic water use efficiency along aridity gradients. FRONTIERS IN PLANT SCIENCE 2022; 13:909603. [PMID: 35968133 PMCID: PMC9372487 DOI: 10.3389/fpls.2022.909603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Intrinsic water use efficiency (iWUE) is a critical eco-physiological function allowing plants to adapt to water- and nutrient-limited habitats in arid and semi-arid regions. However, the distribution of iWUE in coexisting species along aridity gradients and its controlling factors are unknown. We established two transects along an aridity gradient in the grasslands of Losses Plateau (LP) and Inner Mongolia Plateau (MP) to elucidate the patterns and underlying mechanisms of iWUE distribution in coexisting species along aridity gradient. We determined leaf carbon (δ13C) and oxygen (δ18O) stable isotopes, functional traits related to carbon fixation, and limiting resources. Bulk leaf δ13C and δ18O were used as proxies for time-integrated iWUE and stomatal conductance (gs) during the growing season. Our results showed that variability in iWUE within transect was primarily controlled by species, sampling sites and an interactive effect between species and sampling sites. Mean values of iWUE (iWUEMean) increased and coefficient of variation (CV) in iWUE (iWUECV) decreased with an increase in aridity, demonstrating that increases in aridity lead to conservative and convergent water use strategies. Patterns of iWUEMean and iWUECV were controlled primarily by the ratio of soil organic carbon to total nitrogen in LP and soil moisture in MP. This revealed that the most limited resource drove the distribution patterns of iWUE along aridity gradients. Interspecific variation in iWUE within transect was positively correlated with Δ18O, indicating that interspecific variation in iWUE was primarily regulated by gs. Furthermore, relationship between iWUE and multi-dimensional functional trait spectrum indicated that species evolved species-specific strategies to adapt to a harsh habitat by partitioning limiting resources. Overall, these findings highlighted the interactive effects of limiting resources and leaf functional traits on plant adaptation strategies for iWUE, and emphasized the importance of considering biological processes in dissecting the underlying mechanisms of plant adaptation strategies at large regional scales.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Xuefa Wen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Zhang Y, He N, Yu G. Opposing shifts in distributions of chlorophyll concentration and composition in grassland under warming. Sci Rep 2021; 11:15736. [PMID: 34344961 PMCID: PMC8333091 DOI: 10.1038/s41598-021-95281-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/15/2021] [Indexed: 12/03/2022] Open
Abstract
Global warming has significantly altered the distribution and productivity of vegetation owing to shifts in plant functional traits. However, chlorophyll adaptations-good representative of plant production-in grasslands have not been investigated on a large scale, hindering ecological predictions of climate change. Three grassland transects with a natural temperature gradient were designed in the Tibetan, Mongolian, and Loess Plateau to describe the changes in chlorophyll under different warming scenarios for 475 species. In the three plateaus, variations and distributions of species chlorophyll concentration and composition were compared. The results showed that the means of chlorophyll concentration and composition (chlorophyll a/b) increased with the mean annual temperature. Still, their distributions shifted in opposite manners: chlorophyll concentration was distributed in a broader but more differential manner, while chlorophyll composition was distributed in a narrower but more uniform manner. Compared to chlorophyll concentration, chlorophyll composition was more conservative, with a slight shift in distribution. At the regional level, the chlorophyll concentration and composition depend on the limitations of the local climate or resources. The results implied that warming might drive shifts in grassland chlorophyll distribution mainly by alternations in species composition. Large-scale chlorophyll investigations will be useful for developing prediction techniques.
Collapse
Affiliation(s)
- Yao Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, 130024, China.
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Jiang P, Wang H, Meinzer FC, Kou L, Dai X, Fu X. Linking reliance on deep soil water to resource economy strategies and abundance among coexisting understorey shrub species in subtropical pine plantations. THE NEW PHYTOLOGIST 2020; 225:222-233. [PMID: 31247133 DOI: 10.1111/nph.16027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
Strategies for deep soil water acquisition (WAdeep ) are critical to a species' adaptation to drought. However, it is unknown how WAdeep determines the abundance and resource economy strategies of understorey shrub species. With data from 13 understorey shrub species in subtropical coniferous plantations, we investigated associations between the magnitude of WAdeep , the seasonal plasticity of WAdeep , midday leaf water potential (Ψmd ), species abundance and resource economic traits across organs. Higher capacity for WAdeep was associated with higher intrinsic water use efficiency, but was not necessary for maintaining higher Ψmd in the dry season nor was it an ubiquitous trait possessed by the most common shrub species. Species with higher seasonal plasticity of WAdeep had lower wood density, indicating that fast species had higher plasticity in deep soil resource acquisition. However, the magnitude and plasticity of WAdeep were not related to shallow fine root economy traits, suggesting independent dimensions of soil resource acquisition between deep and shallow soil. Our results provide new insights into the mechanisms through which the magnitude and plasticity of WAdeep interact with shallow soil and aboveground resource acquisition traits to integrate the whole-plant economic spectrum and, thus, community assembly processes.
Collapse
Affiliation(s)
- Peipei Jiang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Huimin Wang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
- Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China
| | - Frederick C Meinzer
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Liang Kou
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
- Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China
| | - Xiaoqin Dai
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
- Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China
| | - Xiaoli Fu
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
- Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China
| |
Collapse
|
5
|
Denelle P, Violle C, Munoz F. Distinguishing the signatures of local environmental filtering and regional trait range limits in the study of trait–environment relationships. OIKOS 2019. [DOI: 10.1111/oik.05851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pierre Denelle
- CEFE UMR 5175, CNRS – Univ. de Montpellier – Univ. Paul‐Valéry Montpellier – EPHE – 1919 route de Mende, FR‐34293 Montpellier Cedex 5 France
| | - Cyrille Violle
- CEFE UMR 5175, CNRS – Univ. de Montpellier – Univ. Paul‐Valéry Montpellier – EPHE – 1919 route de Mende, FR‐34293 Montpellier Cedex 5 France
| | | |
Collapse
|
6
|
Henn JJ, Buzzard V, Enquist BJ, Halbritter AH, Klanderud K, Maitner BS, Michaletz ST, Pötsch C, Seltzer L, Telford RJ, Yang Y, Zhang L, Vandvik V. Intraspecific Trait Variation and Phenotypic Plasticity Mediate Alpine Plant Species Response to Climate Change. FRONTIERS IN PLANT SCIENCE 2018; 9:1548. [PMID: 30483276 PMCID: PMC6243391 DOI: 10.3389/fpls.2018.01548] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/03/2018] [Indexed: 05/20/2023]
Abstract
In a rapidly changing climate, alpine plants may persist by adapting to new conditions. However, the rate at which the climate is changing might exceed the rate of adaptation through evolutionary processes in long-lived plants. Persistence may depend on phenotypic plasticity in morphology and physiology. Here we investigated patterns of leaf trait variation including leaf area, leaf thickness, specific leaf area, leaf dry matter content, leaf nutrients (C, N, P) and isotopes (δ13C and δ15N) across an elevation gradient on Gongga Mountain, Sichuan Province, China. We quantified inter- and intra-specific trait variation and the plasticity in leaf traits of selected species to experimental warming and cooling by using a reciprocal transplantation approach. We found substantial phenotypic plasticity in most functional traits where δ15N, leaf area, and leaf P showed greatest plasticity. These traits did not correspond with traits with the largest amount of intraspecific variation. Plasticity in leaf functional traits tended to enable plant populations to shift their trait values toward the mean values of a transplanted plants' destination community, but only if that population started with very different trait values. These results suggest that leaf trait plasticity is an important mechanism for enabling plants to persist within communities and to better tolerate changing environmental conditions under climate change.
Collapse
Affiliation(s)
- Jonathan J. Henn
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, United States
| | - Vanessa Buzzard
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, United States
| | - Brian J. Enquist
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, United States
| | - Aud H. Halbritter
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - Kari Klanderud
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Brian S. Maitner
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, United States
| | - Sean T. Michaletz
- Department of Botany and Biodiversity Research Centre, The University of British Columbia, Vancouver, BC, Canada
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Christine Pötsch
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Lorah Seltzer
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, United States
| | - Richard J. Telford
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - Yan Yang
- Institute of Mountain Hazards and Environment (CAS), Chengdu, China
| | - Li Zhang
- Institute of Mountain Hazards and Environment (CAS), Chengdu, China
| | - Vigdis Vandvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Abstract
The reasons why the range size of closely related species often varies significantly have intrigued scientists for many years. Among other hypotheses, species with high trait variation were suggested to occupy more diverse environments, have more continuity in their distributions, and consequently have larger range sizes. Here, using 34 tree species of lowlands tropical rainforest in southern Costa Rica, we explored whether inherent trait variability expressed at the local scale in functional traits is related to the species’ total geographical range size. We formed 17 congeneric pairs of one narrow endemic and one widespread species, sampled 335 individuals and measured eight functional traits: leaf area, leaf thickness, leaf dry matter content, specific leaf area, leaf nitrogen content, leaf phosphorus content, leaf nitrogen to phosphorus ratio, and wood specific gravity. We tested whether there are significant differences in the locally expressed variation of individual traits or in multidimensional trait variance between the species in congeneric pairs and whether species’ range size could hence be predicted from local trait variability. However, we could not find such differences between widely distributed and narrow range species. We discuss the possible reasons for these findings including the fact that higher trait variability of widespread species may result from successive local adaptations during range expansion and may hence often be an effect rather than the cause of larger ranges.
Collapse
|