1
|
Pokrywka K, Grzechowiak M, Sliwiak J, Worsztynowicz P, Loch JI, Ruszkowski M, Gilski M, Jaskolski M. Probing the active site of Class 3 L-asparaginase by mutagenesis. I. Tinkering with the zinc coordination site of ReAV. Front Chem 2024; 12:1381032. [PMID: 38638878 PMCID: PMC11024299 DOI: 10.3389/fchem.2024.1381032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
ReAV, the inducible Class-3 L-asparaginase from the nitrogen-fixing symbiotic bacterium Rhizobium etli, is an interesting candidate for optimizing its enzymatic potential for antileukemic applications. Since it has no structural similarity to known enzymes with this activity, it may offer completely new ways of approach. Also, as an unrelated protein, it would evade the immunological response elicited by other asparaginases. The crystal structure of ReAV revealed a uniquely assembled protein homodimer with a highly specific C135/K138/C189 zinc binding site in each subunit. It was also shown before that the Zn2+ cation at low and optimal concentration boosts the ReAV activity and improves substrate specificity, which indicates its role in substrate recognition. However, the detailed catalytic mechanism of ReAV is still unknown. In this work, we have applied site-directed mutagenesis coupled with enzymatic assays and X-ray structural analysis to elucidate the role of the residues in the zinc coordination sphere in catalysis. Almost all of the seven ReAV muteins created in this campaign lost the ability to hydrolyze L-asparagine, confirming our predictions about the significance of the selected residues in substrate hydrolysis. We were able to crystallize five of the ReAV mutants and solve their crystal structures, revealing some intriguing changes in the active site area as a result of the mutations. With alanine substitutions of Cys135 or Cys189, the zinc coordination site fell apart and the mutants were unable to bind the Zn2+ cation. Moreover, the absence of Lys138 induced atomic shifts and conformational changes of the neighboring residues from two active-site Ser-Lys tandems. Ser48 from one of the tandems, which is hypothesized to be the catalytic nucleophile, usually changes its hydration pattern in response to the mutations. Taken together, the results provide many useful clues about the catalytic mechanism of the enzyme, allowing one to cautiously postulate a possible enzymatic scenario.
Collapse
Affiliation(s)
- Kinga Pokrywka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Marta Grzechowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Joanna Sliwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | - Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | - Milosz Ruszkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Miroslaw Gilski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
2
|
Qin X, Costa-Silva TA, Pessoa A, Long PF. A scoping review to compare and contrast quality assurance aspects of l-asparaginase biosimilars. Int J Pharm 2023; 632:122523. [PMID: 36581108 DOI: 10.1016/j.ijpharm.2022.122523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
l-asparaginase is a first-line medicine used for the treatment of acute lymphoblastic leukemia. Differing quality of marketed l-asparaginase biosimilars has been reported to adversely influence treatment outcomes. Herein, the quality of l-asparaginase biosimilars intended for clinical use was reviewed in sight of quality assurance parameters using English and Chinese language database searching, which provided information for possible improvements to the manufacture of this medicine. Ten articles met inclusion criteria, and quality attributes that measured potency, specific activity, purity and host cell proteins (HCPs) were identified. Biosimilars manufactured in high-income countries represented good quality in all aspects. Biosimilars manufactured in high-middle/middle-income countries, however, suggested poorer quality control particularly over removal of HCPs. Future work should now focus on establishing pharmacopeia monographs to establish equivalent quality assurance for l-asparaginase biosimilars manufactured between countries. Standardization of the quality profile, analytical methods and the limits of critical quality parameters, are essential to ensure appropriated efficacy and safety of clinical grade l-asparaginase.
Collapse
Affiliation(s)
- Xianwei Qin
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Tales A Costa-Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | - Adalberto Pessoa
- Institute of Pharmaceutical Science, King's College London, London, UK; Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Paul F Long
- Institute of Pharmaceutical Science, King's College London, London, UK; Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Diwan D, Cheng L, Usmani Z, Sharma M, Holden N, Willoughby N, Sangwan N, Baadhe RR, Liu C, Gupta VK. Microbial cancer therapeutics: A promising approach. Semin Cancer Biol 2022; 86:931-950. [PMID: 33979677 DOI: 10.1016/j.semcancer.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 01/27/2023]
Abstract
The success of conventional cancer therapeutics is hindered by associated dreadful side-effects of antibiotic resistance and the dearth of antitumor drugs' selectivity and specificity. Hence, the conceptual evolution of anti-cancerous therapeutic agents that selectively target cancer cells without impacting the healthy cells or tissues, has led to a new wave of scientific interest in microbial-derived bioactive molecules. Such strategic solutions may pave the way to surmount the shortcomings of conventional therapies and raise the potential and hope for the cure of wide range of cancer in a selective manner. This review aims to provide a comprehensive summary of anti-carcinogenic properties and underlying mechanisms of bioactive molecules of microbial origin, and discuss the current challenges and effective therapeutic application of combinatorial strategies to attain minimal systemic side-effects.
Collapse
Affiliation(s)
- Deepti Diwan
- Washington University, School of Medicine, Saint Louis, MO, USA
| | - Lei Cheng
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 230032, China
| | - Zeba Usmani
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618, Tallinn, Estonia
| | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, India
| | - Nicola Holden
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Nicholas Willoughby
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Neelam Sangwan
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Rama Raju Baadhe
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Chenchen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
4
|
Modi T, Regufe da Mota S, Gervais D. l-Asparaginase and HCP quantification by SWATH LC-MS/MS for new and improved purification step in Erwinia chrysanthemil-asparaginase manufacture. J Pharm Biomed Anal 2021; 209:114537. [PMID: 34929569 DOI: 10.1016/j.jpba.2021.114537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022]
Abstract
Erwinase® or Erwinaze® are the proprietary names for the L-asparaginase enzyme derived from Erwinia chrysanthemi.L-asparaginase is an integral part of the treatment of Acute Lymphoblastic Leukaemia (ALL) in children and adolescents. E. chrysanthemiL-asparaginase was first developed in the early 1970s at Porton Down and is currently manufactured by Porton Biopharma Ltd. One of the early purification steps during E. chrysanthemiL-asparaginase manufacture, involves use of batch cation exchange carboxymethyl resin, and alternatives to this older technology are currently under investigation using mass spectrometry to understand the impact of resin changes on the impurity profile. In this study, a novel SWATH library was developed for E. chrysanthemi proteome and used to evaluate this potential process change on product yield and host cell protein (HCP) profile and clearance. An ELISA assay is currently used as a quality control release test for quantifying HCPs at the Drug Substance (DS) stage, but these early extract samples are too crude for interference-free analysis by ELISA. Given that ELISA assay could not be used in the assessment of new resin options, SWATH LC-MS/MS analysis proved to be pivotal in selecting a resin for further scale-up and implementation. The data quantified that L-asparaginase from the new process step was 2.28-fold higher in concentration than in legacy-process samples. The new step, using a modern ion exchanger, was at least equivalent and in some cases outperformed the legacy resin step in terms of HCP clearance for 78.2% of total HCPs (528 of 675 total proteins).
Collapse
Affiliation(s)
- Tapasvi Modi
- Porton Biopharma Limited, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | | | - David Gervais
- Porton Biopharma Limited, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| |
Collapse
|
5
|
Maese L, Rizzari C, Coleman R, Power A, van der Sluis I, Rau RE. Can recombinant technology address asparaginase Erwinia chrysanthemi shortages? Pediatr Blood Cancer 2021; 68:e29169. [PMID: 34105243 DOI: 10.1002/pbc.29169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 11/11/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Bacterial L-asparaginase has played an important role in ALL treatment for several decades; however, hypersensitivity reactions to Escherichia coli-derived asparaginases often preclude their use. Inability to receive asparaginase due to hypersensitivities is associated with poor patient outcomes. Erwinia chrysanthemi-derived asparaginase (ERW) is an effective, non-cross-reactive treatment option, but is limited in supply. Consequently, alternative asparaginase preparations are needed to ensure asparaginase availability for patients with hypersensitivities. Recombinant technology can potentially address this unmet need by programming cells to produce recombinant asparaginase. JZP-458, a recombinant Erwinia asparaginase derived from a novel Pseudomonas fluorescens expression platform with no immunologic cross-reactivity to E. coli-derived asparaginases, has the same primary amino acid sequence as ERW, with comparable activity based on in vitro measurements. The efficient manufacturing of JZP-458 would provide an additional asparaginase preparation for patients with hypersensitivities.
Collapse
Affiliation(s)
- Luke Maese
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Carmelo Rizzari
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, University of Milano-Bicocca, MBBM Foundation, Monza, Italy
| | | | | | | | - Rachel E Rau
- Baylor College of Medicine, Texas Children's Cancer and Hematology Center, Houston, Texas, USA
| |
Collapse
|
6
|
Modi T, Gervais D. Improved pharmacokinetic and pharmacodynamic profile of a novel PEGylated native Erwinia chrysanthemi L-Asparaginase. Invest New Drugs 2021; 40:21-29. [PMID: 34468906 PMCID: PMC8763762 DOI: 10.1007/s10637-021-01173-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/26/2021] [Indexed: 11/21/2022]
Abstract
Introduction. Erwinase® (native Erwinia chrysanthemi L-Asparaginase (nErA)) is an approved second-line treatment for acute lymphoblastic leukaemia (ALL) in children and adolescents, who develop hypersensitivity or neutralising antibodies to E.coli derived L-Asparaginases (ASNases). However, nErA has a short in vivo half-life requiring frequent dosing schedules in patients. In this study, nErA was covalently conjugated to PEG molecules with the aim of extending its half-life in vivo. Methods. Firstly, efficacy of this novel product PEG-nErA was investigated on human ALL cell lines (Jurkat, CCRF-CEM and CCRF-HSB2), in vitro. Secondly, its pharmacokinetic (PK) and pharmacodynamic (PD) characteristics were determined, in vivo (12 rats in each group). Results. It was found that the specific activity (U/mg of enzyme) and the kinetic constant (KM) of nErA remained unaltered post PEGylation. PEG-nErA was shown to have similar cytotoxicity to nErA (IC50: 0.06–0.17 U/mL) on human ALL cell lines, in vitro. Further, when compared to nErA, PEG-nErA showed a significantly improved half-life in vivo, which meant that L-Asparagine (Asn) levels in plasma remained depleted for up to 25 days with a four-fold lower dose (100 U/kg) compared with 72 h for nErA at 400 U/kg dose. Conclusion. Overall, this next generation product PEG-nErA (with improved PK and PD characteristics compared to nErA) would bring a significant advantage to the therapeutic needs of ALL patients and should be further explored in clinical trials.
Collapse
Affiliation(s)
- Tapasvi Modi
- Porton Biopharma Limited, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK.
| | - David Gervais
- Porton Biopharma Limited, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| |
Collapse
|
7
|
Loch JI, Jaskolski M. Structural and biophysical aspects of l-asparaginases: a growing family with amazing diversity. IUCRJ 2021; 8:514-531. [PMID: 34258001 PMCID: PMC8256714 DOI: 10.1107/s2052252521006011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
l-Asparaginases have remained an intriguing research topic since their discovery ∼120 years ago, especially after their introduction in the 1960s as very efficient antileukemic drugs. In addition to bacterial asparaginases, which are still used to treat childhood leukemia, enzymes of plant and mammalian origin are now also known. They have all been structurally characterized by crystallography, in some cases at outstanding resolution. The structural data have also shed light on the mechanistic details of these deceptively simple enzymes. Yet, despite all this progress, no better therapeutic agents have been found to beat bacterial asparaginases. However, a new option might arise with the discovery of yet another type of asparaginase, those from symbiotic nitrogen-fixing Rhizobia, and with progress in the protein engineering of enzymes with desired properties. This review surveys the field of structural biology of l-asparaginases, focusing on the mechanistic aspects of the well established types and speculating about the potential of the new members of this amazingly diversified family.
Collapse
Affiliation(s)
- Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | - Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
8
|
Costa-Silva T, Costa I, Biasoto H, Lima G, Silva C, Pessoa A, Monteiro G. Critical overview of the main features and techniques used for the evaluation of the clinical applicability of L-asparaginase as a biopharmaceutical to treat blood cancer. Blood Rev 2020; 43:100651. [DOI: 10.1016/j.blre.2020.100651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/14/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
|
9
|
Gervais D. Acidic isoforms of Erwinase form part of the product: Correlation with clinical experience. Biologicals 2020; 64:28-33. [DOI: 10.1016/j.biologicals.2020.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/23/2023] Open
|
10
|
Experimental Evaluation of In Silico Selected Signal Peptides for Secretory Expression of Erwinia Asparaginase in Escherichia coli. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09961-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Quality Control and Downstream Processing of Therapeutic Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:55-80. [PMID: 31482494 DOI: 10.1007/978-981-13-7709-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Therapeutic enzymes are a commercially minor but clinically important area of biopharmaceuticals. An array of therapeutic enzymes has been developed for a variety of human diseases, including leukaemia and enzyme-deficiency diseases such as Gaucher's disease. Production and testing of therapeutic enzymes is strictly governed by regulatory bodies in each country around the world, and batch-to-batch consistency is crucially important. Manufacture of a batch starts with the fermentation or cell culture stage. After expression of the therapeutic enzyme in a cell culture bioreactor, robust and reproducible protein purification, or downstream processing (DSP) of the target product, is critical to ensuring safe delivery of these medicines. Modern processing technology, including the use of disposable processing equipment, has greatly improved the DSP development pathway in terms of robustness and speed to clinic. Once purified, the drug substance undergoes rigorous quality control (QC) testing according to current regulatory guidance, to enable release to the clinic and patient. QC testing is conducted to ensure the safety, purity, identity, potency and strength of the medicinal product, requiring multiple analytical methods that are rigorously validated and monitored for robust performance. Several case studies, including L-asparaginase and asfotase alfa, are discussed to illustrate the methods described herein.
Collapse
|
12
|
Expression, purification, and characterization of asparaginase II from Saccharomyces cerevisiae in Escherichia coli. Protein Expr Purif 2019; 159:21-26. [PMID: 30836141 DOI: 10.1016/j.pep.2019.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/17/2018] [Accepted: 02/19/2019] [Indexed: 11/22/2022]
Abstract
l-asparaginase catalyzes the conversion of l-asparagine to l-aspartate and ammonium. This protein is an important therapeutic enzyme used for the treatment of acute lymphoblastic leukemia. In this study, the asparaginase II-encoding gene ASP3 from Saccharomyces cerevisiae was cloned into the expression vector pET28a in-fusion with a 6x histidine tag and was expressed in Escherichia coli BL21 (DE3) cells. The protein was expressed at a high level (225.6 IU/g cells) as an intracellular and soluble molecule and was purified from the supernatant by nickel affinity chromatography. The enzyme showed very low activity against l-glutamine. The denaturing electrophoresis analysis indicated that the recombinant protein had a molecular mass of ∼38 kDa. The native enzyme was a tetramer with a molecular mass of approximately 178 kDa. The enzyme preparation showed antitumor activity against the K562 and Jurkat cell lines comparable or even superior to the E. coli commercial asparaginase.
Collapse
|
13
|
Purification, Characterization and Anticancer Activity of L-asparaginase Produced by Marine Aspergillus terreus. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.19] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Gervais D, Downer A, King D, Kanda P, Foote N, Smith S. Robust quantitation of basic-protein higher-order aggregates using size-exclusion chromatography. J Pharm Biomed Anal 2017; 139:215-220. [DOI: 10.1016/j.jpba.2017.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
|
15
|
Gervais D, Hayzen J, Orphanou C, McEntee A, Hallam C, Brehm R. Understanding the process-induced formation of minor conformational variants of Erwinia chrysanthemi l-asparaginase. Enzyme Microb Technol 2017; 98:26-33. [DOI: 10.1016/j.enzmictec.2016.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 02/06/2023]
|
16
|
Sun Z, Qin R, Li D, Ji K, Wang T, Cui Z, Huang Y. A novel bacterial type II l -asparaginase and evaluation of its enzymatic acrylamide reduction in French fries. Int J Biol Macromol 2016; 92:232-239. [DOI: 10.1016/j.ijbiomac.2016.07.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 11/17/2022]
|
17
|
Lopes AM, Oliveira-Nascimento LD, Ribeiro A, Tairum CA, Breyer CA, Oliveira MAD, Monteiro G, Souza-Motta CMD, Magalhães PDO, Avendaño JGF, Cavaco-Paulo AM, Mazzola PG, Rangel-Yagui CDO, Sette LD, Converti A, Pessoa A. Therapeuticl-asparaginase: upstream, downstream and beyond. Crit Rev Biotechnol 2015; 37:82-99. [DOI: 10.3109/07388551.2015.1120705] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Zuo S, Zhang T, Jiang B, Mu W. Reduction of acrylamide level through blanching with treatment by an extremely thermostable l-asparaginase during French fries processing. Extremophiles 2015; 19:841-51. [DOI: 10.1007/s00792-015-0763-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
|
19
|
Structural Characterisation of Non-Deamidated Acidic Variants of Erwinia chrysanthemi L-asparaginase Using Small-Angle X-ray Scattering and Ion-Mobility Mass Spectrometry. Pharm Res 2015; 32:3636-48. [DOI: 10.1007/s11095-015-1722-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/20/2015] [Indexed: 02/04/2023]
|
20
|
Krishnapura PR, Belur PD, Subramanya S. A critical review on properties and applications of microbial l-asparaginases. Crit Rev Microbiol 2015; 42:720-37. [PMID: 25865363 DOI: 10.3109/1040841x.2015.1022505] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
l-Asparaginase is one of the main drugs used in the treatment of acute lymphoblastic leukemia (ALL), a commonly diagnosed pediatric cancer. Although several microorganisms are found to produce l-asparaginase, only the purified enzymes from E. coli and Erwinia chrysanthemi are employed in the clinical and therapeutic applications in humans. However, their therapeutic response seldom occurs without some evidence of hypersensitivity and other toxic side effects. l-Asparaginase is also of prospective use in food industry to reduce the formation of acrylamide in fried, roasted or baked food products. This review is an attempt to compile information on the properties of l-asparaginases obtained from different microorganisms. The complications involved with the therapeutic use of the currently available l-asparaginases, and the enzyme's potential application as a food processing aid to mitigate acrylamide formation have also been reviewed. Further, avenues for searching alternate sources of l-asparaginase have been discussed, highlighting the prospects of endophytic microorganisms as a possible source of l-asparaginases with varied biochemical and pharmacological properties.
Collapse
Affiliation(s)
- Prajna Rao Krishnapura
- a Department of Chemical Engineering , National Institute of Technology Karnataka , Surathkal, Mangalore , Karnataka , India and
| | - Prasanna D Belur
- a Department of Chemical Engineering , National Institute of Technology Karnataka , Surathkal, Mangalore , Karnataka , India and
| | - Sandeep Subramanya
- b Department of Physiology , United Arab Emirates University , Al Ain , United Arab Emirates
| |
Collapse
|
21
|
Recombinant Deamidated Mutants of Erwinia chrysanthemi l-Asparaginase Have Similar or Increased Activity Compared to Wild-Type Enzyme. Mol Biotechnol 2014; 56:865-77. [DOI: 10.1007/s12033-014-9766-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Gervais D, Corn T, Downer A, Smith S, Jennings A. Measurement of subvisible particulates in lyophilised Erwinia chrysanthemi L-asparaginase and relationship with clinical experience. AAPS JOURNAL 2014; 16:784-90. [PMID: 24854894 PMCID: PMC4070265 DOI: 10.1208/s12248-014-9612-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/25/2014] [Indexed: 11/30/2022]
Abstract
In order to generate further characterisation data for the lyophilised product Erwinia chrysanthemi L-asparaginase, reconstituted drug product (DP; marketed as Erwinase or Erwinaze) was analysed for subvisible (2-10 μm) particulate content using both the light obscuration (LO) method and the newer flow-imaging microscopy (FIM) technique. No correlation of subvisible particulate counts exists between FIM and LO nor do the counts correlate with activity at both release and on stability. The subvisible particulate content of lyophilised Erwinia L-asparaginase appears to be consistent and stable over time and in line with other parenteral biopharmaceutical products. The majority (ca. 75%) of subvisible particulates in L-asparaginase DP were at the low end of the measurement range by FIM (2-4 μm). In this size range, FIM was unable to definitively classify the particulates as either protein or non-protein. More sensitive measurement techniques would be needed to classify the particulates in lyophilised L-asparaginase into type (protein and non-protein), so the LO technique has been chosen for on-going DP analyses. E. chrysanthemi L-asparaginase has a lower rate of hypersensitivity compared with native Escherichia coli preparations, but a subset of patients develop hypersensitivity to the Erwinia enzyme. A DP lot that had subvisible particulate counts on the upper end of the measurement range by both LO and FIM had the same incidence of allergic hypersensitivity in clinical experience as lots at all levels of observed subvisible particulate content, suggesting that the presence of L-asparaginase subvisible particulates is not important with respect to allergic response.
Collapse
Affiliation(s)
- David Gervais
- Microbiology Services, Development and Production, Public Health England, Porton Down, Wiltshire, Salisbury, SP4 0JG, UK,
| | | | | | | | | |
Collapse
|
23
|
Asparaginase Erwinia chrysanthemi (Erwinaze®): a guide to its use in acute lymphoblastic leukemia in the USA. BioDrugs 2014; 27:413-8. [PMID: 23794007 DOI: 10.1007/s40259-013-0051-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Asparaginase Erwinia chrysanthemi (Erwinaze®) is approved in the USA for use in patients with acute lymphoblastic leukemia (ALL) who have developed hypersensitivity to Escherichia coli-derived asparaginase. The approved regimen of intramuscular Erwinaze® was associated with sustained, clinically meaningful asparaginase activity in patients with ALL who had to discontinue treatment with pegaspargase (a pegylated formulation of E. coli asparaginase) because of hypersensitivity. Another study revealed that development of E. coli-derived asparaginase allergy and a switch to Erwinaze® maintained event-free survival in pediatric patients with newly diagnosed ALL. In a multicenter, compassionate-use trial, Erwinaze® was generally well tolerated, with the most commonly occurring adverse events including hypersensitivity, pancreatitis, fever, hyperglycemia, and increased transaminase levels. Subclinical hypersensitivity may result in the inactivation of asparaginase and affect treatment outcome; monitoring of serum asparaginase levels may be used to identify subclinical hypersensitivity.
Collapse
|