1
|
Caballero-Sanchez L, Lázaro-Mixteco PE, Vargas-Tah A, Castro-Montoya AJ. Pilot-scale bioethanol production from the starch of avocado seeds using a combination of dilute acid-based hydrolysis and alcoholic fermentation by Saccharomyces cerevisiae. Microb Cell Fact 2023; 22:119. [PMID: 37386435 DOI: 10.1186/s12934-023-02110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/01/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND A processing methodology of raw starch extraction from avocado seeds (ASs) and a sequential hydrolysis and fermentation bioprocess in just a few steps was successfully obtained for the bioethanol production by a single yeast Saccharomyces cerevisiae strain and this research was also to investigate the optimum conditions for the pretreatment of biomass and technical procedures for the production of bioethanol. It successfully resulted in high yields and productivity of all the experiments from the laboratory scale and the pilot plant. Ethanol yields from pretreated starch are comparable with those in commercial industries that use molasses and hydrolyzed starch as raw materials. RESULTS Before the pilot-scale bioethanol production, studies of starch extraction and dilute sulfuric acid-based pretreatment was carefully conducted. The amount of starch extracted from dry and fresh avocado seed was 16.85 g ± 0.34 g and 29.79 ± 3.18 g of dry starch, representing a yield of ∼17% and 30%, respectively. After a dilute sulfuric acid pretreatment of starch, the released reducing sugars (RRS) were obtained and the hydrolysate slurries containing glucose (109.79 ± 1.14 g/L), xylose (0.99 ± 0.06 g/L), and arabinose (0.38 ± 0.01 g/L). The efficiency of total sugar conversion was 73.40%, with a productivity of 9.26 g/L/h. The ethanol fermentation in a 125 mL flask fermenter showed that Saccharomyces cerevisiae (Fali, active dry yeast) produced the maximum ethanol concentration, pmax at 49.05 g/L (6.22% v/v) with a yield coefficient, Yp/s of 0.44 gEthanol/gGlucose, a productivity or production rate, rp at 2.01 g/L/h and an efficiency, Ef of 85.37%. The pilot scale experiments of the ethanol fermentation using the 40-L fermenter were also successfully achieved with essentially good results. The values of pmax,Yp/s, rp, and Ef of the 40-L scale were at 50.94 g/L (6.46% v/v), 0.45 gEthanol/gGlucose, 2.11 g/L/h, and 88.74%, respectively. Because of using raw starch, major by-products, i.e., acetic acid in the two scales were very low, in ranges of 0.88-2.45 g/L, and lactic acid was not produced, which are less than those values in the industries. CONCLUSIONS The sequential hydrolysis and fermentation process of two scales for ethanol production using the combination of hydrolysis by utilizing dilute sulfuric acid-based pretreatment and fermentation by a single yeast Saccharomyces cerevisiae strain is practicable and feasible for realistic and effective scale-up strategies of bioethanol production from the starch of avocado seeds.
Collapse
Affiliation(s)
- Luis Caballero-Sanchez
- Posgrado de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Ciudad Universitaria, 58030, Morelia, Mich, México
| | - Pedro E Lázaro-Mixteco
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Ciudad Universitaria, 58030, Morelia, Mich, México
| | - Alejandra Vargas-Tah
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Ciudad Universitaria, 58030, Morelia, Mich, México.
| | - Agustín J Castro-Montoya
- Posgrado de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Ciudad Universitaria, 58030, Morelia, Mich, México.
| |
Collapse
|
2
|
Moving towards the Application of Biocatalysis in Food Waste Biorefinery. FERMENTATION 2023. [DOI: 10.3390/fermentation9010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Waste valorization is an important strategy to reduce environmental pollution and dependency on petroleum-based fuels. In this regard, utilization of food waste as a versatile and low-cost resource is important. Several advanced catalytic methods for the valorization of food waste have been widely investigated for the production of liquid biofuels. Along this line, chemical catalysts have been explored for the synthesis of liquid biofuels. Chemo-catalysis is mainly metal based, which requires harsh process conditions. Alternatively, biocatalysts are currently being investigated as a result of several advantages such as mild reaction conditions, recyclability, selectivity and biodegradability. In this work, recent biocatalytic technologies for the preparation of liquid biofuels through food waste valorization are discussed thoroughly. Lipases are employed for the synthesis of biodiesel and the upgradation of bio-oil, whereas methane mono-oxygenases could be explored for the production of methanol via the oxidation of methane generated from food wastes. Industrial production of ethanol from food waste using bioconversion technologies is a success story. To date, there has been no specific report on the use of food waste for propanol preparation using enzymes. The ABE process (Acetone–Butanol–Ethanol) (using suitable microorganisms) is used for butanol preparation, where the vacuum stripping system is integrated to remove butanol from the broth and circumvent inhibition. The synthesis of hydrocarbon fuels from fatty acids and triglycerides can be carried out using enzymes, such as carboxylic acid reductase and fatty acid photodecarboxylase (an algal photoenzyme). Both carboxylic acid reductase and fatty acid photodecarboxylase have not yet been applied in the direct valorization of food wastes. Furthermore, limitations of the reported methods, societal and economic aspects and a fresh perspective on the subject, along with important examples, are described.
Collapse
|
3
|
Li W, Shi C, Guang J, Ge F, Yan S. Development of Chinese chestnut whiskey: yeast strains isolation, fermentation system optimization, and scale-up fermentation. AMB Express 2021; 11:17. [PMID: 33432375 PMCID: PMC7801535 DOI: 10.1186/s13568-020-01175-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/28/2020] [Indexed: 12/02/2022] Open
Abstract
In this study, we used Chinese chestnut as the main raw material to develop a novel type of whiskey. First, 16 yeasts were isolated and identified for producing aroma using olfactory plate assay. Of these, we screened nine yeast strains based on their fermentation capacity, aroma profile, and sensory evaluation. The results demonstrated the combination of strains HN006 (Saccharomyces cerevisiae) and HN010 (Wickerhamomyces anomalus) provided satisfactory wine fermentation with an interesting flavor profile, as strain HN010 was highly aromatic and had elevated sensory scores with comparatively low ethanol yield, while strain HN006 had a poor flavor profile but produced the largest amount of ethanol. Subsequently, we co-cultured strains HN006 and HN010 to optimize the fermentation system. The results revealed the following optimum parameters: a mixed inoculum of 6% (v/v) at an HN006/HN010 ratio of 1:2 (v/v), a raw material ratio of 5:3:2 (chestnut: malt: glutinous rice), and yeast extract concentration of 6 g/L. Additionally, this fermentation system was successfully scaled-up to a 1000 L pilot-scale system. The results of this study showed that strains HN006 and HN010 could be used as alternatives for whiskey fermentation, as well as provided a generalized experimental scheme to assess other microorganisms.
Collapse
|
4
|
Dhiman S, Mukherjee G. Present scenario and future scope of food waste to biofuel production. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Sunny Dhiman
- University Institute of Biotechnology, Chandigarh University Mohali Punjab India
| | - Gunjan Mukherjee
- University Institute of Biotechnology, Chandigarh University Mohali Punjab India
| |
Collapse
|
5
|
Moodley P, Sewsynker-Sukai Y, Gueguim Kana EB. Progress in the development of alkali and metal salt catalysed lignocellulosic pretreatment regimes: Potential for bioethanol production. BIORESOURCE TECHNOLOGY 2020; 310:123372. [PMID: 32312596 DOI: 10.1016/j.biortech.2020.123372] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 05/26/2023]
Abstract
Lignocellulosic biomass (LCB) is well suited to address present day energy and environmental concerns, since it is abundant, environmentally benign and sustainable. However, the commercial application of LCB has been limited by its recalcitrant structure. To date, several biomass pretreatment systems have been developed to address this major bottleneck but have shown to be toxic and costly. Alkali and metal salt pretreatment regimes have emerged as promising non-toxic and low-cost treatments. This paper examines the progress made in lignocellulosic pretreatment using alkali and metal salts. The reaction mechanism of alkali and metal chloride salts on lignocellulosic biomass degradation are reviewed. The effect of salt pretreatment on lignin removal, hemicellulose solubilization, cellulose crystallinity, and physical structural changes are also presented. In addition, the enzymatic digestibility and inhibitor profile from salt pretreated lignocellulosic biomass are discussed. Furthermore, the challenges and future prospects on lignocellulosic pretreatment and bioethanol production are highlighted.
Collapse
Affiliation(s)
- Preshanthan Moodley
- University of KwaZulu-Natal, School of Life Sciences, Pietermaritzburg, South Africa
| | - Yeshona Sewsynker-Sukai
- University of KwaZulu-Natal, School of Life Sciences, Pietermaritzburg, South Africa; SMRI/NRF SARChI Research Chair in Sugarcane Biorefining, Discipline of Chemical Engineering, University of KwaZulu-Natal, Durban, South Africa
| | - E B Gueguim Kana
- University of KwaZulu-Natal, School of Life Sciences, Pietermaritzburg, South Africa.
| |
Collapse
|
6
|
Sarawan C, Suinyuy TN, Sewsynker-Sukai Y, Gueguim Kana EB. Optimized activated charcoal detoxification of acid-pretreated lignocellulosic substrate and assessment for bioethanol production. BIORESOURCE TECHNOLOGY 2019; 286:121403. [PMID: 31078980 DOI: 10.1016/j.biortech.2019.121403] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
This study optimized an activated charcoal (AC) detoxification method for the reduction of three different fermentation inhibitor compounds, while minimising the reducing sugar loss from acid-pretreated sorghum leaf (SL) wastes. Process optimization demonstrated a 98%, 88% and 37% removal efficiency for furfural, 5-hydroxymethylfurfural (HMF) and acetic acid respectively, with a 7% reducing sugar loss. Subsequently, the logistic and modified Gompertz models were used to comparatively evaluate the kinetics of Saccharomyces cerevisiae growth and ethanol production using the non-detoxified (NDF) and optimized detoxified (ODF) substrate. Yeast cell growth and bioethanol kinetic coefficients revealed that the ODF process was more effective than the NDF system. The experimental data generated from this study revealed that a suitable, cost-effective AC detoxification enhanced cell growth and bioethanol production efficiency. These findings pave the way for biomass pretreatment, detoxification and bioethanol process development using lignocellulosic wastes.
Collapse
Affiliation(s)
- Caitlyn Sarawan
- University of KwaZulu-Natal, School of Life Sciences, Pietermaritzburg, South Africa
| | - T N Suinyuy
- University of KwaZulu-Natal, School of Life Sciences, Pietermaritzburg, South Africa
| | - Y Sewsynker-Sukai
- University of KwaZulu-Natal, School of Life Sciences, Pietermaritzburg, South Africa
| | - E B Gueguim Kana
- University of KwaZulu-Natal, School of Life Sciences, Pietermaritzburg, South Africa.
| |
Collapse
|
7
|
Bioethanol production from sugarcane leaf waste: Effect of various optimized pretreatments and fermentation conditions on process kinetics. ACTA ACUST UNITED AC 2019; 22:e00329. [PMID: 31008065 PMCID: PMC6453773 DOI: 10.1016/j.btre.2019.e00329] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/03/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Bioethanol kinetics was investigated under SSA-F, SSA-U, MSA-F and MSA-U conditions. Monod, logistic and modified Gompertz models gave R2 > 0.97. SSA-U pretreated SLW produced 25% more bioethanol than MSA-U. No difference was observed between filtered and unfiltered enzymatic hydrolysate. SLW residue showed a suitable protein and fat content for animal feed.
This study examines the kinetics of S. cerevisiae BY4743 growth and bioethanol production from sugarcane leaf waste (SLW), utilizing two different optimized pretreatment regimes; under two fermentation modes: steam salt-alkali filtered enzymatic hydrolysate (SSA-F), steam salt-alkali unfiltered (SSA-U), microwave salt-alkali filtered (MSA-F) and microwave salt-alkali unfiltered (MSA-U). The kinetic coefficients were determined by fitting the Monod, modified Gompertz and logistic models to the experimental data with high coefficients of determination R2 > 0.97. A maximum specific growth rate (μmax) of 0.153 h−1 was obtained under SSA-F and SSA-U whereas, 0.150 h−1 was observed with MSA-F and MSA-U. SSA-U gave a potential maximum bioethanol concentration (Pm) of 31.06 g/L compared to 30.49, 23.26 and 21.79 g/L for SSA-F, MSA-F and MSA-U respectively. An insignificant difference was observed in the μmax and Pm for the filtered and unfiltered enzymatic hydrolysate for both SSA and MSA pretreatments, thus potentially reducing a unit operation. These findings provide significant insights for process scale up.
Collapse
|
8
|
Nishimura H, Tan L, Kira N, Tomiyama S, Yamada K, Sun ZY, Tang YQ, Morimura S, Kida K. Production of ethanol from a mixture of waste paper and kitchen waste via a process of successive liquefaction, presaccharification, and simultaneous saccharification and fermentation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 67:86-94. [PMID: 28527862 DOI: 10.1016/j.wasman.2017.04.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/26/2017] [Accepted: 04/17/2017] [Indexed: 06/07/2023]
Abstract
Efficient ethanol production from waste paper requires the addition of expensive nutrients. To reduce the production cost of ethanol from waste paper, a study on how to produce ethanol efficiently by adding kitchen waste (potentially as a carbon source, nutrient source, and acidity regulator) to waste paper was performed and a process of successive liquefaction, presaccharification, and simultaneous saccharification and fermentation (L+PSSF) was developed. The individual saccharification performances of waste paper and kitchen waste were not influenced by their mixture. Liquefaction of kitchen waste at 90°C prior to presaccharification and simultaneous saccharification and fermentation (PSSF) was essential for efficient ethanol fermentation. Ethanol at concentrations of 46.6 or 43.6g/l was obtained at the laboratory scale after fermentation for 96h, even without pH adjustment and/or the addition of extra nutrients. Similarly, ethanol at a concentration of 45.5g/l was obtained at the pilot scale after fermentation for 48h. The ethanol concentration of L+PSSF of the mixture of waste paper and kitchen waste was comparable to that of PSSF of waste paper with added nutrients (yeast extract and peptone) and pH adjustment using H2SO4, indicating that kitchen waste is not only a carbon source but also an excellent nutrient source and acidity regulator for fermentation of the mixture of waste paper and kitchen waste.
Collapse
Affiliation(s)
- Hiroto Nishimura
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan; Hitachi Zosen Corporation, 1-7-89 Nankokita, Suminoe-ku, Osaka 559-8559, Japan
| | - Li Tan
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu 610041, China; College of Architecture and Environment, Sichuan University, No. 24 South Section 1, First Ring Road, Chengdu 610065, China
| | - Noriko Kira
- Hitachi Zosen Corporation, 1-7-89 Nankokita, Suminoe-ku, Osaka 559-8559, Japan
| | - Shigeo Tomiyama
- Hitachi Zosen Corporation, 1-7-89 Nankokita, Suminoe-ku, Osaka 559-8559, Japan
| | - Kazuo Yamada
- Global Environment Policy Office, Kyoto City, 488, Teramachi-Oike, Nakagyo-ku, Kyoto 604-8571, Japan
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1, First Ring Road, Chengdu 610065, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1, First Ring Road, Chengdu 610065, China
| | - Shigeru Morimura
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Kenji Kida
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan; College of Architecture and Environment, Sichuan University, No. 24 South Section 1, First Ring Road, Chengdu 610065, China.
| |
Collapse
|
9
|
Wang YF, Tan L, Wang T, Sun ZY, Tang YQ, Kida K. Production of ethanol from kitchen waste by using flocculating Saccharomyces cerevisiae KF-7. ENVIRONMENTAL TECHNOLOGY 2017; 38:316-325. [PMID: 27241454 DOI: 10.1080/09593330.2016.1192224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
Kitchen waste is rich in carbohydrates and can potentially serve as feedstock for ethanol production. Starch was the primary carbohydrate in kitchen waste obtained from the canteen in the Sichuan University, which was used to evaluate long-term ethanol fermentation performance in this study. The optimal conditions for liquefaction and saccharification of the kitchen waste were as follows: adding α-amylase at 0.3 μL/g glucan for liquefaction at 90°C for 30 min, and adding glucoamylase at 4 μL/g glucan for saccharification at 50°C. Glucose yield obtained under the optimal conditions was over 80%. Addition of cellulase did not enhance glucose yield, but decreased the viscosity of the saccharified slurry. Repeated-batch presaccharification followed by simultaneous saccharification and fermentation of 20 batches was successfully carried out at an aeration of 0.1 vvm. Ethanol concentration of 43.9-45.0 g/L was achieved, corresponding to ethanol yield and productivity of 88.9-91.2% and 3.3-3.5 g/L/h, respectively, and the CO2/ethanol molar ratio was approximately 1. Continuous PSSF was stably carried out at a dilution rate of ≤0.3 h-1. Productivity was 11.5 g/L/h at a dilution rate of 0.3 h-1. Ethanol concentration and yield were 42.0 g/L and 82.8% at a dilution rate of 0.2 h-1, respectively.
Collapse
Affiliation(s)
- Yan-Fang Wang
- a College of Architecture and Environment , Sichuan University , Chengdu , People's Republic of China
| | - Li Tan
- a College of Architecture and Environment , Sichuan University , Chengdu , People's Republic of China
| | - Ting Wang
- a College of Architecture and Environment , Sichuan University , Chengdu , People's Republic of China
| | - Zhao-Yong Sun
- a College of Architecture and Environment , Sichuan University , Chengdu , People's Republic of China
| | - Yue-Qin Tang
- a College of Architecture and Environment , Sichuan University , Chengdu , People's Republic of China
| | - Kenji Kida
- a College of Architecture and Environment , Sichuan University , Chengdu , People's Republic of China
| |
Collapse
|
10
|
Karmee SK, Lin CSK. Valorisation of food waste to biofuel: current trends and technological challenges. ACTA ACUST UNITED AC 2014. [DOI: 10.1186/s40508-014-0022-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|