1
|
Ebadi M, Kavousi M, Farahmand M. Investigation of the Apoptotic and Antimetastatic Effects of Nano-Niosomes Containing the Plant Extract Anabasis setifera on HeLa: In Vitro Cervical Cancer Study. Chem Biodivers 2024:e202402599. [PMID: 39575851 DOI: 10.1002/cbdv.202402599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
The present study focuses on the preparation of niosomes containing an extract of Anabasis setifera and evaluates their efficacy in inhibiting the growth and proliferation of HeLa cells. Thin-layer hydration technique was used to prepare niosomes/extract nanoparticles (NPs). The physicochemical properties of the synthesized NPs were confirmed by scanning electron microscope (SEM), dynamic light scattering (DLS), zeta potential analysis, and FTIR. The cytotoxicity of the free extract, free niosome, and NPs was investigated by MTT (3-(4, 5-diMethylThiazol-2-yl)-2,5-diphenylTetrazolium bromide) assay. For this purpose, solutions of the three mentioned agents were prepared and diluted in 400, 200, 100, 50, 25, 12.5, and 6.25 µg/mL concentrations and incubated for 24, 48, and 72 h. After calculating the IC50 concentration and treating the cells with this concentration, real-time polymerase chain reaction (PCR) (to measure changes in the expression of apoptosis and metastasis genes), flow cytometry (to determine the amount of early and late induced apoptosis), and cell cycle test (to determine the stopping stage of the cancer cell division cycle) were performed. Moreover, the scratch test (the ability to inhibit cell metastasis after treatment) was used to evaluate cell migration. The MTT assay results showed that 72 h of treatment with NPs has the greatest effect on the death of cancer cells. Real-time PCR showed that the expression of the Bad gene increased dramatically and the expression of the BCL-XL, integrin alpha 5 (ITGA5), and zinc finger E-box-binding homeobox 1 (ZEB-1) genes decreased significantly. The flow cytometry results showed that 48.64% of HeLa cells underwent apoptosis after treatment with synthesized NPs. The scratch test results showed that cancer cell metastasis stopped after treatment with NPs. The research demonstrates the significant potential of plant extract-loaded niosomes, as highly efficient drug carriers for cancer therapy.
Collapse
Affiliation(s)
- Mahya Ebadi
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Kavousi
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahnaz Farahmand
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Bidan AK, Al-Ali ZSA. Evaluation of cytotoxic potential of silver nanoparticles biosynthesized using essential oils of Jasminum sambac against breast cancer and bacterial cells. 3 Biotech 2024; 14:227. [PMID: 39268412 PMCID: PMC11387583 DOI: 10.1007/s13205-024-04058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/18/2024] [Indexed: 09/15/2024] Open
Abstract
Essential oils (EOs) which cover about 91% whole biomolecules formulated from Jasminum sambac leaves based on Gas chromatography-mass spectrometry were employed to identify structures. EOs were observed as good agents in the preparation of Silver nanoparticles (AgNPs) through the proposed mechanism that was attempted to interpret the pathway of the bio-preparation process. The characterization of EOs-AgNPs carried via ultraviolet-visible to reveal surface plasmon resonance at 420 nm, Fourier transform infrared to observe functional groups EOs compared to EOs-AgNPs. X-ray diffraction (XRD) revealed a broad chart owing to the small size of AgNPs in average size less than 10 nm calculated relying on image J software, spherical AgNPs with a small dispersive size observed by transmission electron microscopy. Quasi near spherical surface morphology of EOs-AgNPs had detected by field emission scanning electron microscope. EOs-AgNPs were assessed for their antibacterial potential against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria as suppressing bacterial agents. EOs-AgNPs had their anti-breast cancer MCF-7 cell line ability investigated by DNA fragmentation; cycle flow cytometry (apoptosis) at half maximal inhibitory concentration (IC50) was determined at 260 µg/mL which has been stated by cytotoxicity (MTT) assay. EOs-AgNPs have antibacterial and anticancer therapeutic potential, and it is safe, inexpensive, and scalable in the nanoscale range.
Collapse
Affiliation(s)
- Ali Kadhum Bidan
- Department of Chemistry, Collage of Science, University of Basrah, Basrah, 61001 Iraq
| | | |
Collapse
|
3
|
Zahra M, Abrahamse H, George BP. Flavonoids: Antioxidant Powerhouses and Their Role in Nanomedicine. Antioxidants (Basel) 2024; 13:922. [PMID: 39199168 PMCID: PMC11351814 DOI: 10.3390/antiox13080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
This study emphasizes the critical role of antioxidants in protecting human health by counteracting the detrimental effects of oxidative stress induced by free radicals. Antioxidants-found in various forms such as vitamins, minerals, and the phytochemicals abundant in fruits and vegetables-neutralize free radicals by stabilizing them through electron donation. Specifically, flavonoid compounds are highlighted as robust defenders, addressing oxidative stress and inflammation to avert chronic illnesses like cancer, cardiovascular diseases, and neurodegenerative diseases. This research explores the bioactive potential of flavonoids, shedding light on their role not only in safeguarding health, but also in managing conditions such as diabetes, cancer, cardiovascular diseases, and neurodegenerative diseases. This review highlights the novel integration of South African-origin flavonoids with nanotechnology, presenting a cutting-edge strategy to improve drug delivery and therapeutic outcomes. This interdisciplinary approach, blending traditional wisdom with contemporary techniques, propels the exploration of flavonoid-mediated nanoparticles toward groundbreaking pharmaceutical applications, promising revolutionary advancements in healthcare. This collaborative synergy between traditional knowledge and modern science not only contributes to human health, but also underscores a significant step toward sustainable and impactful biomedical innovations, aligning with principles of environmental conservation.
Collapse
Affiliation(s)
| | | | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa; (M.Z.); (H.A.)
| |
Collapse
|
4
|
Vasanthakumari K, Sharmila C, Jaya Priya S, Vadivel V. Wound healing mechanisms of Couroupita guianensis fruit pulp: An ethnomedicine used by traditional healers in India. Nat Prod Res 2024; 38:634-638. [PMID: 36799649 DOI: 10.1080/14786419.2023.2180636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
In connection to search for safe and alternative plant-based drugs, the wound healing mechanisms of an Indian ethnomedicine Couroupita guianensis fruit pulp was analyzed in this project work. Gas chromatography coupled with mass spectrometer (GC-MS) analysis revealed the existence of phytochemicals such as 2-furoic acid, 2,4-heptadienal, pyrazole and 8-hydroxyquinoline in the methanol extract. Methanol extract of C. guianensis exhibited remarkable radical scavenging activity against 2, 2-diphenyl-1-picrylhydrazyl (DPPH) (89.88%), superoxide (91.51%), hydrogen peroxide (24.25%) and hydroxyl radicals (73.62%). Further, it showed remarkable anti-inflammatory (24.09-62.16%) and anti-bacterial activity (zone of inhibition, ZOI: 13.00 mm, minimum inhibitory concentration, MIC: 6.25 mg/mL and minimum bactericidal concentration, MBC: 12.51 mg/mL) and also controlled the growth rate of methicillin resistant Staphylococcus aureus (MRSA) within 30 min of treatment. The angiogenic potential of C. guianensis was proved in chick chorioallantoic membrane (CAM) model and it does not exhibit any toxicity in peripheral blood monocyte cells (PBMC) model.
Collapse
Affiliation(s)
- Kumaraguru Vasanthakumari
- Chemical Biology Lab (ASK-II-409), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu, India
| | - Chelladurai Sharmila
- Chemical Biology Lab (ASK-II-409), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu, India
| | - Shree Jaya Priya
- Chemical Biology Lab (ASK-II-409), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu, India
| | - Vellingiri Vadivel
- Chemical Biology Lab (ASK-II-409), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu, India
| |
Collapse
|
5
|
Mir RH, Maqbool M, Mir PA, Hussain MS, Din Wani SU, Pottoo FH, Mohi-Ud-Din R. Green Synthesis of Silver Nanoparticles and their Potential Applications in Mitigating Cancer. Curr Pharm Des 2024; 30:2445-2467. [PMID: 38726783 DOI: 10.2174/0113816128291705240428060456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/12/2024] [Indexed: 09/05/2024]
Abstract
In recent years, the field of nanotechnology has brought about significant advancements that have transformed the landscape of disease diagnosis, prevention, and treatment, particularly in the realm of medical science. Among the various approaches to nanoparticle synthesis, the green synthesis method has garnered increasing attention. Silver nanoparticles (AgNPs) have emerged as particularly noteworthy nanomaterials within the spectrum of metallic nanoparticles employed for biomedical applications. AgNPs possess several key attributes that make them highly valuable in the biomedical field. They are biocompatible, cost-effective, and environmentally friendly, rendering them suitable for various bioengineering and biomedical applications. Notably, AgNPs have found a prominent role in the domain of cancer diagnosis. Research investigations have provided evidence of AgNPs' anticancer activity, which involves mechanisms such as DNA damage, cell cycle arrest, induction of apoptosis, and the regulation of specific cytokine genes. The synthesis of AgNPs primarily involves the reduction of silver ions by reducing agents. Interestingly, natural products and living organisms have proven to be effective sources for the generation of precursor materials used in AgNP synthesis. This comprehensive review aims to summarize the key aspects of AgNPs, including their characterization, properties, and recent advancements in the field of biogenic AgNP synthesis. Furthermore, the review highlights the potential applications of these nanoparticles in combating cancer.
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar 190006, Kashmir, India
| | - Mudasir Maqbool
- Pharmacy Practice Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Prince Ahad Mir
- Department of Pharmaceutical Sciences, Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab 143001, India
| | - Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura 302017, Jaipur, Rajasthan, India
| | - Shahid Ud Din Wani
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir 190001, India
| |
Collapse
|
6
|
Puri A, Mohite P, Maitra S, Subramaniyan V, Kumarasamy V, Uti DE, Sayed AA, El-Demerdash FM, Algahtani M, El-Kott AF, Shati AA, Albaik M, Abdel-Daim MM, Atangwho IJ. From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomed Pharmacother 2024; 170:116083. [PMID: 38163395 DOI: 10.1016/j.biopha.2023.116083] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
As we navigate the modern era, the intersection of time-honoured natural remedies and contemporary scientific approaches forms a burgeoning frontier in global healthcare. For generations, natural products have been foundational to health solutions, serving as the primary healthcare choice for 80% to 85% of the world's population. These herbal-based, nature-derived substances, significant across diverse geographies, necessitate a renewed emphasis on enhancing their quality, efficacy, and safety. In the current century, the advent of biogenic phytonanoparticles has emerged as an innovative therapeutic conduit, perfectly aligning with principles of environmental safety and scientific ingenuity. Utilizing green chemistry techniques, a spectrum of metallic nanoparticles including elements such as copper, silver, iron, zinc, and titanium oxide can be produced with attributes of non-toxicity, sustainability, and economic efficiency. Sophisticated herb-mediated processes yield an array of plant-originated nanomaterials, each demonstrating unique physical, chemical, and biological characteristics. These attributes herald new therapeutic potentials, encompassing antioxidants, anti-aging applications, and more. Modern technology further accelerates the synthesis of natural products within laboratory settings, providing an efficient alternative to conventional isolation methods. The collaboration between traditional wisdom and advanced methodologies now signals a new epoch in healthcare. Here, the augmentation of traditional medicine is realized through rigorous scientific examination. By intertwining ethical considerations, cutting-edge technology, and natural philosophy, the realms of biogenic phytonanoparticles and traditional medicine forge promising pathways for research, development, and healing. The narrative of this seamless integration marks an exciting evolution in healthcare, where the fusion of sustainability and innovation crafts a future filled with endless possibilities for human well-being. The research in the development of metallic nanoparticles is crucial for unlocking their potential in revolutionizing fields such as medicine, catalysis, and electronics, promising groundbreaking applications with enhanced efficiency and tailored functionalities in future technologies. This exploration is essential for harnessing the unique properties of metallic nanoparticles to address pressing challenges and advance innovations across diverse scientific and industrial domains.
Collapse
Affiliation(s)
- Abhijeet Puri
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India
| | - Popat Mohite
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India.
| | - Swastika Maitra
- Centre for Global Health Research, Saveetha Medical College and Hospital, Chennai, India; Department of Science and Engineering, Novel Global Community and Educational Foundation, Hebasham, Australia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, 600077, India..
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Daniel E Uti
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, College of Science, Damounhour University, Egypt
| | - Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mai Albaik
- Chemistry Department, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Item J Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
7
|
Salih R, Bajou K, Shaker B, Elgamouz A. Antitumor effect of algae silver nanoparticles on human triple negative breast cancer cells. Biomed Pharmacother 2023; 168:115532. [PMID: 37832405 DOI: 10.1016/j.biopha.2023.115532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 10/15/2023] Open
Abstract
In recent years, metallic nanoparticles have gained increasing attention due to their prospective applications in the field of nanomedicine, with increasing research into their use in cancer therapy. In this current research, we investigated the effect of green synthesized Silver Nanoparticles (AgNPs) capped with Noctiluca scintillans algae extract. The phytochemicals present in the shell of AgNPs were identified using GC-MS. Different compounds with anticancer activity such as n-hexadecanoic acid, beta-sitosterol, stigmasterol and palmitic acid were detected among others. The effects of Algae-AgNPs synthesized were tested on MDA-MB-231 human breast cancer cells and HaCat human keratinocyte normal cells. Cell viability assay revealed a time and dose-dependent effect against breast cancer cells with a less potent effect against normal cells. The cell viability reduction is not attributed to a cytotoxic nor an antiproliferative effect of the Algae-AgNPs as attested by LDH release and BrdU incorporation. Algae-AgNPs exhibited an exceptional ability to specifically induce apoptosis in cancer cells and not normal cells. The observed effects are not attributed to the AgNPs, as demonstrated by the lack of impact of the Starch-AgNPs (used as a negative control) on cell survival and apoptosis. In addition to that, we show that Algae-AgNPs significantly reduced tumor cell migration by downregulation of matrix metalloprotease-9 levels. In vivo, the breast cancer xenograft model showed a significant reduction of tumor growth in mice treated with Algae-AgNPs. These findings highlight the promising potential of the green synthesized AgNPs as a safe targeted therapy for cancer treatment.
Collapse
Affiliation(s)
- Rawan Salih
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Human Genetics and Stem Cells Research Group, Research Institute of Science and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Khalid Bajou
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Human Genetics and Stem Cells Research Group, Research Institute of Science and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Baraah Shaker
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Human Genetics and Stem Cells Research Group, Research Institute of Science and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Abdelaziz Elgamouz
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
8
|
The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life (Basel) 2023; 13:life13020466. [PMID: 36836823 PMCID: PMC9965924 DOI: 10.3390/life13020466] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer is a fatal disease with a complex pathophysiology. Lack of specificity and cytotoxicity, as well as the multidrug resistance of traditional cancer chemotherapy, are the most common limitations that often cause treatment failure. Thus, in recent years, significant efforts have concentrated on the development of a modernistic field called nano-oncology, which provides the possibility of using nanoparticles (NPs) with the aim to detect, target, and treat cancer diseases. In comparison with conventional anticancer strategies, NPs provide a targeted approach, preventing undesirable side effects. What is more, nanoparticle-based drug delivery systems have shown good pharmacokinetics and precise targeting, as well as reduced multidrug resistance. It has been documented that, in cancer cells, NPs promote reactive oxygen species (ROS) production, induce cell cycle arrest and apoptosis, activate ER (endoplasmic reticulum) stress, modulate various signaling pathways, etc. Furthermore, their ability to inhibit tumor growth in vivo has also been documented. In this paper, we have reviewed the role of silver NPs (AgNPs) in cancer nanomedicine, discussing numerous mechanisms by which they render anticancer properties under both in vitro and in vivo conditions, as well as their potential in the diagnosis of cancer.
Collapse
|
9
|
Chen M, Shou Z, Jin X, Chen Y. Emerging strategies in nanotechnology to treat respiratory tract infections: realizing current trends for future clinical perspectives. Drug Deliv 2022; 29:2442-2458. [PMID: 35892224 PMCID: PMC9341380 DOI: 10.1080/10717544.2022.2089294] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A boom in respiratory tract infection cases has inflicted a socio-economic burden on the healthcare system worldwide, especially in developing countries. Limited alternative therapeutic options have posed a major threat to human health. Nanotechnology has brought an immense breakthrough in the pharmaceutical industry in a jiffy. The vast applications of nanotechnology ranging from early diagnosis to treatment strategies are employed for respiratory tract infections. The research avenues explored a multitude of nanosystems for effective drug delivery to the target site and combating the issues laid through multidrug resistance and protective niches of the bacteria. In this review a brief introduction to respiratory diseases and multifaceted barriers imposed by bacterial infections are enlightened. The manuscript reviewed different nanosystems, i.e. liposomes, solid lipid nanoparticles, polymeric nanoparticles, dendrimers, nanogels, and metallic (gold and silver) which enhanced bactericidal effects, prevented biofilm formation, improved mucus penetration, and site-specific delivery. Moreover, most of the nanotechnology-based recent research is in a preclinical and clinical experimental stage and safety assessment is still challenging.
Collapse
Affiliation(s)
- Minhua Chen
- Emergency & Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhangxuan Shou
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xue Jin
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yingjun Chen
- Department of Infectious Diseases, People's Hospital of Tiantai County, Taizhou, China
| |
Collapse
|
10
|
Bidan AK, Al-Ali ZSA. Biomedical Evaluation of Biosynthesized Silver Nanoparticles by Jasminum Sambac (L.) Aiton Against Breast Cancer Cell Line, and Both Bacterial Strains Colonies. INTERNATIONAL JOURNAL OF NANOSCIENCE 2022. [DOI: 10.1142/s0219581x22500429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The biosynthesis of silver nanoparticles (AgNPs) was conducted using the Iraqi Jasminum sambac (L.) Aiton leaves having substantial bioreduction and capping properties. The aqueous extract has been characterized using FTIR to observe changes in functional groups of extract compared to extract-AgNPs. GC-MS understands the mechanism synthesis of AgNPs based on the aqueous extract of J. sambac through identification of aqueous extracted. The synthesized AgNPs were characterized using UV–Vis at 455[Formula: see text]nm, XRD broad chart owing to size of AgNPs and TEM (AgNPs average size less than 10[Formula: see text]nm). FESEM-EDX was carried out to observe the nearly spherical shape with elemental composition. DLS was appointed with hydrodynamic radius as 105.9[Formula: see text]nm and also had a good polydispersity at 0.357, and [Formula: see text]-potential at [Formula: see text]23.1. AgNPs have antibacterial gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli), cytotoxicity MTT assay against breast cancer MCF-7 cell line IC50 at 222.6[Formula: see text][Formula: see text]g/mL, genotoxicity fragmented DNA of MCF-7 by comet assay, emphasized apoptosis cells through cell cycle flow cytometry. Overall, safe, cost-effective, and scalable biogenic nano-formulation of Jasminum sambac-AgNPs possesses antibacterial and anticancer therapeutic applications.
Collapse
Affiliation(s)
- Ali Kadhum Bidan
- Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq
| | | |
Collapse
|
11
|
Synthesis of Green Engineered Silver Nanoparticles through Urtica dioica: An Inhibition of Microbes and Alleviation of Cellular and Organismal Toxicity in Drosophila melanogaster. Antibiotics (Basel) 2022; 11:antibiotics11121690. [PMID: 36551347 PMCID: PMC9774676 DOI: 10.3390/antibiotics11121690] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Plant fractions have a diversity of biomolecules that can be used to make complicated reactions for the bioactive fabrication of metal nanoparticles (NPs), in addition to being beneficial as antioxidant medications or dietary supplements. The current study shows that Urtica dioica (UD) and biologically synthesized silver nanoparticles (AgNPs) of UD have antibacterial and antioxidant properties against bacteria (Escherichia coli and Pseudomonas putida) and Drosophila melanogaster (Oregon R+). According to their ability to scavenge free radicals, DPPH, ABTS, TFC, and TPC initially estimated the antioxidant potential of UD and UD AgNPs. The fabricated AgNPs were analyzed (UV−Vis, FTIR, EDS, and SEM) to determine the functional groups (alcohol, carboxylic acids, phenol, proteins, and aldehydes) and to observe the shape (agglomerated crystalline and rod-shaped structure). The disc diffusion method was used to test the antimicrobial properties of synthesized Ag-NPs against E. coli and P. putida. For 24 to 120 h, newly enclosed flies and third instar larvae of Drosophila were treated with UD and UD AgNPs. After exposure, tests for biochemical effects (acetylcholinesterase inhibition and protein estimation assays), cytotoxicity (dye exclusion), and behavioral effects (jumping and climbing assays) were conducted. The results showed that nanoparticles were found to have potent antimicrobial activity against all microbial strains tested at various concentrations. In this regard, ethno-medicinal characteristics exhibit a similar impact in D. melanogaster, showing (p < 0.05) significantly decreased cellular toxicity (trypan blue dye), enhanced biochemical markers (AChE efficacy and proteotoxicity), and improved behavioral patterns in the organism treated with UD AgNPs, especially in comparison to UD extract. The results of this study may help in the utilization of specific plants as reliable sources of natural antioxidants that may have been beneficial in the synthesis of metallic NPs, which aids in the production of nanomedicine and other therapeutic applications.
Collapse
|
12
|
Ashique S, Upadhyay A, Hussain A, Bag S, Chaterjee D, Rihan M, Mishra N, Bhatt S, Puri V, Sharma A, Prasher P, Singh SK, Chellappan DK, Gupta G, Dua K. Green biogenic silver nanoparticles, therapeutic uses, recent advances, risk assessment, challenges, and future perspectives. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Effective treatment of resistant opportunistic fungi associated with immuno-compromised individuals using silver biosynthesized nanoparticles. APPLIED NANOSCIENCE 2022; 12:3871-3882. [PMID: 35909460 PMCID: PMC9307438 DOI: 10.1007/s13204-022-02539-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/03/2022] [Indexed: 12/22/2022]
Abstract
Drug resistance in filamentous fungus to antifungal medicines is a huge problem in biomedical applications; so, an effective strategy for treating opportunistic fungal infections is needed. Mentha piperita is a very fascinating plant to treat a variety of ailments as home remedies. Eighteen strains of Aspergillus species were used for this study which are having a unique antifungal resistance profile in presence of silver nanoparticles (AgNPs). AgNPs were prepared, using an aqueous extract of M. Piperita and characterized it by various techniques. Structural properties of AgNPs were systematically studied using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Fourier-transform infrared spectroscopy (FT-IR), and Raman measurement, which emanate the single-phase fcc structure of silver nanoparticles. The spherical nature and elemental analysis of as-synthesized AgNPs were confirmed using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy, respectively. The optical study has been analyzed using UV–Vis spectroscopy and band gap was calculated as 2.51 eV, using Tauc plot. To analyze and validate the good efficacy of the disc approach, antifungal activity of AgNPs nanoparticles in different concentrations against isolates was achieved in both disc and broth microdilution. The extracellular enzymatic activity of A. fumigatus was found to explore the precise impact of nanoparticles on fungal metabolism. The antifungal efficacy of AgNPs against all fungi was highly successful in disc method. The broth approach underlined the favorable results of the disc method. It provided more precise results in determining the minimum inhibition concentration (MIC), as well as the minimum effective concentration (MEC). A. fumigatus (AM6) enzymatic activity was boosted by AgNPs. Also, ß-galactosidase, ß-glucuronidase, and ß-glucosidase are necessary enzymes whose activity has been boosted. Consequently, M. piperita AgNPs can play a major and intriguing function against resistant Aspergillus species with a significant shift in the enzymatic activity profile of fungi due to this action.
Collapse
|
14
|
Rani N, Singla RK, Redhu R, Narwal S, Sonia, Bhatt A. A Review on Green Synthesis of Silver Nanoparticles and its Role Against Cancer. Curr Top Med Chem 2022; 22:1460-1471. [PMID: 35652404 DOI: 10.2174/1568026622666220601165005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 02/08/2023]
Abstract
Cancer is a fatal disease, with a collection of related diseases in various body parts. The conventional therapies cannot show the desired results of treatment due to their imprecise targeting, deprived drug delivery, and side effects. Therefore, it is required to make the drug engineered in such a way that it can target only cancerous cells and can inhibit its growth and proliferation. Nanotechnology is a technology that can target and differentiate between cancerous cells and the normal cells of the body. Silver itself is a good anticancer and antibacterial agent and employing it with phytochemicals having anticancer properties, and nanotechnology can give the best approach for the treatment. The synthesis of silver nanoparticles using plant extracts is an economical, energy-efficient, low-cost approach and it doesn't need any hazardous chemicals. In the present review, we discussed different methods of synthesis of silver nanoparticles using herbal extracts and their role against cancer therapy along with the synergistic role of silver and plant extracts against cancer in the formulation.
Collapse
Affiliation(s)
- Neeraj Rani
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani (HR), India
| | - Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,iGlobal Research and Publishing Foundation, New Delhi, India
| | - Rakesh Redhu
- Vaish Institute of Pharmaceutical Education and Research, Rohtak (HR), India
| | - Sonia Narwal
- Faculty of Pharmaceutical Sciences, PDM University, Bahadurgarh (HR), India
| | - Sonia
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani (HR), India
| | - Alok Bhatt
- School of Pharmaceutical Sciences Himgiri Zee University, Dehradun, India
| |
Collapse
|
15
|
Singla RK, Dhir V, Madaan R, Kumar D, Singh Bola S, Bansal M, Kumar S, Dubey AK, Singla S, Shen B. The Genus Alternanthera: Phytochemical and Ethnopharmacological Perspectives. Front Pharmacol 2022; 13:769111. [PMID: 35479320 PMCID: PMC9036189 DOI: 10.3389/fphar.2022.769111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Ethnopharmacological relevance: The genus Alternanthera (Amaranthaceae) comprises 139 species including 14 species used traditionally for the treatment of various ailments such as hypertension, pain, inflammation, diabetes, cancer, microbial and mental disorders. Aim of the review: To search research gaps through critical assessment of pharmacological activities not performed to validate traditional claims of various species of Alternanthera. This review will aid natural product researchers in identifying Alternanthera species with therapeutic potential for future investigation. Materials and methods: Scattered raw data on ethnopharmacological, morphological, phytochemical, pharmacological, toxicological, and clinical studies of various species of the genus Alternanthera have been compiled utilizing search engines like SciFinder, Google Scholar, PubMed, Science Direct, and Open J-Gate for 100 years up to April 2021. Results: Few species of Alternanthera genus have been exhaustively investigated phytochemically, and about 129 chemical constituents related to different classes such as flavonoids, steroids, saponins, alkaloids, triterpenoids, glycosides, and phenolic compounds have been isolated from 9 species. Anticancer, antioxidant, antibacterial, CNS depressive, antidiabetic, analgesic, anti-inflammatory, and immunomodulator effects have been explored in the twelve species of the genus. A toxicity study has been conducted on 3 species and a clinical study on 2 species. Conclusions: The available literature on pharmacological studies of Alternanthera species reveals that few species have been selected based on ethnobotanical surveys for scientific validation of their traditional claims. But most of these studies have been conducted on uncharacterized and non-standardized crude extracts. A roadmap of research needs to be developed for the isolation of new bioactive compounds from Alternanthera species, which can emerge out as clinically potential medicines.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Vivek Dhir
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
- *Correspondence: Bairong Shen, ; Reecha Madaan,
| | - Deepak Kumar
- Department of Health and Family Welfare, Civil Hospital, Rampura Phul, India
| | - Simranjit Singh Bola
- Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, India
| | - Monika Bansal
- Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, India
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | | | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Bairong Shen, ; Reecha Madaan,
| |
Collapse
|
16
|
Mishra P, Tripathi YB. Impact of Nano Preparation of Phytoconstituents in Medulloblastoma. Methods Mol Biol 2022; 2423:115-122. [PMID: 34978694 DOI: 10.1007/978-1-0716-1952-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The conventional cancer treatment strategies from chemotherapy to surgery often lead to inadequate results which in some cases lead to relapsing of the tumor being treated. Medulloblastoma witness 30% relapse rate which is universally fatal among children. Although the treatment of primary medulloblastoma is well established including surgical excision, postsurgical irradiation, and, more recently, chemotherapy, there is no established treatment for its recurrence. Despite efforts to improve its therapy, frequent long-haul survivors have been recorded in the world's medical literature. In this book chapter, we have attempted to focus light on the nano preparation of phytoconstituents as an alternative approach as it has advantage of providing better bioavailability of the compound in terms of crossing the blood-brain barrier and an additional benefit in terms of limited adverse effects of the natural product over the traditional chemotherapeutic approaches. In recent times, biological methods or green approaches in the case of plants have received immense attention due to its safety and lack of contamination in the process. In this chapter, we will explore some plant products that have been incorporated into nanocarriers to improve their bioavailability in this tumor treatment.
Collapse
Affiliation(s)
- Priyanka Mishra
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Y B Tripathi
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
17
|
Narayanan M, Natarajan D, Geetha Priyadharshini S, Kandasamy S, Shanmugam S, Sabour A, Almoallim HS, Pugazhendhi A. Biofabrication and characterization of AgNPs synthesized by Justicia adhatoda and efficiency on multi-drug resistant microbes and anticancer activity. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
18
|
Kaliammal R, Parvathy G, Maheshwaran G, Velsankar K, Kousalya Devi V, Krishnakumar M, Sudhahar S. Zephyranthes candida flower extract mediated green synthesis of silver nanoparticles for biological applications. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.09.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
20
|
Narayanan M, Deepika M, Ma Y, Nasif O, Alharbi SA, Srinivasan R, Natarajan D. Phyto-fabrication, characterization, and biomedical activity of silver nanoparticles mediated from an epiphytic plant Luisia tenuifolia Blume. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02022-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Rakowski M, Porębski S, Grzelak A. Silver Nanoparticles Modulate the Epithelial-to-Mesenchymal Transition in Estrogen-Dependent Breast Cancer Cells In Vitro. Int J Mol Sci 2021; 22:9203. [PMID: 34502112 PMCID: PMC8431224 DOI: 10.3390/ijms22179203] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Silver nanoparticles (AgNPs) are frequently detected in many convenience goods, such as cosmetics, that are applied directly to the skin. AgNPs accumulated in cells can modulate a wide range of molecular pathways, causing direct changes in cells. The aim of this study is to assess the capability of AgNPs to modulate the metastasis of breast cancer cells through the induction of epithelial-to-mesenchymal transition (EMT). The effect of the AgNPs on MCF-7 cells was investigated via the sulforhodamine B method, the wound healing test, generation of reactive oxygen species (ROS), the standard cytofluorimetric method of measuring the cell cycle, and the expression of EMT marker proteins and the MTA3 protein via Western blot. To fulfill the results, calcium flux and HDAC activity were measured. Additionally, mitochondrial membrane potential was measured to assess the direct impact of AgNPs on mitochondria. The results indicated that the MCF-7 cells are resistant to the cytotoxic effect of AgNPs and have higher mobility than the control cells. Treatment with AgNPs induced a generation of ROS; however, it did not affect the cell cycle but modulated the expression of EMT marker proteins and the MTA3 protein. Mitochondrial membrane potential and calcium flux were not altered; however, the AgNPs did modulate the total HDAC activity. The presented data support our hypothesis that AgNPs modulate the metastasis of MCF-7 cells through the EMT pathway. These results suggest that AgNPs, by inducing reactive oxygen species generation, alter the metabolism of breast cancer cells and trigger several pathways related to metastasis.
Collapse
Affiliation(s)
- Michał Rakowski
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 90-237 Lodz, Poland
- Cytometry Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Szymon Porębski
- Cytometry Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Agnieszka Grzelak
- Cytometry Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| |
Collapse
|
22
|
Flieger J, Franus W, Panek R, Szymańska-Chargot M, Flieger W, Flieger M, Kołodziej P. Green Synthesis of Silver Nanoparticles Using Natural Extracts with Proven Antioxidant Activity. Molecules 2021; 26:4986. [PMID: 34443574 PMCID: PMC8398508 DOI: 10.3390/molecules26164986] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/20/2022] Open
Abstract
Natural extracts are a rich source of biomolecules that are useful not only as antioxidant drugs or diet supplements but also as complex reagents for the biogenic synthesis of metallic nanoparticles. The natural product components can act as strong reducing and capping substrates guaranteeing the stability of formed NPs. The current work demonstrates the suitability of extracts of Camellia sinensis, Ilex paraguariensis, Salvia officinalis, Tilia cordata, Levisticum officinale, Aegopodium podagraria, Urtica dioica, Capsicum baccatum, Viscum album, and marine algae Porphyra Yezoensis for green synthesis of AgNPs. The antioxidant power of methanolic extracts was estimated at the beginning according to their free radical scavenging activity by the DPPH method and reducing power activity by CUPRAC and SNPAC (silver nanoparticle antioxidant capacity) assays. The results obtained by the CUPRAC and SNAPC methods exhibited excellent agreement (R2~0.9). The synthesized AgNPs were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), dynamic light scattering (DLS) particle size, and zeta potential. The UV-vis absorption spectra showed a peak at 423 nm confirming the presence of AgNPs. The shapes of extract-mediated AgNPs were mainly spherical, spheroid, rod-shaped, agglomerated crystalline structures. The NPs exhibited a high negative zeta potential value in the range from -49.8 mV to -56.1 mV, proving the existence of electrostatic stabilization. FTIR measurements indicated peaks corresponding to different functional groups such as carboxylic acids, alcohol, phenol, esters, ethers, aldehydes, alkanes, and proteins, which were involved in the synthesis and stabilization of AgNPs. Among the examined extracts, green tea showed the highest activity in all antioxidant tests and enabled the synthesis of the smallest nanoparticles, namely 62.51, 61.19, and 53.55 nm, depending on storage times of 30 min, 24 h, and 72 h, respectively. In turn, the Capsicum baccatum extract was distinguished by the lowest zeta potential, decreasing with storage time from -66.0 up to -88.6 mM.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Wojciech Franus
- Department of Geotechnics, Civil Engineering and Architecture Faculty, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland; (W.F.); (R.P.)
| | - Rafał Panek
- Department of Geotechnics, Civil Engineering and Architecture Faculty, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland; (W.F.); (R.P.)
| | | | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Michał Flieger
- Faculty of Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Przemysław Kołodziej
- Department of Biology and Genetics, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| |
Collapse
|
23
|
Shali R, Neamati A, Tabrizi MH, Etminan A, Ghandehari S, Noghondar MK. Green fabrication of silver nanoparticles mediated by Bistorta officinalis aqueous extract: putative mechanism for apoptosis-inducing properties. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1956952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Reyhaneh Shali
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ali Neamati
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Ayda Etminan
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Sara Ghandehari
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
24
|
Ali S, Khan MR, Khan R. Green synthesized AgNPs from Periploca hydaspidis Falc. and its biological activities. Microsc Res Tech 2021; 84:2268-2285. [PMID: 33880837 DOI: 10.1002/jemt.23780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/20/2020] [Accepted: 04/05/2021] [Indexed: 12/22/2022]
Abstract
Characterization of bio-synthesized silver nanoparticles (AgNPs) using Periploca hydaspidis (PHAgNPs) whole plant extract for the first time via UV-Visible spectroscopy, XRD, FTIR, DLS, and SEM analysis techniques was done. A rich variety of phytochemicals in P. hydaspidis aqueous extract (PHA) functioned as possible reducing and capping agents for AgNPs synthesis. In vitro antioxidant activities (DPPH, Iron chelating, Hydroxyl ion, Nitric oxide, and β-carotene bleaching assays) of PHAgNPs revealed least IC50 values especially in hydroxyl ion (39.08 ± 0.88 μg/mL) and nitric oxide (37.53 ± 2.24 μg/mL) scavenging assays relative to standard controls (ascorbic acid, rutin, and gallic acid) and PHA. In addition, visible inhibition zone diameters were formed around discs against all pathogenic microbial strains including multi-drug resistant strains (MDR's). MIC and MBC/MFC were depicted least in PHAgNPs with maximum bactericidal/fungicidal effects. MTT assay displayed a significant antiproliferative potential of PHAgNPs against HCCLM3, MCF-7, MDA-MB 231, and HEPG2 cancer cell lines, where least IC50 values were recorded against HEPG2 (12.97 ± 0.04 μg/mL) and MCF-7 (5.73 ± 0.22 μg/mL). Furthermore, PHAgNPs considerably (p > 0.001) prevented the migration of MCF-7 cancer cells in vitro whereas in in vivo wound healing assay, faster skin regeneration, and epithelization in wound biopsies was observed via histological analysis. PHAgNPs treated group rats significantly increased (p < 0.05) the wound contraction rate, hydroxyproline content and hemostatic potential compared to control and PHA-treated groups.
Collapse
Affiliation(s)
- Saima Ali
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Raees Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
25
|
Husain S, Verma SK, Yasin D, Hemlata, A Rizvi MM, Fatma T. Facile green bio-fabricated silver nanoparticles from Microchaete infer dose-dependent antioxidant and anti-proliferative activity to mediate cellular apoptosis. Bioorg Chem 2020; 107:104535. [PMID: 33341280 DOI: 10.1016/j.bioorg.2020.104535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022]
Abstract
With the rapid development of nanotechnology, much has been anticipated with silver nanoparticles (AgNPs) due to their extensive industrial and commercial applications. However, it has raised concerns over environmental safety and human health effects. In this study, AgNPs were bio-fabricated using aqueous extract of Microchaete and their medical applications like antioxidant, anti-proliferative, and apoptosis were done. The biosynthesis of AgNPs was continuously followed by UV-vis spectrophotometric analysis. The physiochemical properties like shape, size, crystallinity, and polydispersity of the nanoparticles were determined by Scanning Electron Microscopy (SEM) along with EDX, Transmission Electron Microscope (TEM), Atomic Force Microscope (AFM), dynamic light scattering (DLS), and X-Ray Diffraction (XRD). Biosynthesized 7.0 nm sized AgNPs with the crystalline structure (crystalline size 4.8 nm) having a hydrodynamic diameter of 38.74 ± 2.6 nm was achieved due to the involvement of reducing agents present in the cyanobacterial extract. The IC50 values of the AgNPs were evaluated as 75 µg/ml and 79.41 µg/ml with HepG2 and MCF-7 cell lines. Different in-vitro cellular assays investigated in the present study exhibited antioxidant, anti-proliferative, and apoptotic activities. Probably delayed apoptosis in HepG2 and MCF-7 is due to better antioxidant activities of Microchaete based AgNPs.
Collapse
Affiliation(s)
- Shaheen Husain
- Cyanobacterial Biotechnology Lab, Jamia Millia Islamia University, New Delhi 110025, India.
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Durdana Yasin
- Cyanobacterial Biotechnology Lab, Jamia Millia Islamia University, New Delhi 110025, India
| | - Hemlata
- Cyanobacterial Biotechnology Lab, Jamia Millia Islamia University, New Delhi 110025, India
| | - M Moshahid A Rizvi
- Department of Biosciences, Jamia Millia Islmia, New Delhi 110025, India.
| | - Tasneem Fatma
- Cyanobacterial Biotechnology Lab, Jamia Millia Islamia University, New Delhi 110025, India.
| |
Collapse
|
26
|
Tailor G, Yadav B, Chaudhary J, Joshi M, Suvalka C. Green synthesis of silver nanoparticles using Ocimum canum and their anti-bacterial activity. Biochem Biophys Rep 2020; 24:100848. [PMID: 33305022 PMCID: PMC7718455 DOI: 10.1016/j.bbrep.2020.100848] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/20/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Green synthesis of nanoparticles is an important area in the field of nanotechnology, which has cost effective and environment friendly benefit over physical and chemical methods. The present study aims at preparation of silver nanoparticles through green route using leaves of Ocimum canum Sims, a widely distributed medicinal herb. The synthesized silver nanoparticles were characterized by SEM and XRD. The spherical and rod like morphological shapes were proven by SEM techniques. Crystallographic structure was confirmed by XRD and average particle size of synthesized silver nanoparticles was calculated which was found to be of 15.72 nm. The antibacterial activity of these prepared silver nanoparticles against pathogenic bacterium Escherichia coli (E. coli) has shown the highest ZOI of 2.45 cm at 30 ppm. Synthesis of Silver nanoparticles by green and ecofriendly methods. Structural studies of silver nanoparticles. Morphological study of the silver nanoparticles. Αaverage particle size also determined by Scherrer formula. Determination of the antimicrobial activity of the synthesize nanoparticles.
Collapse
Affiliation(s)
- Giriraj Tailor
- Department of Chemistry, Mewar University, Gangrar, Chittorgarh, Rajasthan, 312901, India
- Corresponding author.
| | - B.L. Yadav
- Department of Life Science, Mewar University, Gangrar, Chittorgarh, Rajasthan, 312901, India
| | - Jyoti Chaudhary
- Department of Chemistry, M.L.S University, Udaipur, Rajasthan, 313001, India
| | - Manoj Joshi
- Department of Zoology, M.L.S. University, Udaipur, Rajasthan, 313001, India
| | - Chetana Suvalka
- Department of Zoology, M.L.S. University, Udaipur, Rajasthan, 313001, India
| |
Collapse
|
27
|
Hamida RS, Albasher G, Bin-Meferij MM. Oxidative Stress and Apoptotic Responses Elicited by Nostoc-Synthesized Silver Nanoparticles against Different Cancer Cell Lines. Cancers (Basel) 2020; 12:E2099. [PMID: 32731591 PMCID: PMC7464693 DOI: 10.3390/cancers12082099] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Green nanoparticles represent a revolution in bionanotechnology, providing opportunities to fight life-threatening diseases, such as cancer, with less risk to the environment and to human health. Here, for the first time, we systematically investigated the anticancer activity and possible mechanism of novel silver nanoparticles (N-SNPs) synthesized by Nostoc Bahar M against the MCF-7 breast cancer cells, HCT-116 colorectal adenocarcinoma cells, and HepG2 liver cancer cells, using cell viability assays, morphological characterization with inverted light and transmission electron microscopy, antioxidants and enzymes (glutathione peroxidase (GPx), glutathione (GSH), adenosine triphosphatase (ATPase), and lactate dehydrogenase (LDH)), and western blotting (protein kinase B (Akt), phosphorylated-Akt (p-Akt), mammalian target of rapamycin (mTOR), B-cell lymphoma 2 (Bcl-2), tumor suppressor (p53), and caspase 3). N-SNPs decreased the viability of MCF-7, HCT-116, and HepG2 cells, with half-maximal inhibitory concentrations of 54, 56, and 80 µg/mL, respectively. They also significantly increased LDH leakage, enhanced oxidative stress via effects on antioxidative markers, and caused metabolic stress by significantly decreasing ATPase levels. N-SNPs caused extensive ultrastructural alterations in cell and nuclear structures, as well as in various organelles. Furthermore, N-SNPs triggered apoptosis via the activation of caspase 3 and p53, and suppressed the mTOR signaling pathway via downregulating apoptosis-evading proteins in MCF-7, HCT-116, and HepG2 cells. Ultrastructural analysis, together with biochemical and molecular analyses, revealed that N-SNPs enhanced apoptosis via the induction of oxidative stress and/or through direct interactions with cellular structures in all tested cells. The cytotoxicity of Nostoc-mediated SNPs represents a new strategy for cancer treatment via targeting various cell death pathways. However, the potential of N-SNPs to be usable and biocompatible anticancer drug will depend on their toxicity against normal cells.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21500, Egypt
| | - Gadah Albasher
- Zoology Department, College of Science, King Saud University, Riyadh 11543, Saudi Arabia;
| | - Mashael Mohammed Bin-Meferij
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11543, Saudi Arabia
| |
Collapse
|
28
|
Ratan ZA, Haidere MF, Nurunnabi M, Shahriar SM, Ahammad AS, Shim YY, Reaney MJ, Cho JY. Green Chemistry Synthesis of Silver Nanoparticles and Their Potential Anticancer Effects. Cancers (Basel) 2020; 12:E855. [PMID: 32244822 PMCID: PMC7226404 DOI: 10.3390/cancers12040855] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/25/2022] Open
Abstract
Nanobiotechnology has grown rapidly and become an integral part of modern disease diagnosis and treatment. Biosynthesized silver nanoparticles (AgNPs) are a class of eco-friendly, cost-effective and biocompatible agents that have attracted attention for their possible biomedical and bioengineering applications. Like many other inorganic and organic nanoparticles, such as AuNPs, iron oxide and quantum dots, AgNPs have also been widely studied as components of advanced anticancer agents in order to better manage cancer in the clinic. AgNPs are typically produced by the action of reducing reagents on silver ions. In addition to numerous laboratory-based methods for reduction of silver ions, living organisms and natural products can be effective and superior source for synthesis of AgNPs precursors. Currently, plants, bacteria and fungi can afford biogenic AgNPs precursors with diverse geometries and surface properties. In this review, we summarized the recent progress and achievements in biogenic AgNPs synthesis and their potential uses as anticancer agents.
Collapse
Affiliation(s)
- Zubair Ahmed Ratan
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (Z.A.R.); (Y.Y.S.)
- Department of Biomedical Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh
| | - Mohammad Faisal Haidere
- Department of Public Health and Informatics, Bangabandhu Sheikh Mujib Medical University, Dhaka 1000, Bangladesh;
| | - Md. Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA;
| | - Sadi Md. Shahriar
- Department of Materials Science and Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh;
| | | | - Youn Young Shim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (Z.A.R.); (Y.Y.S.)
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Martin J.T. Reaney
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (Z.A.R.); (Y.Y.S.)
| |
Collapse
|
29
|
Biogenic synthesis of silver nanoparticles: Antibacterial and cytotoxic potential. Saudi J Biol Sci 2019; 27:1340-1351. [PMID: 32346344 PMCID: PMC7182996 DOI: 10.1016/j.sjbs.2019.12.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 11/22/2022] Open
Abstract
In green chemistry, the application of a biogenic material as a mediator in nanoparticles formation is an innovative nanotechnology. Our current investigation aimed at testing the cytotoxic potential and antimicrobial ability of silver nanoparticles (AgNPs) that were prepared using Calligonum comosum roots and Azadirachta indica leaf extracts as stabilizing and reducing agents. An agar well diffusion technique was employed to detect synthesized AgNPs antibacterial ability on Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus bacterial strains. Furthermore, their cytotoxic capability against LoVo, MDA-MB231 and HepG2 ca cells was investigated. For phyto-chemical detection in the biogenic AgNPs the Fourier-transform infrared spectroscopy (FT-IR) was considered. Zeta sizer, TEM (Transmission Electron Microscope) and FE-SEM (Field Emission Scanning Electron Microscope) were used to detect biogenic AgNPs' size and morphology. The current results showed the capability of tested plant extract for conversion of Ag ions to AgNPs with a mean size ranging between 90.8 ± 0.8 and 183.2 ± 0.7 nm in diameter. Furthermore, prepared AgNPs exhibited apoptotic potential against HepG2, LoVo, and MDA-MB 231cell with IC50 ranging between 10.9 and 21.4 μg/ml and antibacterial ability in the range of 16.0 ± 0.1 to 22.0 ± 1.8 mm diameter. Activation of caspases in AgNPs treated cells could be the main indicator for their positive effect causing apoptosis. The current investigation suggested that the green production of AgNPs could be a suitable substitute to large-scale production of AgNPs, since stable and active nanoparticles could be obtained.
Collapse
|
30
|
Alsamhary K, Al-Enazi N, Alshehri WA, Ameen F. Gold nanoparticles synthesised by flavonoid tricetin as a potential antibacterial nanomedicine to treat respiratory infections causing opportunistic bacterial pathogens. Microb Pathog 2019; 139:103928. [PMID: 31843547 DOI: 10.1016/j.micpath.2019.103928] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022]
Abstract
In this study, flavonoid tricetin was used as a reducing and capping agent for the synthesis of gold nanoparticles (AuNPs). Further, the antibacterial efficacy of the synthesised AuNPs was evaluated against the opportunistic bacterial pathogens that cause respiratory infections. The optimum levels for the synthesis of AuNPs were found to be pH 8, temperature 30 °C, tricetin 125 μM and chloroauric acid 250 μM. The tricetin synthesised AuNPs exhibited in spherical shape with an average size of 12 nm. FT-IR results confirmed that the hydroxyl (OH) and carbonyl (CO) groups of tricetin were mainly participated in the synthesis of AuNPs. The opportunistic bacterial pathogens isolated from immunocompromised patients suffering with different respiratory infections were identified as Staphylococcus aureus, Enterobacter xiangfangensis, Bacillus licheniformis, Escherichia fergusonii, Acinetobacter pittii, Pseudomonas aeruginosa, Aeromonas enteropelogenes and Proteus mirabilis. The antibacterial studies confirmed the broad-spectrum antibacterial activity of AuNPs against the tested Gram-positive and Gram-negative bacteria. The synthesised AuNPs showed high biocompatibility on primary normal human dermal fibroblast (NHDF-c) cells up to 50 μM mL-1. Best of our knowledge, this is the first report on the synthesis of AuNPs using tricetin, which may be a potential antibacterial nanomedicine to treat bacterial infections.
Collapse
Affiliation(s)
- Khawla Alsamhary
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia.
| | - Nouf Al-Enazi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Wafa A Alshehri
- University of Jeddah, College of Science, Department of Biology, Jeddah, Saudi Arabia
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
31
|
Vijayan R, Joseph S, Mathew B. Eco-friendly synthesis of silver and gold nanoparticles with enhanced antimicrobial, antioxidant, and catalytic activities. IET Nanobiotechnol 2018; 12:850-856. [PMID: 30104462 PMCID: PMC8676156 DOI: 10.1049/iet-nbt.2017.0311] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/09/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022] Open
Abstract
The present work is emphasised on the bio-fabrication of silver and gold nanoparticles in a single step by a microwave-assisted method using the leaf extract of Synedrella nodiflora as both reducing and stabilising agent. The synthesised nanoparticles are highly stable and show surface plasmon resonance peak at 413 and 535 nm, respectively, for silver and gold nanoparticles in UV-Vis spectrum. The functional group responsible for the reduction of metal ions were obtained from Fourier transform infrared spectroscopy. The crystalline nature of nanoparticles with face-centred cubic geometry was confirmed by the X-ray diffraction and selected area electron diffraction patterns. The morphology and sizes of the silver and gold nanoparticles were obtained from transmission electron microscopy images. The nanoparticles exhibit effective antimicrobial activities against various pathogenic strains. These antimicrobial properties were analysed by employing agar well diffusion method. The nanoparticles show significant antioxidant properties, and it was determined using 2, 2-diphenyl-1-picrylhydrazyl assay. The nanoparticles also show potent catalytic activity in the degradation of anthropogenic pollutant dyes Congo red and eosin Y by excess NaBH4. Thus, the current study demonstrates the potential use of S. nodiflora as a reducing and stabilising agent for the synthesis of silver and gold nanoparticles and their relevance in the field of biomedicine and catalysis.
Collapse
Affiliation(s)
- Remya Vijayan
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala, India
| | - Siby Joseph
- Department of Chemistry, St. George's College, Aruvithura, Kottayam 686122, Kerala, India
| | - Beena Mathew
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala, India.
| |
Collapse
|
32
|
Hanan NA, Chiu HI, Ramachandran MR, Tung WH, Mohamad Zain NN, Yahaya N, Lim V. Cytotoxicity of Plant-Mediated Synthesis of Metallic Nanoparticles: A Systematic Review. Int J Mol Sci 2018; 19:E1725. [PMID: 29891772 PMCID: PMC6032206 DOI: 10.3390/ijms19061725] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 01/11/2023] Open
Abstract
In the field of medicine, nanomaterials, especially those derived using the green method, offer promise as anti-cancer agents and drug carriers. However, the biosafety of metallic nanoparticles used as anti-cancer agents remains a concern. The goal of this systematic review was to compare the cytotoxicity of different plant-mediated syntheses of metallic nanoparticles based on their potency, therapeutic index, and cancer cell type susceptibility in the hopes of identifying the most promising anti-cancer agents. A literature search of electronic databases including Science Direct, PubMed, Springer Link, Google Scholar, and ResearchGate, was conducted to obtain research articles. Keywords such as biosynthesis, plant synthesis, plant-mediated, metallic nanoparticle, cytotoxicity, and anticancer were used in the literature search. All types of research materials that met the inclusion criteria were included in the study regardless of whether the results were positive, negative, or null. The therapeutic index was used as a safety measure for the studied compound of interest. Data from 76 selected articles were extracted and synthesised. Seventy-two studies reported that the cytotoxicity of plant-mediated synthesis of metallic nanoparticles was time and/or dose-dependent. Biosynthesised silver nanoparticles demonstrated higher cytotoxicity potency compared to gold nanoparticles synthesised by the same plants (Plumbago zeylanica, Commelina nudiflora, and Cassia auriculata) irrespective of the cancer cell type tested. This review also identified a correlation between the nanoparticle size and morphology with the potency of cytotoxicity. Cytotoxicity was found to be inversely proportional to nanoparticle size. The plant-mediated syntheses of metallic nanoparticles were predominantly spherical or quasi-spherical, with the median lethal dose of 1⁻20 µg/mL. Nanoparticles with other shapes (triangular, hexagonal, and rods) were less potent. Metallic nanoparticles synthesised by Abutilon inducum, Butea monosperma, Gossypium hirsutum, Indoneesiella echioides, and Melia azedarach were acceptably safe as anti-cancer agents, as they had a therapeutic index of >2.0 when tested on both cancer cells and normal human cells. Most plant-mediated syntheses of metallic nanoparticles were found to be cytotoxic, although some were non-cytotoxic. The results from this study suggest a focus on a selected list of potential anti-cancer agents for further investigations of their pharmacodynamic/toxicodynamic and pharmacokinetic/toxicokinetic actions with the goal of reducing the Global Burden of Diseases and the second leading cause of mortality.
Collapse
Affiliation(s)
- Nurul Akma Hanan
- Active Pharmaceutical Ingredient (API) Section, Centre of Product Registration, National Pharmaceutical Regulatory Agency (NPRA), Lot 36, Jalan Universiti, 46200 Petaling Jaya, Malaysia.
| | - Hock Ing Chiu
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Penang, Malaysia.
| | | | - Wai Hau Tung
- School of Pharmacy, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Malaysia.
| | - Nur Nadhirah Mohamad Zain
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Penang, Malaysia.
| | - Noorfatimah Yahaya
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Penang, Malaysia.
| | - Vuanghao Lim
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Penang, Malaysia.
| |
Collapse
|
33
|
Ameen F, AlYahya SA, Bakhrebah MA, Nassar MS, Aljuraifani A. Flavonoid dihydromyricetin-mediated silver nanoparticles as potential nanomedicine for biomedical treatment of infections caused by opportunistic fungal pathogens. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3409-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Johnson P, Krishnan V, Loganathan C, Govindhan K, Raji V, Sakayanathan P, Vijayan S, Sathishkumar P, Palvannan T. Rapid biosynthesis of Bauhinia variegata flower extract-mediated silver nanoparticles: an effective antioxidant scavenger and α-amylase inhibitor. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1488-1494. [DOI: 10.1080/21691401.2017.1374283] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Preethi Johnson
- Department of Biochemistry, Periyar University, Salem, India
| | | | | | | | - Vijayan Raji
- Department of Biochemistry, Periyar University, Salem, India
| | | | - Sudha Vijayan
- Department of Biochemistry, Periyar University, Salem, India
| | - Palanivel Sathishkumar
- Centre for Environmental Sustainability and Water Security (IPASA), Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | | |
Collapse
|
35
|
A purely green synthesis of silver nanoparticles using Carica papaya, Manihot esculenta, and Morinda citrifolia: synthesis and antibacterial evaluations. Bioprocess Biosyst Eng 2017; 40:1349-1361. [PMID: 28597212 DOI: 10.1007/s00449-017-1793-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/30/2017] [Indexed: 01/22/2023]
Abstract
Green procedure for synthesizing silver nanoparticles (AgNPs) is currently considered due to its economy and toxic-free effects. Several existing works on synthesizing AgNPs using leaves extract still involve the use of physical or mechanical treatment such as heating or stirring, which consume a lot of energy. To extend and explore the green extraction philosophy, we report here the synthesis and antibacterial evaluations of a purely green procedure to synthesize AgNPs using Carica papaya, Manihot esculenta, and Morinda citrifolia leaves extract without the aforementioned additional treatment. The produced AgNPs were characterized using the ultraviolet-visible spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and antibacterial investigations. For antibacterial tests, two bacteria namely Escherichia coli and Bacillus cereus were selected. The presently employed method has successfully produced spherical AgNPs having sizes ranging from 9 to 69 nm, with plasmonic characteristics ranging from 356 to 485 nm, and energy-dispersive X-ray peak at approximately 3 keV. In addition, the smallest particles can be produced when Manihot esculenta leaves extract was applied. Moreover, this study also confirmed that both the leaves and synthesized AgNPs exhibit the antibacterial capability, depending on their concentration and the bacteria type.
Collapse
|
36
|
Salunke BK, Sathiyamoorthi E, Tran TK, Kim BS. Phyto-synthesized silver nanoparticles for biological applications. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0036-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised silver nanoparticles using Coriandrum sativum leaf extract. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:69-76. [DOI: 10.1016/j.jphotobiol.2016.08.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/03/2016] [Indexed: 11/29/2022]
|
38
|
Gorbe M, Bhat R, Aznar E, Sancenón F, Marcos MD, Herraiz FJ, Prohens J, Venkataraman A, Martínez-Máñez R. Rapid Biosynthesis of Silver Nanoparticles Using Pepino (Solanum muricatum) Leaf Extract and Their Cytotoxicity on HeLa Cells. MATERIALS 2016; 9:ma9050325. [PMID: 28773448 PMCID: PMC5503040 DOI: 10.3390/ma9050325] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 11/16/2022]
Abstract
Within nanotechnology, gold and silver nanostructures have unique physical, chemical, and electronic properties [1,2], which make them suitable for a number of applications. Moreover, biosynthetic methods are considered to be a safer alternative to conventional physicochemical procedures for both the environmental and biomedical applications, due to their eco-friendly nature and the avoidance of toxic chemicals in the synthesis. For this reason, employing bio routes in the synthesis of functionalized silver nanoparticles (FAgNP) have gained importance recently in this field. In the present study, we report the rapid synthesis of FAgNP through the extract of pepino (Solanum muricatum) leaves and employing microwave oven irradiation. The core-shell globular morphology and characterization of the different shaped and sized FAgNP, with a core of 20-50 nm of diameter is established using the UV-Visible spectroscopy (UV-vis), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Zeta potential and dynamic light scanning (DLS) studies. Moreover, cytotoxic studies employing HeLa (human cervix carcinoma) cells were undertaken to understand FAgNP interactions with cells. HeLa cells showed significant dose dependent antiproliferative activity in the presence of FAgNP at relatively low concentrations. The calculated IC50 value was 37.5 µg/mL, similar to others obtained for FAgNPs against HeLa cells.
Collapse
Affiliation(s)
- Mónica Gorbe
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, Valencia 46022, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia 46022, Spain.
| | - Ravishankar Bhat
- Materials Chemistry Laboratory, Department of Chemistry, Gulbarga University, Gulbarga, Karnataka 585106, India.
- Biological Research Innovation Centre and Solutions LLP, Bengaluru, Karnataka 56004, India.
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, Valencia 46022, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia 46022, Spain.
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, Valencia 46022, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia 46022, Spain.
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain.
| | - M Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, Valencia 46022, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia 46022, Spain.
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain.
| | - F Javier Herraiz
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, Valencia 46022, Spain.
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, Valencia 46022, Spain.
| | - Abbaraju Venkataraman
- Materials Chemistry Laboratory, Department of Chemistry, Gulbarga University, Gulbarga, Karnataka 585106, India.
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, Valencia 46022, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia 46022, Spain.
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain.
| |
Collapse
|