1
|
Wang Y, Wang Y, Cui J, Wu C, Yu B, Wang L. Non-conventional yeasts: promising cell factories for organic acid bioproduction. Trends Biotechnol 2025:S0167-7799(24)00364-0. [PMID: 39799011 DOI: 10.1016/j.tibtech.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/15/2025]
Abstract
Microbial production of organic acids has been hindered by the poor acid tolerance of microorganisms and the high costs of waste salt reprocessing. The robustness of non-conventional microorganisms in an acidic environment makes it possible to produce organic acids at low pH and greatly simplifies downstream processing. In this review we discuss the environmental adaptability features of non-conventional yeasts, as well as the latest developments in genomic engineering strategies that have facilitated metabolic engineering of these strains. We also use selected examples of three-carbon (C3), C4, and C6 organic acids to illustrate the ongoing efforts and challenges of using non-conventional yeasts for organic acid production. This review provides theoretical guidance for the construction of highly robust organic acid producers.
Collapse
Affiliation(s)
- Yupeng Wang
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Wang
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiakai Cui
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Chenchen Wu
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Yu
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Limin Wang
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Xiao D, Driller M, Dielentheis‐Frenken M, Haala F, Kohl P, Stein K, Blank LM, Tiso T. Advances in Aureobasidium research: Paving the path to industrial utilization. Microb Biotechnol 2024; 17:e14535. [PMID: 39075758 PMCID: PMC11286673 DOI: 10.1111/1751-7915.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
We here explore the potential of the fungal genus Aureobasidium as a prototype for a microbial chassis for industrial biotechnology in the context of a developing circular bioeconomy. The study emphasizes the physiological advantages of Aureobasidium, including its polyextremotolerance, broad substrate spectrum, and diverse product range, making it a promising candidate for cost-effective and sustainable industrial processes. In the second part, recent advances in genetic tool development, as well as approaches for up-scaled fermentation, are described. This review adds to the growing body of scientific literature on this remarkable fungus and reveals its potential for future use in the biotechnological industry.
Collapse
Affiliation(s)
- Difan Xiao
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Marielle Driller
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Marie Dielentheis‐Frenken
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Frederick Haala
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Philipp Kohl
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Karla Stein
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Lars M. Blank
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Till Tiso
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
3
|
Jia SL, Zhang M, Liu GL, Chi ZM, Chi Z. Novel chromosomes and genomes provide new insights into evolution and adaptation of the whole genome duplicated yeast-like fungus TN3-1 isolated from natural honey. Funct Integr Genomics 2023; 23:206. [PMID: 37335429 DOI: 10.1007/s10142-023-01127-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Aureobasidium melanogenum TN3-1 strain and A. melanogenum P16 strain were isolated from the natural honey and the mangrove ecosystem, respectively. The former can produce much higher pullulan from high concentration of glucose than the latter. In order to know what happened to their genomes, the PacBio sequencing and Hi-C technologies were used to create the first high-quality chromosome-level reference genome assembly of A. melanogenum TN3-1 (51.61 Mb) and A. melanogenum P16 (25.82 Mb) with the contig N50 of 2.19 Mb and 2.26 Mb, respectively. Based on the Hi-C results, a total of 93.33% contigs in the TN3-1 strain and 92.31% contigs in the P16 strain were anchored onto 24 and 12 haploid chromosomes, respectively. The genomes of the TN3-1 strain had two subgenomes A and B. Synteny analysis showed that the genomic contents of the two subgenomes were asymmetric with many structural variations. Intriguingly, the TN3-1 strain was revealed as a recent hybrid/fusion between the ancestor of A. melanogenum CBS105.22/CBS110374 and the ancestor of another unidentified strain of A. melanogenum similar to P16 strain. We estimated that the two ancient progenitors diverged around 18.38 Mya and merged around 10.66-9.98 Mya. It was found that in the TN3-1 strain, telomeres of each chromosome contained high level of long interspersed nuclear elements (LINEs), but had low level of the telomerase encoding gene. Meanwhile, there were high level of transposable elements (TEs) inserted in the chromosomes of the TN3-1 strain. In addition, the positively selected genes of the TN3-1 strain were mainly enriched in the metabolic processes related to harsh environmental adaptability. Most of the stress-related genes were found to be related to the adjacent LTRs, and the glucose derepression was caused by the mutation of the Glc7-2 in the Snf-Mig1 system. All of these could contribute to its genetic instability, genome evolution, high stress resistance, and high pullulan production from glucose.
Collapse
Affiliation(s)
- Shu-Lei Jia
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Mei Zhang
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| |
Collapse
|
4
|
Recent advances and perspectives on production of value-added organic acids through metabolic engineering. Biotechnol Adv 2023; 62:108076. [PMID: 36509246 DOI: 10.1016/j.biotechadv.2022.108076] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Organic acids are important consumable materials with a wide range of applications in the food, biopolymer and chemical industries. The global consumer organic acids market is estimated to increase to $36.86 billion by 2026. Conventionally, organic acids are produced from the chemical catalysis process with petrochemicals as raw materials, which posts severe environmental concerns and conflicts with our sustainable development goals. Most of the commonly used organic acids can be produced from various organisms. As a state-of-the-art technology, large-scale fermentative production of important organic acids with genetically-modified microbes has become an alternative to the chemical route to meet the market demand. Despite the fact that bio-based organic acid production from renewable cheap feedstock provides a viable solution, low productivity has impeded their industrial-scale application. With our deeper understanding of strain genetics, physiology and the availability of strain engineering tools, new technologies including synthetic biology, various metabolic engineering strategies, omics-based system biology tools, and high throughput screening methods are gradually established to bridge our knowledge gap. And they were further applied to modify the cellular reaction networks of potential microbial hosts and improve the strain performance, which facilitated the commercialization of consumable organic acids. Here we present the recent advances of metabolic engineering strategies to improve the production of important organic acids including fumaric acid, citric acid, itaconic acid, adipic acid, muconic acid, and we also discuss the current challenges and future perspectives on how we can develop a cost-efficient, green and sustainable process to produce these important chemicals from low-cost feedstocks.
Collapse
|
5
|
The ornithine-urea cycle involves fumaric acid biosynthesis in Aureobasidium pullulans var. aubasidani, a green and eco-friendly process for fumaric acid production. Synth Syst Biotechnol 2022; 8:33-45. [DOI: 10.1016/j.synbio.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
|
6
|
Liu Z, Tian J, Miao Z, Liang W, Wang G. Metabolome and Transcriptome Profiling Reveal Carbon Metabolic Flux Changes in Yarrowia lipolytica Cells to Rapamycin. J Fungi (Basel) 2022; 8:jof8090939. [PMID: 36135664 PMCID: PMC9504542 DOI: 10.3390/jof8090939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/04/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022] Open
Abstract
Yarrowia lipolytica is an oleaginous yeast for the production of oleochemicals and biofuels. Nitrogen deficiency is beneficial to lipids biosynthesis in Y. lipolytica. Target of rapamycin (TOR) regulates the utilization of nutrients, which is inhibited in nitrogen starvation or by rapamycin treatment. However, under nitrogen-rich conditions, the lipids biosynthesis in Y. lipolytica after inhibition of TOR by rapamycin is elusive. Combining metabolomics and transcriptomics analysis, we found that rapamycin altered multiple metabolic processes of Y. lipolytica grown in nitrogen-rich medium, especially the metabolisms of amino acids and lipids. A total of 176 differentially accumulated metabolites were identified after rapamycin treatment. Rapamycin increased the levels of tryptophan, isoleucine, proline, serine, glutamine, histidine, lysine, arginine and glutamic acid, and decreased the levels of threonine, tyrosine and aspartic acid. Two fatty acids in lipid droplets, stearic acid (down-regulated) and stearidonic acid (up-regulated), were identified. The expression of 2224 genes changed significantly after rapamycin treatment. Further analysis revealed that rapamycin reduced carbon flux through lipids biosynthesis, accompanied by increased carbon flux through fatty acids degradation and amino acid (especially glutamic acid, glutamine, proline and arginine) biosynthesis. The dataset provided here is valuable for understanding the molecular mechanisms of amino acid and lipids metabolisms in oleaginous yeast.
Collapse
Affiliation(s)
- Ziyu Liu
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Junjie Tian
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhengang Miao
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxing Liang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Guangyuan Wang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence:
| |
Collapse
|
7
|
Liu Z, Tian J, Yan H, Li D, Wang X, Liang W, Wang G. Ethyl acetate produced by Hanseniaspora uvarum is a potential biocontrol agent against tomato fruit rot caused by Phytophthora nicotianae. Front Microbiol 2022; 13:978920. [PMID: 36033900 PMCID: PMC9399722 DOI: 10.3389/fmicb.2022.978920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022] Open
Abstract
In this study, an oomycete strain FQ01 of Phytophthora nicotianae, which could cause destructive postharvest disease, was isolated. At present, chemical fungicides are the main reagents used for controlling Phytophthora diseases. It is necessary to find new control techniques that are environmentally friendly. The biocontrol activity of Hanseniaspora uvarum MP1861 against P. nicotianae FQ01 was therefore investigated. Our results revealed that the volatile organic compounds (VOCs) released by the yeast strain MP1861 could inhibit the development of P. nicotianae FQ01. The major component of the VOCs produced by the yeast strain MP1861 was identified to be ethyl acetate (70.8%). Biocontrol experiments showed that Phytophthora disease in tomato fruit could be reduced by 95.8% after the yeast VOCs treatment. Furthermore, ethyl acetate inhibited the mycelial growth of the oomycete strain FQ01, and damaged the pathogen cell membrane. This paper describes the pioneering utilization of the yeast strain MP1861 for biocontrol of postharvest fruit rot in tomato caused by P. nicotianae.
Collapse
Affiliation(s)
- Ziyu Liu
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Junjie Tian
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hao Yan
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Delong Li
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xue Wang
- Yantai Agricultural Technology Extension Center, Yantai, China
| | - Wenxing Liang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Guangyuan Wang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Guangyuan Wang
| |
Collapse
|
8
|
Metabolic engineering of Aureobasidium melanogenum for the overproduction of putrescine by improved L-ornithine biosynthesis. Microbiol Res 2022; 260:127041. [PMID: 35483312 DOI: 10.1016/j.micres.2022.127041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/12/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022]
Abstract
Aureobasidium melanogenum HN6.2 is a high siderophore-producing yeast-like fungal strain. After blocking siderophore biosynthesis and attenuating the expression of the ornithine carbamoyltransferase gene (the OTC gene), the obtained D-LCFAO-cre strain produced 2.1 ± 0.02 mg of intracellular L-ornithine per mg of the protein. The overexpression of the L-ornithine decarboxylase gene (the SPE1-S gene) from Saccharomyces cerevisiae in the mutant D-LCFAO-cre could make the transformant E-SPE1-S synthesize 3.6 ± 0.1 of intracellular ornithine per mg of protein and produce 10.5 g/L of putrescine. The further overexpression of the ArgB/C gene encoding bifunctional acetylglutamate kinase/N-acetyl-gamma-glutamyl-phosphate reductase in the transformant E-SPE1-S caused the transformant E-SPE1-S-ArgB/C to accumulate L-ornithine (4.2 mg/mg protein) and to produce 21.3 g/L of putrescine. During fed-batch fermentation, the transformant E-SPE1-S-ArgB/C could produce 33.4 g/L of putrescine, the yield was 0.96 g/g of glucose, and the productivity was 0.28 g/L/h. The putrescine titer was much higher than that produced by most engineered strains obtained thus far.
Collapse
|
9
|
The signaling pathways involved in metabolic regulation and stress responses of the yeast-like fungi Aureobasidium spp. Biotechnol Adv 2021; 55:107898. [PMID: 34974157 DOI: 10.1016/j.biotechadv.2021.107898] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/22/2022]
Abstract
Aureobasidium spp. can use a wide range of substrates and are widely distributed in different environments, suggesting that they can sense and response to various extracellular signals and be adapted to different environments. It is true that their pullulan, lipid and liamocin biosynthesis and cell growth are regulated by the cAMP-PKA signaling pathway; Polymalate (PMA) and pullulan biosynthesis is controlled by the Ca2+ and TORC1 signaling pathways; the HOG1 signaling pathway determines high osmotic tolerance and high pullulan and liamocin biosynthesis; the Snf1/Mig1 pathway controls glucose repression on pullulan and liamocin biosynthesis; DHN-melanin biosynthesis and stress resistance are regulated by the CWI signaling pathway and TORC1 signaling pathway. In addition, the HSF1 pathway may control cell growth of some novel strains of A. melanogenum at 37 °C. However, the detailed molecular mechanisms of high temperature growth and thermotolerance of some novel strains of A. melanogenum and glucose derepression in A. melanogenum TN3-1 are still unclear.
Collapse
|
10
|
Wang ZP, Zhang XY, Ma Y, Ye JR, Jiang J, Wang HY, Chen W. Whole conversion of agro-industrial wastes rich in galactose-based carbohydrates into lipid using oleaginous yeast Aureobasidium namibiae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:181. [PMID: 34526122 PMCID: PMC8442318 DOI: 10.1186/s13068-021-02031-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Raw materials composed of easily assimilated monosaccharides have been employed as carbon source for production of microbial lipids. Nevertheless, agro-industrial wastes rich in galactose-based carbohydrates have not been introduced as feedstocks for oleaginous yeasts. RESULTS In this study, Aureobasidium namibiae A12 was found to efficiently accumulate lipid from soy molasses and whey powder containing galactose-based carbohydrates, with lipid productions of 5.30 g/L and 5.23 g/L, respectively. Over 80% of the fatty acids was C16:0, C18:0, C18:1, and C18:2. All kinds of single sugar components in the two byproducts were readily converted into lipids, with yields ranging between 0.116 g/g and 0.138 g/g. Three α-galactosidases and five β-galactosidases in the strain were cloned and analyzed. Changes of transcriptional levels indicated GalB and GalC were key α-galactosidases, and GalG was key β-galactosidase. In 10 L fermentor, lipid production from SM and WP achieved 6.45 g/L and 6.13 g/L, respectively. β-galactosidase was responsible for lactose hydrolysis; sucrase and α-galactosidase both contributed to the efficient hydrolysis of raffinose and stachyose in a cooperation manner. CONCLUSIONS This is a new way to produce lipids from raw materials containing galactose-based carbohydrates. This finding revealed the significance of sucrase in the direct hydrolysis of galactose-based carbohydrates in raw materials for the first time and facilitated the understanding of the efficient utilization of galactose-based carbohydrates to manufacture lipid or other chemicals in bioprocess.
Collapse
Affiliation(s)
- Zhi-Peng Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China.
| | - Xin-Yue Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Yan Ma
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Jing-Run Ye
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Jing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Hai-Ying Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Wei Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China.
| |
Collapse
|
11
|
Yang G, Liu GL, Wang SJ, Chi ZM, Chi Z. Pullulan biosynthesis in yeast-like fungal cells is regulated by the transcriptional activator Msn2 and cAMP-PKA signaling pathway. Int J Biol Macromol 2020; 157:591-603. [PMID: 32339573 DOI: 10.1016/j.ijbiomac.2020.04.174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/15/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
Abstract
Pullulan is an important polysaccharide. Although its synthetic pathway in Aureobasidium melanogenum has been elucidated, the mechanism underlying its biosynthesis as regulated by signaling pathway and transcriptional regulator is still unknown. In this study, it was found that the expression of the UGP1 gene encoding UDPG-pyrophosphorylase (Ugp1) and other genes which were involved in pullulan biosynthesis was controlled by the transcriptional activator Msn2 in the nuclei of yeast-like fungal cells. The Ugp1 was a rate-limiting enzyme for pullulan biosynthesis. In addition, the activity and subcellular localization of the Msn2 were regulated only by the cAMP-PKA signaling pathway. When the cAMP-PKA activity was low, the Msn2 was localized in the nuclei, the UGP1 gene was highly expressed, and pullulan was actively synthesized. By contrast, when the cAMP-PKA activity was high, the Msn2 was localized in the cytoplasm and the UGP1 gene expression was disabled so that pullulan was stopped, but lipid biosynthesis was actively enhanced. This study was the first to report that pullulan and lipid biosynthesis in yeast-like fungal cells were regulated by the Msn2 and cAMP-PKA signaling pathway. Elucidating the regulation mechanisms was important to understand their functions and enhance pullulan and lipid biosynthesis.
Collapse
Affiliation(s)
- Guang Yang
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| | - Shu-Jun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhen-Ming Chi
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China.
| | - Zhe Chi
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| |
Collapse
|
12
|
Sasaki Y, Eng T, Herbert RA, Trinh J, Chen Y, Rodriguez A, Gladden J, Simmons BA, Petzold CJ, Mukhopadhyay A. Engineering Corynebacterium glutamicum to produce the biogasoline isopentenol from plant biomass hydrolysates. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:41. [PMID: 30858878 PMCID: PMC6391826 DOI: 10.1186/s13068-019-1381-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/18/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Many microbes used for the rapid discovery and development of metabolic pathways have sensitivities to final products and process reagents. Isopentenol (3-methyl-3-buten-1-ol), a biogasoline candidate, has an established heterologous gene pathway but is toxic to several microbial hosts. Reagents used in the pretreatment of plant biomass, such as ionic liquids, also inhibit growth of many host strains. We explored the use of Corynebacterium glutamicum as an alternative host to address these constraints. RESULTS We found C. glutamicum ATCC 13032 to be tolerant to both the final product, isopentenol, as well to three classes of ionic liquids. A heterologous mevalonate-based isopentenol pathway was engineered in C. glutamicum. Targeted proteomics for the heterologous pathway proteins indicated that the 3-hydroxy-3-methylglutaryl-coenzyme A reductase protein, HmgR, is a potential rate-limiting enzyme in this synthetic pathway. Isopentenol titers were improved from undetectable to 1.25 g/L by combining three approaches: media optimization; substitution of an NADH-dependent HmgR homolog from Silicibacter pomeroyi; and development of a C. glutamicum ∆poxB ∆ldhA host chassis. CONCLUSIONS We describe the successful expression of a heterologous mevalonate-based pathway in the Gram-positive industrial microorganism, C. glutamicum, for the production of the biogasoline candidate, isopentenol. We identified critical genetic factors to harness the isopentenol pathway in C. glutamicum. Further media and cultivation optimization enabled isopentenol production from sorghum biomass hydrolysates.
Collapse
Affiliation(s)
- Yusuke Sasaki
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Sakyo-ku, Kyoto, Japan
- Japan Society for the Promotion of Science, Sakyo-ku, Kyoto, Japan
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Thomas Eng
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Robin A. Herbert
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Jessica Trinh
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Alberto Rodriguez
- Joint BioEnergy Institute, Emeryville, CA USA
- Biomass Science and Conversion Technology Department, Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94550 USA
| | - John Gladden
- Joint BioEnergy Institute, Emeryville, CA USA
- Biomass Science and Conversion Technology Department, Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94550 USA
| | - Blake A. Simmons
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Christopher J. Petzold
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| |
Collapse
|