1
|
Venturi V, Presini F, Trapella C, Bortolini O, Giovannini PP, Lerin LA. Microwave-assisted enzymatic synthesis of geraniol esters in solvent-free systems: optimization of the reaction parameters, purification and characterization of the products, and biocatalyst reuse. Mol Divers 2024; 28:1665-1679. [PMID: 37368203 PMCID: PMC11269508 DOI: 10.1007/s11030-023-10682-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023]
Abstract
Various geraniol esters act as insect pheromones and display pharmacological activities, especially as neuroprotective agents. Therefore, the search for synthetic strategies alternative to traditional chemical synthesis could help designing ecofriendly routes for the preparation of such bioactive compounds. Hence, this work aims at the microwave-assisted enzymatic synthesis of geranyl esters in solvent-free systems. The process variables were optimized for the synthesis of geranyl acetoacetate, achieving 85% conversion after 60 min using a 1:5 substrates molar ratio (ester to geraniol), 80 °C and 8.4% of Lipozyme 435 lipase without removal of the co-produced methanol. On the other hand, a 95% conversion was reached after 30 min using 1:6 substrates molar ratio, 70 °C and 7% lipase in the presence of 5Å molecular sieves for the methanol capture. In addition, the lipase showed good reusability, maintaining the same activity for five reaction cycles. Finally, under the above optimized conditions, other geraniol esters were successfully synthetized such as the geranyl butyrate (98%), geranyl hexanoate (99%), geranyl octanoate (98%), and geranyl (R)-3-hydroxybutyrate (56%). These results demonstrate the microwave-assisted lipase-catalyzed transesterification in a solvent-free system as an excellent and sustainable catalytic methodology to produce geraniol esters.
Collapse
Affiliation(s)
- Valentina Venturi
- Department of Environment and Prevention Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy
| | - Francesco Presini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy
| | - Claudio Trapella
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy
| | - Olga Bortolini
- Department of Environment and Prevention Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy
| | - Pier Paolo Giovannini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy
| | - Lindomar Alberto Lerin
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy.
| |
Collapse
|
2
|
Sabi GJ, Gama RS, Fernandez-Lafuente R, Cancino-Bernardi J, Mendes AA. Decyl esters production from soybean-based oils catalyzed by lipase immobilized on differently functionalized rice husk silica and their characterization as potential biolubricants. Enzyme Microb Technol 2022; 157:110019. [PMID: 35219176 DOI: 10.1016/j.enzmictec.2022.110019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/16/2022]
Abstract
This study aimed the enzymatic decyl esters production by hydroesterification, a two-step process consisting of hydrolysis of refined soybean (RSBO) or used soybean cooking (USCO) oils to produce free fatty acids (FFA) and further esterification of purified FFA. Using free lipase from Candida rugosa (CRL), about 98% hydrolyses for both oils have been observed after 180 min of reaction using a CRL loading of 50 U g-1 of reaction mixture, 40 °C, and a mechanical stirring of 1500 rpm. FFA esterification with decanol in solvent-free systems was performed using lipase from Thermomyces lanuginosus (TLL) immobilized by physical adsorption on silica particles extracted from rice husk, an agricultural waste. For such purpose, non-functionalized (SiO2) or functionalized rice husk silica bearing octyl (Octyl-SiO2) or phenyl (Phe-SiO2) groups have been used as immobilization supports. Protein amounts between 22 and 28 mg g-1 of support were observed. When used in the esterification, they enabled a FFA conversion of 81.3-87.6% after 90-300 min of reaction. Lipozyme TL IM, a commercial immobilized TLL, exhibited similar performance compared to TLL-Octyl-SiO2 (FFA conversion ≈90% after 90-120 min of reaction). However, high operational stability after fifteen successive esterification batches was observed only for TLL immobilized on Octyl-SiO2 (activity retention of ≈90% using both FFA sources). The produced decyl esters presented good characteristics as potential biolubricants according to standard methods (ASTM) and thermal analysis.
Collapse
Affiliation(s)
- Guilherme J Sabi
- Institute of Chemistry, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Rafaela S Gama
- Institute of Chemistry, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Juliana Cancino-Bernardi
- Institute of Chemistry, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil; Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP, Brazil
| | - Adriano A Mendes
- Institute of Chemistry, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil.
| |
Collapse
|
3
|
Simplified Method to Optimize Enzymatic Esters Syntheses in Solvent-Free Systems: Validation Using Literature and Experimental Data. Catalysts 2021. [DOI: 10.3390/catal11111357] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The adoption of biocatalysis in solvent-free systems is an alternative to establish a greener esters production. An interesting correlation between the acid:alcohol molar ratio and biocatalyst (immobilized lipase) loading in the optimization of ester syntheses in solvent-free systems had been observed and explored. A simple mathematical tool named Substrate-Enzyme Relation (SER) has been developed, indicating a range of reaction conditions that resulted in high conversions. Here, SER utility has been validated using data from the literature and experimental assays, totalizing 39 different examples of solvent-free enzymatic esterifications. We found a good correlation between the SER trends and reaction conditions that promoted high conversions on the syntheses of short, mid, or long-chain esters. Moreover, the predictions obtained with SER are coherent with thermodynamic and kinetics aspects of enzymatic esterification in solvent-free systems. SER is an easy-to-handle tool to predict the reaction behavior, allowing obtaining optimum reaction conditions with a reduced number of experiments, including the adoption of reduced biocatalysts loadings.
Collapse
|