1
|
Mai YH, Zhuang QG, Li QH, Du K, Wu DT, Li HB, Xia Y, Zhu F, Gan RY. Ultrasound-Assisted Extraction, Identification, and Quantification of Antioxidants from 'Jinfeng' Kiwifruit. Foods 2022; 11:827. [PMID: 35327254 PMCID: PMC8949384 DOI: 10.3390/foods11060827] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 12/17/2022] Open
Abstract
Kiwifruit (Actinidia chinensis) is a nutrient-dense fruit abundant in vitamin C and phenolic compounds, and it exhibits strong antioxidant capacity. However, the antioxidants in 'Jinfeng' kiwifruit have seldom been extracted and analyzed, and the conditions for the extraction of kiwifruit antioxidants by ultrasound-assisted extraction (UAE) have seldom been investigated. In this study, response surface methodology (RSM) was used to optimize UAE conditions to extract antioxidants from 'Jinfeng' kiwifruit. In addition, the antioxidant capacity, contents of total phenolics and total flavonoids, ascorbic acid, and the profiles of antioxidants were also analyzed. The results showed that the optimal UAE conditions included 68% ethanol, liquid/solid ratio at 20 mL/g, extraction time at 30 min, extraction temperature at 42 °C, and ultrasonic power at 420 W. Under these conditions, the ABTS value of kiwifruit was 70.38 ± 1.38 μM TE/g DW, which was 18.5% higher than that of the extract obtained by conventional solvent extraction. The total phenolic and flavonoid contents were 15.50 ± 0.08 mg GAE/g DW and 5.10 ± 0.09 mg CE/g DW, respectively. Moreover, 20 compounds were tentatively identified by UPLC-MS/MS, and the content of main compounds, such as procyanidin B2, neochlorogenic acid, and epicatechin, were determined by HPLC-DAD. This research revealed the profiles of antioxidant phytochemicals in 'Jinfeng' kiwifruit, which can be a good dietary source of natural antioxidants with potential health functions.
Collapse
Affiliation(s)
- Ying-Hui Mai
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610213, China; (Y.-H.M.); (Q.-H.L.); (K.D.)
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand;
| | - Qi-Guo Zhuang
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610213, China; (Y.-H.M.); (Q.-H.L.); (K.D.)
- Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610213, China
| | - Qiao-Hong Li
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610213, China; (Y.-H.M.); (Q.-H.L.); (K.D.)
- Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610213, China
| | - Kui Du
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610213, China; (Y.-H.M.); (Q.-H.L.); (K.D.)
- Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610213, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China;
| | - Yu Xia
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand;
| | - Ren-You Gan
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610213, China; (Y.-H.M.); (Q.-H.L.); (K.D.)
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610213, China
| |
Collapse
|
2
|
Chanukya B, Prakash M, Rastogi NK. Extraction of Citric Acid from Fruit Juices using Supported Liquid Membrane. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.12790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- B.S. Chanukya
- Departments of Food Engineering; Central Food Technological Research Institute; Mysore 570 020 India
- Academy of Scientific and Innovative Research; New Delhi India
- A Constituent Laboratory of Council of Scientific and Industrial Research; New Delhi India
| | - Maya Prakash
- Departments of Traditional Foods and Sensory Sciences; Central Food Technological Research Institute; Mysore 570 020 India
- A Constituent Laboratory of Council of Scientific and Industrial Research; New Delhi India
| | - Navin K. Rastogi
- Departments of Food Engineering; Central Food Technological Research Institute; Mysore 570 020 India
- Academy of Scientific and Innovative Research; New Delhi India
- A Constituent Laboratory of Council of Scientific and Industrial Research; New Delhi India
| |
Collapse
|
3
|
Randazzo W, Corona O, Guarcello R, Francesca N, Germanà MA, Erten H, Moschetti G, Settanni L. Development of new non-dairy beverages from Mediterranean fruit juices fermented with water kefir microorganisms. Food Microbiol 2016. [DOI: 10.1016/j.fm.2015.10.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
9
|
Bartolomé L, Lezamiz J, Etxebarria N, Zuloaga O, Jönsson JA. Determination of trace levels of dinitrophenolic compounds by microporous membrane liquid–liquid extraction in environmental water samples. J Sep Sci 2007; 30:2144-52. [PMID: 17657827 DOI: 10.1002/jssc.200600509] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A fast and simple hollow fibre-based microporous membrane liquid-liquid extraction (MMLLE) method is proposed for the determination of trace levels of dinitrophenolic compounds in water samples. The optimization step was performed using a three-variables Doehlert matrix design, involving the fibre length, the quantity of trioctylphosphine oxide (TOPO) in the acceptor phase and the extraction time. Using the established experimental conditions, some other parameters such as stirring speed, salt content, humic acids and different organic solvents as the acceptor phase were studied. Validation of the method included calibration experiments, linearity studies and determination of method LOD (MLD). The RSD was around 11% in all the experiments on different days at different concentrations. Separation and detection of four dinitrophenols were performed in 10 min with an RP-LC and a C(8 )column ACN-citric buffer gradient elution and diode array detection.
Collapse
Affiliation(s)
- Luis Bartolomé
- Department of Analytical Chemistry, University of the Basque Country, Bilbao, Spain.
| | | | | | | | | |
Collapse
|
10
|
Zhang Z, Buffle J, van Leeuwen HP. Roles of dynamic metal speciation and membrane permeability in metal flux through lipophilic membranes: general theory and experimental validation with nonlabile complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:5216-26. [PMID: 17391055 DOI: 10.1021/la063568f] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The study of the role of dynamic metal speciation in lipophilic membrane permeability in aqueous solution requires accurate interpretation of experimental data. To meet this goal, a general theory is derived for describing 1:1 metal complex flux, under steady-state and ligand excess conditions, through a permeation liquid membrane (PLM). The theory is applicable to fluxes through any lipophilic membrane. From this theory, fluxes in the three rate-limiting conditions for metal transport are readily derived, corresponding, namely, to (i) diffusion in the source solution, (ii) diffusion in the membrane, and (iii) the chemical kinetics of formation/dissociation of the metal complex in the interfacial reaction layer. The theory enables discussion of the reaction layer concept in a more general frame and also provides unambiguous criteria for the definition of an inert metal complex. The theoretical flux equations for fully labile complexes were validated in a previous paper. The general theory for semi- or nonlabile complexes is validated here by studying the flux of Pb(II) through PLMs in contact with solutions of Pb(II)-NTA and Pb(II)-TMDTA at different pHs and flow rates.
Collapse
Affiliation(s)
- Zeshi Zhang
- CABE, Department of Inorganic, Analytical and Applied Chemistry, University of Geneva, Sciences II, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
11
|
Fischer K, Bipp HP. Generation of organic acids and monosaccharides by hydrolytic and oxidative transformation of food processing residues. BIORESOURCE TECHNOLOGY 2005; 96:831-842. [PMID: 15607197 DOI: 10.1016/j.biortech.2004.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/06/2004] [Accepted: 07/08/2004] [Indexed: 05/24/2023]
Abstract
Carbohydrate-rich biomass residues, i.e. sugar beet molasses, whey powder, wine yeast, potato peel sludge, spent hops, malt dust and apple marc, were tested as starting materials for the generation of marketable chemicals, e.g. aliphatic acids, sugar acids and mono-/disaccharides. Residues were oxidized or hydrolyzed under acidic or alkaline conditions applying conventional laboratory digestion methods and microwave assisted techniques. Yields and compositions of the oxidation products differed according to the oxidizing agent used. Main products of oxidation by 30% HNO(3) were acetic, glucaric, oxalic and glycolic acids. Applying H(2)O(2)/CuO in alkaline solution, the organic acid yields were remarkably lower with formic, acetic and threonic acids as main products. Gluconic acid was formed instead of glucaric acid throughout. Reaction of a 10% H(2)O(2) solution with sugar beet molasses generated formic and lactic acids mainly. Na(2)S(2)O(8) solutions were very inefficient at oxidizing the residues. Glucose, arabinose and galactose were formed during acidic hydrolysis of malt dust and apple marc. The glucose content reached 0.35 g per gram of residue. Important advantages of the microwave application were lower reaction times and reduced reagent demands.
Collapse
Affiliation(s)
- Klaus Fischer
- Analytical and Ecological Chemistry Department, FB VI--Geography/Geosciences, University of Trier, Universitätsring 15, D-54286 Trier, Germany.
| | | |
Collapse
|
15
|
Abstract
Sample preparation techniques based on non-porous membrane extraction generally offer a high degree of selectivity and enrichment power, together with convenient possibilities for direct and automated connections to chromatographic and other analytical instruments. In this review principles and applications for techniques as supported liquid membrane extraction, microporous membrane liquid-liquid extraction, polymeric membrane extraction and membrane extraction with a sorbent interface are described and compared.
Collapse
Affiliation(s)
- J A Jönsson
- Department of Analytical Chemistry, Lund University, Sweden.
| | | |
Collapse
|