1
|
Lin Z, Ma L, Li B, Zhao S, Zhang B. The development of thickened fermented rice milk formulation for people with dysphagia: A view of multiple in vitro simulation methods. Food Res Int 2025; 201:115679. [PMID: 39849796 DOI: 10.1016/j.foodres.2025.115679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/25/2025]
Abstract
Based on the huge blank of thickened fluid staple food for people with dysphagia, multiple in vitro simulations were utilized to develop the thickened fermented rice milk. Here, the effect of amylase content, hydrolysis time and thickener content were considered. The rheological study and Cambridge throat evaluation revealed that hydrolysis could significantly reduce the viscosity and yield stress of fermented rice milk, accompanied by the decreased swallowing residue. The addition of thickeners increased the viscosity and cohesion of the fermented rice milk due to the entanglement network formation, which facilitated the formation of lubricating film, decreased the coefficient of friction, and improved the sensory score. Increasing thickener content from 0 % to 0.5 % induced the longer oral transition time (0.26 s to 0.45 s), more residue (0.85 g to 2.07 g) and shorter stretching length (850.42 mm to 313.62 mm) shown in the Cambridge throat simulation. Among them, the fermented rice milk with 0.40 % thickener showed the best sensory properties, and its swallowing properties evaluated by computer simulation also suggested concentrated frequency distribution of velocity, shear rate and viscosity without splashing or choking compared with the normal fermented rice milk, showing excellent swallowing safety.
Collapse
Affiliation(s)
- Zexue Lin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070 China; College of Food Science, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715 China
| | - Lingling Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070 China; College of Food Science, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715 China
| | - Bowen Li
- College of Food Science, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715 China
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070 China.
| | - Binjia Zhang
- College of Food Science, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715 China.
| |
Collapse
|
2
|
Lin Z, Liu S, Qiao D, Pi X, Zhang B. The possibility of the computer simulation-assisted IDDSI framework for the development of thickened brown rice paste. Food Chem 2025; 463:141473. [PMID: 39362099 DOI: 10.1016/j.foodchem.2024.141473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/14/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Increasing requests for thickened fluid food are demanded with population aging, while the limited information provided by the International Dysphagia Diet Standardisation Initiative (IDDSI) is insufficient for food development. Recently, the introduction of computer simulation seems to be able to overcome this dilemma. Here, a thickened fluid system (xanthan gum and konjac glucomannan, XG and KGM) at different ratios was kept at the same IDDSI level 3. An obvious synergy was observed in the ratio of 1:9 (XG: KGM) with high surface tension, zero-shear viscosity, firmness and cohesion, and thus was used to prepare the brown rice paste. From computer simulation, the brown rice pastes (0.3 % and 0.5 % thickener) splashed and that with higher thickener content resulted in more residue. The thickener content of 0.7 % provided enough viscosity and cohesion to avoid splash, and most of the bolus flowed consistently, showing the best sensory quality and swallowing properties.
Collapse
Affiliation(s)
- Zexue Lin
- College of Food Science, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuhan Liu
- College of Food Science, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongling Qiao
- College of Food Science, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
| | - Xiaowen Pi
- College of Food Science, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
| | - Binjia Zhang
- College of Food Science, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Charoensri P, Aspinall S, Liu F, Kijroongrojana K. Rheological, textural, and swallowing characteristics of xanthan gum-modified Riceberry porridge for patients with dysphagia. J Texture Stud 2024; 55:e12853. [PMID: 39148333 DOI: 10.1111/jtxs.12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/10/2024] [Accepted: 06/13/2024] [Indexed: 08/17/2024]
Abstract
The incidence and prevalence of dysphagia worldwide are increasing yearly requiring a change in food texture to avoid malnutrition, dehydration, or sever complications. Riceberry porridges fortified with protein hydrolysate (1.5%), bio-calcium (589 mg), and thickened with xanthan gum (XG) of varying concentrations (0%, 0.255, 0.50%, 0.75%, 1.0%, and 2.0%) showed suitability for use in enriching diets of these patients. Porridges were examined using specified tests from the International Dysphagia Diet Standardization Initiative (IDDSI) and National Dysphagia Diet (NDD), and coupled with rheological, textural analyses, in vitro swallowing simulator and sensory analysis performed by a trained panel. Porridges with 0%-0.25% and 0.50%-2.0% XG were classified as IDDSI level 3 and 4, respectively, and apparent viscosities of porridges showed samples with XG displayed shear thinning behavior beneficial for patients with dysphagia. Increasing XG concentrations increased the consistency coefficient and decreased the flow behavior index (p < .05) with positive correlation of XG concentration with textural properties including firmness, consistency, cohesiveness, adhesiveness, and stickiness values. The relationship between instrumental measurements, in vitro and in vivo swallowing behavior showed high correlations with regards to XG concentration (r = .995). The findings indicate Riceberry porridges containing XG have significantly improved textural properties over those without XG for patients with dysphagia.
Collapse
Affiliation(s)
- Pakanun Charoensri
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sam Aspinall
- Department of Clinical, Pharmaceutical & Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Fang Liu
- Department of Clinical, Pharmaceutical & Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Kongkarn Kijroongrojana
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
4
|
Li L, Zhou TQ, Wang YQ, Zhang Q, Yan JN, Wang C, Lai B, Zhang LC, Wu HT. Rheological characterization of chia seed gum as a thickening agent used for dysphagia management. Int J Biol Macromol 2024; 275:133413. [PMID: 38945723 DOI: 10.1016/j.ijbiomac.2024.133413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/11/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Dysphagia has emerged as a serious health issue facing contemporary society. Consuming thickened liquids is an effective approach for improving the swallowing safety for dysphagia patients. The thickening effect of chia seed gum (CSG), a novel thickener, in different dispersing media (water, orange juice, and skim milk) was investigated. Moreover, the potential application of CSG for dysphagia management was evaluated by comparison with xanthan gum (XG) and guar gum (GG). The thickened liquids prepared with 0.4 %-1.2 % (w/v) CSG, XG, and GG could be classified into levels 1-4, 2-4, and 1-3, respectively, according to the International Dysphagia Diet Standardization Initiative (IDDSI) framework. All the thickened liquids displayed shear-thinning characteristics that facilitated safe swallowing. The viscosities (η50) of CSG dissolved in water (0.202-1.027 Pa·s) were significantly greater than those of CSG dissolved in orange juice (0.070-0.690 Pa·s) and skim milk (0.081-0.739 Pa·s), indicating that CSG had a greater thickening effect in water than in orange juice and skim milk. Compared with those prepared with GG, the thickened liquids prepared with CSG and XG exhibited greater viscoelasticity, better water-holding capacity, and more compact networks. The findings suggested that CSG can be used as a potential thickener for thickening liquid foods to manage dysphagia.
Collapse
Affiliation(s)
- Lin Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tian-Qi Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yu-Qiao Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Qian Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jia-Nan Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ce Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Bin Lai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Li-Chao Zhang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Hai-Tao Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Duanmu Z, Ali SJV, Allen J, Cheng LK, Stommel M, Xu W. A Review of In Vitro and In Silico Swallowing Simulators: Design and Applications. IEEE Trans Biomed Eng 2024; 71:2042-2057. [PMID: 38294923 DOI: 10.1109/tbme.2024.3360893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Swallowing is a primary and complex behaviour that transports food and drink from the oral cavity, through the pharynx and oesophagus, into the stomach at an appropriate rate and speed. To understand this sophisticated behaviour, a tremendous amount of research has been carried out by utilising the in vivo approach, which is often challenging to perform, poses a risk to the subjects if interventions are undertaken and are seldom able to control for confounding factors. In contrast, in silico (computational) and in vitro (instrumental) methods offer an alternate insight into the process of the human swallowing system. However, the appropriateness of the design and application of these methods have not been formally evaluated. The purpose of this review is to investigate and evaluate the state of the art of in vitro and in silico swallowing simulators, focusing on the evaluation of their mechanical or computational designs in comparison to the corresponding swallowing mechanisms during various phases of swallowing (oral phase, pharyngeal phase and esophageal phase). Additionally, the potential of the simulators is also discussed in various areas of applications, including the study of swallowing impairments, swallowing medications, food process design and dysphagia management. We also address current limitations and recommendations for the future development of existing simulators.
Collapse
|
6
|
Wang K, Cheng Z, Qiao D, Xie F, Zhao S, Zhang B. Polysaccharide-dextrin thickened fluids for individuals with dysphagia: recent advances in flow behaviors and swallowing assessment methods. Crit Rev Food Sci Nutr 2024:1-25. [PMID: 38556920 DOI: 10.1080/10408398.2024.2330711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The global aging population has brought about a pressing health concern: dysphagia. To effectively address this issue, we must develop specialized diets, such as thickened fluids made with polysaccharide-dextrin (e.g., water, milk, juices, and soups), which are crucial for managing swallowing-related problems like aspiration and choking for people with dysphagia. Understanding the flow behaviors of these thickened fluids is paramount, and it enables us to establish methods for evaluating their suitability for individuals with dysphagia. This review focuses on the shear and extensional flow properties (e.g., viscosity, yield stress, and viscoelasticity) and tribology (e.g., coefficient of friction) of polysaccharide-dextrin-based thickened fluids and highlights how dextrin inclusion influences fluid flow behaviors considering molecular interactions and chain dynamics. The flow behaviors can be integrated into the development of diverse evaluation methods that assess aspects such as flow velocity, risk of aspiration, and remaining fluid volume. In this context, the key in-vivo (e.g., clinical examination and animal model), in-vitro (e.g., the Cambridge Throat), and in-silico (e.g., Hamiltonian moving particles semi-implicit) evaluation methods are summarized. In addition, we explore the potential for establishing realistic assessment methods to evaluate the swallowing performance of thickened fluids, offering promising prospects for the future.
Collapse
Affiliation(s)
- Kedu Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing, China
| | - Zihang Cheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing, China
| | - Dongling Qiao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing, China
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath, UK
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Binjia Zhang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Howe S, Steer K, Johnson M, Adjerid K, Edmonds C, German R, Mayerl C. Exploring the interaction of viscosity and nipple design on feeding performance in an infant pig model. J Texture Stud 2023; 54:936-946. [PMID: 37673688 PMCID: PMC10872838 DOI: 10.1111/jtxs.12797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
Infant feeding behaviors are modulated via sensorimotor feedback, such that sensory perturbations can significantly impact performance. Properties of the nipple and milk (e.g., nipple hole size and viscosity) are critical sources of sensory information. However, the direct effects of varying milk and nipple properties on infant motor output and the subsequent changes in feeding performance are poorly understood. In this study, we use an infant pig model to explore the interaction between nipple hole size and milk viscosity. Using high-speed videofluoroscopy and electromyography, we measured key performance metrics including sucks per swallow and suck duration, then synchronized these data with the onset and offset of activity of jaw opening and closing muscles. The combination of a small nipple hole and thick milk resulted in negative effects on both suck and swallow performance, with reduced feeding efficiency compared to the other treatments. It also appears that this combination of viscosity and hole size disrupts the coordination between correlates of tongue and jaw movements. We did not see a difference in feeding efficiency between viscosities when infants fed on the large-hole nipple, which may be the result of non-Newtonian fluid mechanics. Our results emphasize the importance of considering both fluid and nipple properties when considering alterations to an infant's feeding system.
Collapse
Affiliation(s)
- Stephen Howe
- Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Kendall Steer
- Northeast Ohio Medical University, Rootstown, Ohio, USA
- University of Akron, Akron, Ohio, USA
| | | | | | - Chloe Edmonds
- Northeast Ohio Medical University, Rootstown, Ohio, USA
- Kent State University, Kent, Ohio, USA
| | - Rebecca German
- Northeast Ohio Medical University, Rootstown, Ohio, USA
- Kent State University, Kent, Ohio, USA
| | | |
Collapse
|
8
|
Gallegos C, Turcanu M, Assegehegn G, Brito-de la Fuente E. Rheological Issues on Oropharyngeal Dysphagia. Dysphagia 2023; 38:558-585. [PMID: 34216239 DOI: 10.1007/s00455-021-10337-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
There is an increasing proof of the relevance of rheology on the design of fluids for the diagnosis and management of dysphagia. In this sense, different authors have reported clinical evidence that support the conclusion that an increase in bolus viscosity reduces the risks of airway penetration during swallowing. However, this clinical evidence has not been associated yet to the definition of objective viscosity levels that may help to predict a safe swallowing process. In addition, more recent reports highlight the potential contribution of bolus extensional viscosity, as elongational flows also develops during the swallowing process. Based on this background, the aim of this review paper is to introduce the lecturer (experts in Dysphagia) into the relevance of Rheology for the diagnosis and management of oropharyngeal dysphagia (OD). In this sense, this paper starts with the definition of some basic concepts on Rheology, complemented by a more extended vision on the concepts of shear viscosity and elongational viscosity. This is followed by a short overview of shear and elongational rheometrical techniques relevant for the characterization of dysphagia-oriented fluids, and, finally, an in-depth analysis of the current knowledge concerning the role of shear and elongational viscosities in the diagnosis and management of OD (shear and elongational behaviors of different categories of dysphagia-oriented products and contrast fluids for dysphagia assessment, as well as the relevance of saliva influence on bolus rheological behavior during the swallowing process).
Collapse
Affiliation(s)
- Crispulo Gallegos
- Product and Process Engineering Center, Fresenius Kabi Deutschland GmbH, Daimlerstrasse 22, 61352, Bad Homburg, Germany.
| | - Mihaela Turcanu
- Product and Process Engineering Center, Fresenius Kabi Deutschland GmbH, Daimlerstrasse 22, 61352, Bad Homburg, Germany
| | - Getachew Assegehegn
- Product and Process Engineering Center, Fresenius Kabi Deutschland GmbH, Daimlerstrasse 22, 61352, Bad Homburg, Germany
| | - Edmundo Brito-de la Fuente
- Product and Process Engineering Center, Fresenius Kabi Deutschland GmbH, Daimlerstrasse 22, 61352, Bad Homburg, Germany
| |
Collapse
|
9
|
Yang Y, Xu J, Sang TT, Wang HY. A review and evidence based recommendations on starch- and gum-based thickeners for dysphagic patients. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Ibañez FC, Merino G, Marín-Arroyo MR, Beriain MJ. Instrumental and sensory techniques to characterize the texture of foods suitable for dysphagic people: A systematic review. Compr Rev Food Sci Food Saf 2022; 21:2738-2771. [PMID: 35481665 DOI: 10.1111/1541-4337.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
Abstract
The interest to characterize texture-modified foods (TMFs) intended for people with oropharyngeal dysphagia (OD) has grown significantly since 2011. Several instrumental and sensory techniques have been applied in the analysis of these foods. The objective of the present systematic review was to identify the most appropriate techniques, especially for the food industry and clinical setting. The search was carried out in three online databases according to the "Preferred Reporting Items for Systematic Reviews and Meta-Analyses" (PRISMA). Across the multiple trials reviewed, Texture Profile Analysis and the Uniaxial Compression Test were most used as the instrumental technique for solid foods, and the Back Extrusion Test for fluid and semisolid foods. All trials used descriptive analysis as the sensory technique. However, the experimental conditions of the trials lacked standardization. Consequently, the results of the trials were not comparable. To properly characterize the texture of TMFs intended for OD by each technique, an international consensus is needed to establish standardized experimental conditions. Methods based on these techniques should also be validated by collaborative studies to verify repeatability, replicability, and reproducibility.
Collapse
Affiliation(s)
- Francisco C Ibañez
- Institute for Sustainability and Food Chain Innovation, Universidad Pública de Navarra, Pamplona, Spain
| | - Gorka Merino
- Institute for Sustainability and Food Chain Innovation, Universidad Pública de Navarra, Pamplona, Spain
| | | | - María José Beriain
- Institute for Sustainability and Food Chain Innovation, Universidad Pública de Navarra, Pamplona, Spain
| |
Collapse
|
11
|
Grilli GM, Giancaspro R, Del Colle A, Quarato CMI, Lacedonia D, Foschino Barbaro MP, Cassano M. Dysphagia in non-intubated patients affected by COVID-19 infection. Eur Arch Otorhinolaryngol 2021; 279:507-513. [PMID: 34468824 PMCID: PMC8408570 DOI: 10.1007/s00405-021-07062-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/25/2021] [Indexed: 01/17/2023]
Abstract
Purpose Patients affected by COVID-19 are assumed to be at high risk of developing swallowing disorders. However, to our best knowledge, data on the characteristics and incidence of dysphagia associated with COVID-19 are lacking, especially in non-intubated patients. Therefore, we investigated the onset of swallowing disorders in patients with laboratory-confirmed COVID-19 infection who have not been treated with invasive ventilation, in order to evaluate how the virus affected swallowing function regardless of orotracheal intubation. Methods We evaluated 41 patients admitted to the COVID department of our Hospital when they had already passed the acute phase of the disease and were therefore asymptomatic but still positive for SARS-CoV-2 RNA by RT-PCR. We examined patients’ clinical history and performed the Volume-Viscosity Swallow Test (VVST). Each patient also answered the Swallowing Disturbance Questionnaire (SDQ). After 6 months, we performed a follow-up in patients with swallowing disorders. Results Eight of 41 patients (20%) presented with dysphagia symptoms during hospitalization and 2 of them (25%) still presented a SDQ high score and swallowing disorders with liquid consistency after 6 months. Conclusion Non-intubated patients can experience various grades of swallowing impairment that probably directly related to pulmonary respiratory function alterations and viral direct neuronal lesive activity. Although these symptoms show natural tendency to spontaneous resolution, their impact on a general physical impaired situation should not be underestimated, since it can adversely affect patients’ recovery from COVID-19 worsening health outcomes.
Collapse
Affiliation(s)
- Gianluigi Mariano Grilli
- Department of Otolaryngology-Head and Neck Surgery, University of Foggia, Via Luigi Pinto 1, 71122, Foggia, Italy
| | - Rossana Giancaspro
- Department of Otolaryngology-Head and Neck Surgery, University of Foggia, Via Luigi Pinto 1, 71122, Foggia, Italy.
| | - Anna Del Colle
- Institute of Respiratory Diseases, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Carla Maria Irene Quarato
- Institute of Respiratory Diseases, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Donato Lacedonia
- Institute of Respiratory Diseases, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Maria Pia Foschino Barbaro
- Institute of Respiratory Diseases, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Michele Cassano
- Department of Otolaryngology-Head and Neck Surgery, University of Foggia, Via Luigi Pinto 1, 71122, Foggia, Italy
| |
Collapse
|
12
|
Methacanon P, Gamonpilas C, Kongjaroen A, Buathongjan C. Food polysaccharides and roles of rheology and tribology in rational design of thickened liquids for oropharyngeal dysphagia: A review. Compr Rev Food Sci Food Saf 2021; 20:4101-4119. [PMID: 34146451 DOI: 10.1111/1541-4337.12791] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 01/02/2023]
Abstract
In today's market environment, an aging society is recognized as one of the megatrends in the world. The demographic change in the world population age structure has driven a huge demand in healthcare products as well as services that include the technological innovation for the health and wellness of the elderly. Dysphagia or swallowing difficulty is a common problem in the elderly as many changes in swallowing function come with aging. The presence of a strong relationship between swallowing ability, nutritional status, and health outcomes in the elderly leads to the importance of dysphagia management in the population group. Modification of solid food and/or liquid is a mainstay of compensatory intervention for dysphagia patients. In this regard, texture-modified foods are generally provided to reduce risks associated with choking, while thickened liquids are recommended for mitigating risks associated with aspiration. In this review, we discuss thickened liquids and other issues including the importance of their rheological and tribological properties for oropharyngeal dysphagia management in the elderly. The review focuses on both commercial thickeners that are either based on modified starch or xanthan gum and other potential polysaccharide alternatives, which have been documented in the literature in order to help researchers develop or improve the characteristic properties of thickened liquids required for safe swallowing. Furthermore, some research gaps and future perspectives, particularly from the nutrition aspect related to the interaction between thickeners and other food ingredients, are suggested as such interaction may considerably control the rate of nutrient absorption and release within our body.
Collapse
Affiliation(s)
- Pawadee Methacanon
- Advanced Polymer Technology Research Group, National Metal and Materials Technology Center (MTEC), NSTDA, Klong Luang, Pathumthani, Thailand
| | - Chaiwut Gamonpilas
- Advanced Polymer Technology Research Group, National Metal and Materials Technology Center (MTEC), NSTDA, Klong Luang, Pathumthani, Thailand
| | - Akapong Kongjaroen
- Advanced Polymer Technology Research Group, National Metal and Materials Technology Center (MTEC), NSTDA, Klong Luang, Pathumthani, Thailand
| | - Chonchanok Buathongjan
- Advanced Polymer Technology Research Group, National Metal and Materials Technology Center (MTEC), NSTDA, Klong Luang, Pathumthani, Thailand
| |
Collapse
|
13
|
Inamoto Y, Saitoh E, Palmer JB. Annular Flow in the Upper Esophageal Sphincter Demonstrated with Dynamic 320-row Area Detector Computed Tomography. Dysphagia 2021; 36:1088-1094. [PMID: 33507395 PMCID: PMC8578160 DOI: 10.1007/s00455-020-10241-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022]
Abstract
Understanding bolus flow patterns in swallowing (rheology, the study of flow) is fundamental to assessment and treatment of dysphagia. These patterns are complex and poorly understood. A liquid swallow is typically biphasic, including air, so the actual bolus has both liquid and gas phases. We report a novel observation of annular two-phase flow (a ring of liquid around a core of air) as thin liquids passed through the upper esophageal sphincter (UES). Dynamic CT was performed on 27 healthy asymptomatic volunteers swallowing liquid barium in a semi-reclining position. Each subject swallowed 3, 10, and 20 ml of either thin (14 subjects) or thick liquid (13 subjects). Sagittal and axial images were analyzed. Flow patterns in the UES were assessed on cross-sectional images. Annular flow was seen in the majority of subjects with thin liquid but few with thick liquid swallows. The percentage of Annular flow during UES opening was 3 ml 58%, 10 ml 58%, 20 ml 56% in thin and 3 ml 0%, 10 ml 4%, 20 ml 1% in thick. Annular flow was usually observed from the second or third frames after onset of UES opening. The other pattern, Plug flow was seldom seen with thin but was typical with thick liquid swallows. Annular flow was the most common pattern for thin liquids (but not thick liquids) passing through the UES. Annular flow has been defined as a liquid continuum adjacent to the channel wall with a gas continuum (core) in the center of the channel. The two regions are demarcated by a gas–liquid interface. Annular flow is typical for two-phase gas–liquid flow in a vertical or inclined channel. It results from the interaction of viscosity with cohesive and adhesive forces in the two phases. We infer that the difference in flow pattern between thin liquid–air and thick liquid–air boluses resulted from the differing magnitudes of viscous forces.
Collapse
Affiliation(s)
- Yoko Inamoto
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan. .,Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan.
| | - Eiichi Saitoh
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Jeffrey B Palmer
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
14
|
Hadde EK, Chen J. Texture and texture assessment of thickened fluids and texture-modified food for dysphagia management. J Texture Stud 2020; 52:4-15. [PMID: 33155674 DOI: 10.1111/jtxs.12567] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022]
Abstract
Thickened fluids and texture-modified foods are commonly used in the medical management of individuals who suffer from swallowing difficulty (known as dysphagia). However, how to reliably assess texture properties of such food systems is still a big challenge both to industry and to academic researchers. This article aims to identify key physical parameters that are important for objective assessment of such properties by reviewing the significance of rheological or textural properties of thickened fluids and texture-modified foods for swallowing. Literature reviews have identified that dominating textural properties in relation to swallowing could be very different for thickened fluids and for texture-modified foods. Important parameters of thickened fluids are generally related with the flow of the bolus in the pharyngeal stage, while important parameters of texture-modified foods are generally related with the bolus preparation in the oral stage as well as the bolus flow in the pharyngeal stage. This review helps to identify key textural parameters of thickened fluids and texture-modified foods in relation to eating and swallowing and to develop objective measuring techniques for quality control of thickened fluids and texture-modified foods for dysphagia management.
Collapse
Affiliation(s)
- Enrico K Hadde
- Lab of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, Hangzhou, China
| | - Jianshe Chen
- Lab of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, Hangzhou, China
| |
Collapse
|