1
|
Salehi O, Mack H, Colville D, Lewis D, Savige J. Ocular manifestations of renal ciliopathies. Pediatr Nephrol 2024; 39:1327-1346. [PMID: 37644229 PMCID: PMC10942941 DOI: 10.1007/s00467-023-06096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 08/31/2023]
Abstract
Renal ciliopathies are a common cause of kidney failure in children and adults, and this study reviewed their ocular associations. Genes affected in renal ciliopathies were identified from the Genomics England Panels. Ocular associations were identified from Medline and OMIM, and the genes additionally examined for expression in the human retina ( https://www.proteinatlas.org/humanproteome/tissue ) and for an ocular phenotype in mouse models ( http://www.informatics.jax.org/ ). Eighty-two of the 86 pediatric-onset renal ciliopathies (95%) have an ocular phenotype, including inherited retinal degeneration, oculomotor disorders, and coloboma. Diseases associated with pathogenic variants in ANK6, MAPKBP1, NEK8, and TCTN1 have no reported ocular manifestations, as well as low retinal expression and no ocular features in mouse models. Ocular abnormalities are not associated with the most common adult-onset "cystic" kidney diseases, namely, autosomal dominant (AD) polycystic kidney disease and the AD tubulointerstitial kidney diseases (ADTKD). However, other kidney syndromes with cysts have ocular features including papillorenal syndrome (optic disc dysplasia), Hereditary Angiopathy Nephropathy, Aneurysms and muscle Cramps (HANAC) (tortuous retinal vessels), tuberous sclerosis (retinal hamartomas), von Hippel-Lindau syndrome (retinal hemangiomas), and Alport syndrome (lenticonus, fleck retinopathy). Ocular abnormalities are associated with many pediatric-onset renal ciliopathies but are uncommon in adult-onset cystic kidney disease. However the demonstration of ocular manifestations may be helpful diagnostically and the features may require monitoring or treatment.
Collapse
Affiliation(s)
- Omar Salehi
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia
| | - Heather Mack
- University Department of Surgery (Ophthalmology), Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Deb Colville
- University Department of Surgery (Ophthalmology), Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Debbie Lewis
- Nephrology Department, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia.
| |
Collapse
|
2
|
Biomolecular condensation involving the cytoskeleton. Brain Res Bull 2023; 194:105-117. [PMID: 36690162 DOI: 10.1016/j.brainresbull.2023.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Biomolecular condensation of proteins contributes to the organization of the cytoplasm and nucleoplasm. A number of condensation processes appear to be directly involved in regulating the structure, function and dynamics of the cytoskeleton. Liquid-liquid phase separation of cytoskeleton proteins, together with polymerization modulators, promotes cytoskeletal fiber nucleation and branching. Furthermore, the attachment of protein condensates to the cytoskeleton can contribute to cytoskeleton stability and organization, regulate transport, create patterns of functional reaction containers, and connect the cytoskeleton with membranes. Surface-bound condensates can exert and buffer mechanical forces that give stability and flexibility to the cytoskeleton, thus, may play a large role in cell biology. In this review, we introduce the concept and role of cellular biomolecular condensation, explain its special function on cytoskeletal fiber surfaces, and point out potential definition and experimental caveats. We review the current literature on protein condensation processes related to the actin, tubulin, and intermediate filament cytoskeleton, and discuss some of them in the context of neurobiology. In summary, we provide an overview about biomolecular condensation in relation to cytoskeleton structure and function, which offers a base for the exploration and interpretation of cytoskeletal condensates in neurobiology.
Collapse
|
3
|
Hibino E, Ichiyama Y, Tsukamura A, Senju Y, Morimune T, Ohji M, Maruo Y, Nishimura M, Mori M. Bex1 is essential for ciliogenesis and harbours biomolecular condensate-forming capacity. BMC Biol 2022; 20:42. [PMID: 35144600 PMCID: PMC8830175 DOI: 10.1186/s12915-022-01246-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Primary cilia are sensory organelles crucial for organ development. The pivotal structure of the primary cilia is a microtubule that is generated via tubulin polymerization reaction that occurs in the basal body. It remains to be elucidated how molecules with distinct physicochemical properties contribute to the formation of the primary cilia. RESULTS Here we show that brain expressed X-linked 1 (Bex1) plays an essential role in tubulin polymerization and primary cilia formation. The Bex1 protein shows the physicochemical property of being an intrinsically disordered protein (IDP). Bex1 shows cell density-dependent accumulation as a condensate either in nucleoli at a low cell density or at the apical cell surface at a high cell density. The apical Bex1 localizes to the basal body. Bex1 knockout mice present ciliopathy phenotypes and exhibit ciliary defects in the retina and striatum. Bex1 recombinant protein shows binding capacity to guanosine triphosphate (GTP) and forms the condensate that facilitates tubulin polymerization in the reconstituted system. CONCLUSIONS Our data reveals that Bex1 plays an essential role for the primary cilia formation through providing the reaction field for the tubulin polymerization.
Collapse
Affiliation(s)
- Emi Hibino
- Molecular Neuroscience Research Centre (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Yusuke Ichiyama
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Atsushi Tsukamura
- Molecular Neuroscience Research Centre (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan.,Department of Paediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan.,Department of Vascular Physiology, National Cerebral and Cardiovascular Centre Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Yosuke Senju
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Takao Morimune
- Molecular Neuroscience Research Centre (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan.,Department of Paediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan.,Department of Vascular Physiology, National Cerebral and Cardiovascular Centre Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Masahito Ohji
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Yoshihiro Maruo
- Department of Paediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Masaki Nishimura
- Molecular Neuroscience Research Centre (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Masaki Mori
- Molecular Neuroscience Research Centre (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan. .,Department of Vascular Physiology, National Cerebral and Cardiovascular Centre Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan.
| |
Collapse
|
4
|
Ishii K, Kobayashi H, Taguchi K, Guan N, Li A, Tong C, Davidoff O, Tran PV, Sharma M, Chandel NS, Kapp ME, Fogo AB, Brooks CR, Haase VH. Kidney epithelial targeted mitochondrial transcription factor A deficiency results in progressive mitochondrial depletion associated with severe cystic disease. Kidney Int 2020; 99:657-670. [PMID: 33159962 DOI: 10.1016/j.kint.2020.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/07/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Abnormal mitochondrial function is a well-recognized feature of acute and chronic kidney diseases. To gain insight into the role of mitochondria in kidney homeostasis and pathogenesis, we targeted mitochondrial transcription factor A (TFAM), a protein required for mitochondrial DNA replication and transcription that plays a critical part in the maintenance of mitochondrial mass and function. To examine the consequences of disrupted mitochondrial function in kidney epithelial cells, we inactivated TFAM in sine oculis-related homeobox 2-expressing kidney progenitor cells. TFAM deficiency resulted in significantly decreased mitochondrial gene expression, mitochondrial depletion, inhibition of nephron maturation and the development of severe postnatal cystic disease, which resulted in premature death. This was associated with abnormal mitochondrial morphology, a reduction in oxygen consumption and increased glycolytic flux. Furthermore, we found that TFAM expression was reduced in murine and human polycystic kidneys, which was accompanied by mitochondrial depletion. Thus, our data suggest that dysregulation of TFAM expression and mitochondrial depletion are molecular features of kidney cystic disease that may contribute to its pathogenesis.
Collapse
Affiliation(s)
- Ken Ishii
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Hanako Kobayashi
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Medical and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Kensei Taguchi
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Nan Guan
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Andraia Li
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Carmen Tong
- Department Pediatric Urology, Monroe Carell Jr. Children's Hospital, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Olena Davidoff
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Medical and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Pamela V Tran
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Madhulika Sharma
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University Chicago, Illinois, USA
| | - Meghan E Kapp
- Department of Pathology, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Agnes B Fogo
- The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Department of Pathology, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Craig R Brooks
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Volker H Haase
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Medical and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA; Department of Molecular Physiology and Biophysics, and Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW To review disorders that are associated with renal cystic disease during prenatal life and to highlight the strong association between renal cystic disease and ciliopathies. RECENT FINDINGS There are numerous causative genes for ciliopathies that can present with cystic kidney disease. In the group of single gene ciliopathies, autosomal dominant polycystic kidney disease is by far the most prevalent one. Other examples are autosomal recessive polycystic kidney disease, nephronophthisis, Bardet-Biedl syndrome, Meckel-Gruber syndrome, Joubert syndrome and related disorders as well as X-linked orofaciodigital syndrome type 1, respectively. The prevalence of these inherited disorders sums up to about in 1 : 2000 people. These disorders with their hepatorenal fibrocystic character should be classified as multisystem diseases. SUMMARY Understanding of the origin of renal cystic disease and associated disorders is important to make the appropriate prenatal diagnosis and for counseling affected parents. In the future, understanding of the pathophysiology may help to develop new treatment strategies.
Collapse
|
6
|
Stayner C, Poole CA, McGlashan SR, Pilanthananond M, Brauning R, Markie D, Lett B, Slobbe L, Chae A, Johnstone AC, Jensen CG, McEwan JC, Dittmer K, Parker K, Wiles A, Blackburne W, Leichter A, Leask M, Pinnapureddy A, Jennings M, Horsfield JA, Walker RJ, Eccles MR. An ovine hepatorenal fibrocystic model of a Meckel-like syndrome associated with dysmorphic primary cilia and TMEM67 mutations. Sci Rep 2017; 7:1601. [PMID: 28487520 PMCID: PMC5431643 DOI: 10.1038/s41598-017-01519-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/29/2017] [Indexed: 01/20/2023] Open
Abstract
Meckel syndrome (MKS) is an inherited autosomal recessive hepatorenal fibrocystic syndrome, caused by mutations in TMEM67, characterized by occipital encephalocoele, renal cysts, hepatic fibrosis, and polydactyly. Here we describe an ovine model of MKS, with kidney and liver abnormalities, without polydactyly or occipital encephalocoele. Homozygous missense p.(Ile681Asn; Ile687Ser) mutations identified in ovine TMEM67 were pathogenic in zebrafish phenotype rescue assays. Meckelin protein was expressed in affected and unaffected kidney epithelial cells by immunoblotting, and in primary cilia of lamb kidney cyst epithelial cells by immunofluorescence. In contrast to primary cilia of relatively consistent length and morphology in unaffected kidney cells, those of affected cyst-lining cells displayed a range of short and extremely long cilia, as well as abnormal morphologies, such as bulbous regions along the axoneme. Putative cilia fragments were also consistently located within the cyst luminal contents. The abnormal ciliary phenotype was further confirmed in cultured interstitial fibroblasts from affected kidneys. These primary cilia dysmorphologies and length control defects were significantly greater in affected cells compared to unaffected controls. In conclusion, we describe abnormalities involving primary cilia length and morphology in the first reported example of a large animal model of MKS, in which we have identified TMEM67 mutations.
Collapse
Affiliation(s)
- C Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - C A Poole
- Department of Medicine, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand.,150 Warren Street, Wanaka, 9305, New Zealand
| | - S R McGlashan
- Department of Anatomy and Medical Imaging, The University of Auckland 1142, Private Bag, 92019, Auckland, New Zealand
| | - M Pilanthananond
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - R Brauning
- AgResearch Invermay Agricultural Centre, Mosgiel, 9053, New Zealand
| | - D Markie
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - B Lett
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - L Slobbe
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - A Chae
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - A C Johnstone
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Tennant Drive, Palmerston North, 4472, New Zealand
| | - C G Jensen
- Department of Anatomy and Medical Imaging, The University of Auckland 1142, Private Bag, 92019, Auckland, New Zealand
| | - J C McEwan
- AgResearch Invermay Agricultural Centre, Mosgiel, 9053, New Zealand
| | - K Dittmer
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Tennant Drive, Palmerston North, 4472, New Zealand
| | - K Parker
- Department of Medicine, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - A Wiles
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - W Blackburne
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - A Leichter
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - M Leask
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - A Pinnapureddy
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - M Jennings
- Department of Medicine, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - J A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - R J Walker
- Department of Medicine, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - M R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
7
|
Krauer F, Ahmadli U, Kollias S, Bleisch J, Wüthrich RP, Serra AL, Poster D. Growth of arachnoid cysts in patients with autosomal dominant polycystic kidney disease: serial imaging and clinical relevance. Clin Kidney J 2015; 5:405-11. [PMID: 26019816 PMCID: PMC4432421 DOI: 10.1093/ckj/sfs111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 07/19/2012] [Indexed: 12/27/2022] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is an inherited disorder that results in the growth of cysts in the kidneys and other organs. Multisystemic involvement is common including affection of the central nervous system with cerebral aneurysms and arachnoid cysts. Methods This is a prospective cohort study to investigate the prevalence and growth rate of arachnoid cysts in ADPKD patients. Participants enrolled in the SUISSE ADPKD cohort were offered cranial imaging for the detection of intracranial alterations. In the case of identified arachnoid cysts, patients were suggested to undergo follow-up imaging to assess the growth rate of the cysts. Volume of arachnoid cysts at the baseline and at follow-up visits was assessed by manual segmentation on a dedicated workstation. Results A total of 109 ADPKD patients agreed to undergo cranial imaging. In 14 (12.8%) patients (9 males and 5 females), 18 singular arachnoid cysts were identified. The baseline volumes of individual cysts ranged from 1.8 to 337.6 cm3. During a mean follow-up period of 24 months, the volume changes of 12 individual arachnoid cysts of nine patients ranged from −3.1 to 3.7 cm3. Cystic lesions were mostly localized in the middle fossa. All affected patients were clinically asymptomatic. Conclusions We found a higher prevalence of arachnoid cysts in ADPKD patients with more advanced disease. There was a large variability in size and growth. These arachnoid cysts were clinically silent and their growth pattern was subtle and unpredictable, in contrast to the much more foreseeable growth of the renal cysts.
Collapse
Affiliation(s)
- Fabienne Krauer
- Division of Nephrology , University Hospital Zurich , Zurich , Switzerland
| | - Uzeyir Ahmadli
- Division of Neuroradiology , University Hospital Zurich , Zurich , Switzerland
| | - Spyros Kollias
- Division of Neuroradiology , University Hospital Zurich , Zurich , Switzerland
| | - Jörg Bleisch
- Division of Nephrology , Hospital Zollikerberg in Zurich , Zurich , Switzerland
| | - Rudolf P Wüthrich
- Division of Nephrology , University Hospital Zurich , Zurich , Switzerland
| | - Andreas L Serra
- Division of Nephrology , University Hospital Zurich , Zurich , Switzerland
| | - Diane Poster
- Division of Nephrology , University Hospital Zurich , Zurich , Switzerland
| |
Collapse
|
8
|
Paul BM, Vanden Heuvel GB. Kidney: polycystic kidney disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:465-87. [PMID: 25186187 DOI: 10.1002/wdev.152] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 07/14/2014] [Accepted: 07/29/2014] [Indexed: 12/22/2022]
Abstract
Polycystic kidney disease (PKD) is a life-threatening genetic disorder characterized by the presence of fluid-filled cysts primarily in the kidneys. PKD can be inherited as autosomal recessive (ARPKD) or autosomal dominant (ADPKD) traits. Mutations in either the PKD1 or PKD2 genes, which encode polycystin 1 and polycystin 2, are the underlying cause of ADPKD. Progressive cyst formation and renal enlargement lead to renal insufficiency in these patients, which need to be managed by lifelong dialysis or renal transplantation. While characteristic features of PKD are abnormalities in epithelial cell proliferation, fluid secretion, extracellular matrix and differentiation, the molecular mechanisms underlying these events are not understood. Here we review the progress that has been made in defining the function of the polycystins, and how disruption of these functions may be involved in cystogenesis.
Collapse
Affiliation(s)
- Binu M Paul
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
9
|
Eccles MR, Stayner CA. Polycystic kidney disease - where gene dosage counts. F1000PRIME REPORTS 2014; 6:24. [PMID: 24765529 PMCID: PMC3974567 DOI: 10.12703/p6-24] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gene dosage effects have emerged as playing a central role in the pathogenesis of polycystic kidney disease. Yet, how gene dosage can ultimately have an impact on the formation of kidney cysts remains unknown. In this commentary we review the evidence for the role of gene dosage effects versus the “2-hit” mutation model in polycystic kidney disease (PKD), and also discuss how gene networks may potentially make intertwined contributions to PKD.
Collapse
|
10
|
Fedeles SV, Gallagher AR, Somlo S. Polycystin-1: a master regulator of intersecting cystic pathways. Trends Mol Med 2014; 20:251-60. [PMID: 24491980 DOI: 10.1016/j.molmed.2014.01.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/04/2014] [Accepted: 01/07/2014] [Indexed: 12/13/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common potentially lethal monogenic disorder, with more than 12 million cases worldwide. The two causative genes for ADPKD, PKD1 and PKD2, encode protein products polycystin-1 (PC1) and polycystin-2 (PC2 or TRPP2), respectively. Recent data have shed light on the role of PC1 in regulating the severity of the cystic phenotypes in ADPKD, autosomal recessive polycystic kidney disease (ARPKD), and isolated autosomal dominant polycystic liver disease (ADPLD). These studies showed that the rate for cyst growth was a regulated trait, a process that can be either sped up or slowed down by alterations in functional PC1. These findings redefine the previous understanding that cyst formation occurs as an 'on-off' process. Here, we review these and other related studies with an emphasis on their translational implications for polycystic diseases.
Collapse
Affiliation(s)
- Sorin V Fedeles
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Anna-Rachel Gallagher
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Stefan Somlo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
11
|
Looking at the (w)hole: magnet resonance imaging in polycystic kidney disease. Pediatr Nephrol 2013; 28:1771-83. [PMID: 23239392 DOI: 10.1007/s00467-012-2370-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 12/29/2022]
Abstract
Inherited cystic kidney diseases, including autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), are the most common monogenetic causes of end-stage renal disease (ESRD) in children and adults. While ARPKD is a rare and usually severe pediatric disease, the more common ADPKD typically shows a slowly progressive course leading to ESRD in adulthood. At the present time there is no established disease-modifying treatment for either ARPKD or ADPKD. Various therapeutic approaches are currently under investigation, such as V2 receptor antagonists, somatostatins, and mTOR inhibitors. Renal function remains stable for decades in ADPKD, and thus clinically meaningful surrogate markers to assess therapeutic efficacy are needed. Various studies have pointed out that total kidney volume (TKV) is a potential surrogate parameter for disease severity in ADPKD. Recent trials have therefore measured TKV by magnet resonance imaging (MRI) to monitor and to predict disease progression. Here, we discuss novel insights on polycystic kidney disease (PKD), the value of MRI, and the measurement of TKV in the diagnosis and follow-up of PKD, as well as novel emerging therapeutic strategies for ADPKD.
Collapse
|
12
|
Pan J, Seeger-Nukpezah T, Golemis EA. The role of the cilium in normal and abnormal cell cycles: emphasis on renal cystic pathologies. Cell Mol Life Sci 2012; 70:1849-74. [PMID: 22782110 DOI: 10.1007/s00018-012-1052-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/08/2012] [Accepted: 06/05/2012] [Indexed: 12/28/2022]
Abstract
The primary cilium protrudes from the cell surface and acts as a sensor for chemical and mechanical growth cues, with receptors for a number of growth factors (PDGFα, Hedgehog, Wnt, Notch) concentrated within the ciliary membrane. In normal tissues, the cilium assembles after cells exit mitosis and is resorbed as part of cell cycle re-entry. Although regulation of the cilium by cell cycle transitions has been appreciated for over 100 years, only recently have data emerged to indicate the cilium also exerts influence on the cell cycle. The resorption/protrusion cycle, regulated by proteins including Aurora-A, VHL, and GSK-3β, influences cell responsiveness to growth cues involving cilia-linked receptors; further, resorption liberates the ciliary basal body to differentiate into the centrosome, which performs discrete functions in S-, G2-, and M-phase. Besides these roles, the cilium provides a positional cue that regulates polarity of cell division, and thus directs cells towards fates of differentiation versus proliferation. In this review, we summarize the specific mechanisms mediating the cilia-cell cycle dialog. We then emphasize the examples of polycystic kidney disease (PKD), nephronopthisis (NPHP), and VHL-linked renal cysts as cases in which defects of ciliary function influence disease pathology, and may also condition response to treatment.
Collapse
Affiliation(s)
- Junmin Pan
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | | | | |
Collapse
|
13
|
MacRae Dell K. The spectrum of polycystic kidney disease in children. Adv Chronic Kidney Dis 2011; 18:339-47. [PMID: 21896375 DOI: 10.1053/j.ackd.2011.05.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/28/2011] [Accepted: 05/09/2011] [Indexed: 12/13/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) are important inherited kidney diseases with distinct clinical features and genetics. Although these diseases have classically been considered "adult" (ADPKD) or "infantile/pediatric" (ARPKD), it is now clear that both diseases can present in children and adults. ADPKD and ARPKD also share important pathophysiologic features, including cilia dysfunction. ADPKD is a systemic disease involving cysts in the kidneys and abdominal organs as well as abnormalities in the heart and vasculature. Although it typically presents in adults, ADPKD has been diagnosed in fetuses, infants, children, and adolescents. The majority of children diagnosed with ADPKD are asymptomatic. Those with symptoms typically present with hypertension or gross hematuria. Routine screening for renal cysts in asymptomatic children who have a parent with ADPKD is generally not recommended. ARPKD is a disorder confined to the kidneys (polycystic kidneys) and liver (a developmental biliary lesion called congenital hepatic fibrosis). Although most children with ARPKD present in infancy with large, echogenic kidneys, a subset present later in childhood and even adulthood, primarily with complications related to the liver disease. As more patients with ARPKD survive to adulthood, these liver complications are likely to become more prevalent.
Collapse
|
14
|
The mechanosensory role of primary cilia in vascular hypertension. Int J Vasc Med 2011; 2011:376281. [PMID: 21748021 PMCID: PMC3124932 DOI: 10.1155/2011/376281] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/22/2011] [Accepted: 04/09/2011] [Indexed: 12/20/2022] Open
Abstract
Local regulation of vascular tone plays an important role in cardiovascular control of blood pressure. Aside from chemical or hormonal regulations, this local homeostasis is highly regulated by fluid-shear stress. It was previously unclear how vascular endothelial cells were able to sense fluid-shear stress. The cellular functions of mechanosensory cilia within vascular system have emerged recently. In particular, hypertension is insidious and remains a continuous problem that evolves during the course of polycystic kidney disease (PKD). The basic and clinical perspectives on primary cilia are discussed with regard to the pathogenesis of hypertension in PKD.
Collapse
|
15
|
Lennerz JK, Spence DC, Iskandar SS, Dehner LP, Liapis H. Glomerulocystic kidney: one hundred-year perspective. Arch Pathol Lab Med 2010; 134:583-605. [PMID: 20367310 DOI: 10.5858/134.4.583] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Glomerular cysts, defined as Bowman space dilatation greater than 2 to 3 times normal size, are found in disorders of diverse etiology and with a spectrum of clinical manifestations. The term glomerulocystic kidney (GCK) refers to a kidney with greater than 5% cystic glomeruli. Although usually a disease of the young, GCK also occurs in adults. OBJECTIVE To assess the recent molecular genetics of GCK, review our files, revisit the literature, and perform in silico experiments. DATA SOURCES We retrieved 20 cases from our files and identified more than 230 cases published in the literature under several designations. CONCLUSIONS Although GCK is at least in part a variant of autosomal dominant or recessive polycystic kidney disease (PKD), linkage analysis has excluded PKD-associated gene mutations in many cases of GCK. A subtype of familial GCK, presenting with cystic kidneys, hyperuricemia, and isosthenuria is due to uromodullin mutations. In addition, the familial hypoplastic variant of GCK that is associated with diabetes is caused by mutations in TCF2, the gene encoding hepatocyte nuclear factor-1beta. The term GCK disease (GCKD) should be reserved for the latter molecularly recognized/inherited subtypes of GCK (not to include PKD). Review of our cases, the literature, and our in silico analysis of the overlapping genetic entities integrates established molecular-genetic functions into a proposed model of glomerulocystogenesis; a classification scheme emerged that (1) emphasizes the clinical significance of glomerular cysts, (2) provides a pertinent differential diagnosis, and (3) suggests screening for probable mutations.
Collapse
Affiliation(s)
- Jochen K Lennerz
- Department of Pathology and Immunology, Washington University, St Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
16
|
Deltas C, Papagregoriou G. Cystic diseases of the kidney: molecular biology and genetics. Arch Pathol Lab Med 2010; 134:569-82. [PMID: 20367309 DOI: 10.5858/134.4.569] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Cystic diseases of the kidney are a very heterogeneous group of renal inherited conditions, with more than 33 genes involved and encompassing X-linked, autosomal dominant, and autosomal recessive inheritance. Although mostly monogenic with mendelian inheritance, there are clearly examples of oligogenic inheritance, such as 3 mutations in 2 genes, while the existence of genetic modifiers is perhaps the norm, based on the extent of variable expressivity and the broad spectrum of symptoms. OBJECTIVES To present in the form of a mini review the major known cystic diseases of the kidney for which genes have been mapped or cloned and characterized, with some information on their cellular and molecular biology and genetics, and to pay special attention to commenting on the issues of molecular diagnostics, in view of the genetic and allelic heterogeneity. Data Sources.-We used major reviews that make excellent detailed presentation of the various diseases, as well as original publications. CONCLUSIONS There is already extensive genetic heterogeneity in the group of cystic diseases of the kidney; however, there are still many more genes awaiting to be discovered that are implicated or mutated in these diseases. In addition, the synergism and interaction among this repertoire of gene products is largely unknown, while a common unifying aspect is the expression of nearly all of them at the primary cilium or the basal body. A major interplay of functions is anticipated, while mutations in all converge in the unifying phenotype of cyst formation.
Collapse
|
17
|
Bonsib SM. The classification of renal cystic diseases and other congenital malformations of the kidney and urinary tract. Arch Pathol Lab Med 2010; 134:554-68. [PMID: 20367308 DOI: 10.5858/134.4.554] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Renal cystic diseases and congenital abnormalities of the kidney and urinary tract comprise a heterogeneous group of lesions whose pathogenesis has eluded physicians for centuries. Recent advances in molecular and genetic understanding of these diseases may provide the solution to this riddle. OBJECTIVE The formulation of an effective classification system for these disorders has been elusive but is needed to introduce order while providing a conceptual framework for diagnosis. DATA SOURCES This review discusses the evolution, beginning in the 19th century, of postulates regarding the pathogenesis of cystic and developmental renal diseases. Selected classification systems proffered during this period are discussed in pursuit of an ideal classification schema that would account for morphologic features and their clinical importance, with logical links to pathogenesis and treatment. Although this remains an elusive target, its general outline is becoming clearer. A classification approach favored by the author is presented, which incorporates many of the strengths contained in several previous classifications. CONCLUSIONS Genetic-and molecular-based postulates regarding the pathogenesis of the renal cystic and developmental diseases have implicated mutated master genes and the modification of genes that are crucial in renal development and genes that are central to the sensory effects of the renal tubular primary cilium on cell physiology. These scientific advances provide pathogenetic links between morphologically and genetically distinct entities and certain cystic and neoplastic entities, associations that seemed implausible not long ago. These advances may eventually provide the basis for future classification systems while suggesting targets for therapeutic approaches in the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Stephen M Bonsib
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, 71130-3932, USA.
| |
Collapse
|
18
|
Gallagher AR, Germino GG, Somlo S. Molecular advances in autosomal dominant polycystic kidney disease. Adv Chronic Kidney Dis 2010; 17:118-30. [PMID: 20219615 DOI: 10.1053/j.ackd.2010.01.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/01/2010] [Accepted: 01/03/2010] [Indexed: 12/21/2022]
Abstract
Autosomal dominant polycystic disease (ADPKD) is the most common form of inherited kidney disease that results in renal failure. The understanding of the pathogenesis of ADPKD has advanced significantly since the discovery of the 2 causative genes, PKD1 and PKD2. Dominantly inherited gene mutations followed by somatic second-hit mutations inactivating the normal copy of the respective gene result in renal tubular cyst formation that deforms the kidney and eventually impairs its function. The respective gene products, polycystin-1 and polycystin-2, work together in a common cellular pathway. Polycystin-1, a large receptor molecule, forms a receptor-channel complex with polycystin-2, which is a cation channel belonging to the TRP family. Both polycystin proteins have been localized to the primary cilium, a nonmotile microtubule-based structure that extends from the apical membrane of tubular cells into the lumen. Here we discuss recent insights in the pathogenesis of ADPKD including the genetics of ADPKD, the properties of the respective polycystin proteins, the role of cilia, and some cell-signaling pathways that have been implicated in the pathways related to PKD1 and PKD2.
Collapse
|
19
|
Tao B, Bu S, Yang Z, Siroky B, Kappes JC, Kispert A, Guay-Woodford LM. Cystin localizes to primary cilia via membrane microdomains and a targeting motif. J Am Soc Nephrol 2009; 20:2570-80. [PMID: 19850956 DOI: 10.1681/asn.2009020188] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Primary cilia are dynamic, complex structures that contain >500 proteins, including several related to polycystic kidney disease. How these proteins target to cilia and assemble is unknown. We previously identified Cys1 as the gene responsible for disease in Cys1(cpk) mice, a mouse model of autosomal recessive polycystic kidney disease; this gene encodes cystin, a 145-amino acid cilium-associated protein. Here, we characterized the localization of cystin in the embryonic kidney and liver, in isolated renal collecting ducts, and in an inner medullary collecting duct mouse cell line. Because endogenous levels of cystin expression are low, we generated inner medullary collecting duct cell lines that stably express enhanced green fluorescence protein-tagged constructs of wild-type cystin or various truncation mutants. We determined that cystin is myristoylated at its G2 residue and that N-myristoylated cystin fractionates with membrane microdomains. Furthermore, the N-myristoylation signal is necessary but not sufficient to target cystin to the primary cilium. Analysis of deletion and chimeric constructs identified an AxEGG motif that is necessary to target and retain cystin in the cilium. Derangement of these localization motifs may lead to cystic kidney disease.
Collapse
Affiliation(s)
- Binli Tao
- Departments of Medicine and Genetics, University of Alabama at Birmingham, 720 20th Street South, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Wiesener MS, Maxwell PH, Eckardt KU. Novel insights into the role of the tumor suppressor von Hippel Lindau in cellular differentiation, ciliary biology, and cyst repression. J Mol Med (Berl) 2009; 87:871-7. [DOI: 10.1007/s00109-009-0504-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/10/2009] [Accepted: 07/10/2009] [Indexed: 12/11/2022]
|
21
|
A genetic syndrome of chronic renal failure with multiple renal cysts and early onset diabetes. Kidney Int 2008; 74:1094-9. [DOI: 10.1038/ki.2008.227] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Trapp ML, Galtseva A, Manning DK, Beier DR, Rosenblum ND, Quarmby LM. Defects in ciliary localization of Nek8 is associated with cystogenesis. Pediatr Nephrol 2008; 23:377-87. [PMID: 18189147 PMCID: PMC6890203 DOI: 10.1007/s00467-007-0692-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 10/08/2007] [Accepted: 10/10/2007] [Indexed: 01/01/2023]
Abstract
Mutations in the human NIMA (Never in Mitosis gene A)-related kinase 8 (Nek8) are associated with a rare form of the juvenile renal cystic disease, nephronophthisis type 9, and mutations in murine Nek8 cause renal cysts in jck mice. Cystogenesis involves dysfunctional ciliary signaling, and we have previously reported that Nek8 localizes to the primary cilium in mouse kidney epithelial cells. We now report that in developing mouse kidney, Nek8 is detected in the cilia of a subset of ureteric-bud-derived tubules at embryonic day (E)15.5. An increasing proportion of ureteric-bud-derived tubules express ciliary Nek8 until E18.5. Postnatal day 1 and 7 Nek8 is observed with equal frequency in both ureteric-bud and non-ureteric-bud-derived tubules. To investigate the cell biological consequences of kinase-deficient and jck mutant forms of Nek8, we transiently expressed green fluorescent protein (GFP)-tagged constructs in vitro. Mutations in the kinase and C-terminal domains of Nek8 adversely affected ciliary targeting but did not affect ciliogenesis or ciliary length. Consistent with these in vitro observations, kidneys from homozygous jck mice revealed reduced ciliary expression of Nek8 compared with kidneys from heterozygous (unaffected) mice. These data indicate that the ciliary localization of Nek8 in a subset of ureteric-bud-derived kidney tubules is essential for maintaining the integrity of those tubules in the mammalian kidney.
Collapse
Affiliation(s)
- Melissa L Trapp
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A1S6, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Rohatgi R, Battini L, Kim P, Israeli S, Wilson PD, Gusella GL, Satlin LM. Mechanoregulation of intracellular Ca2+ in human autosomal recessive polycystic kidney disease cyst-lining renal epithelial cells. Am J Physiol Renal Physiol 2008; 294:F890-9. [PMID: 18256315 DOI: 10.1152/ajprenal.00341.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mutations of cilia-expressed proteins are associated with an attenuated shear-induced increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in renal epithelial cell lines derived from murine models of autosomal recessive polycystic kidney disease (ARPKD). We hypothesized that human ARPKD cyst-lining renal epithelial cells also exhibited dysregulated mechanosensation. To test this, conditionally immortalized cell lines derived from human fetal ARPKD cyst-lining (pool and clone 5E) cell lines with low levels of fibrocystin/polyductin expression and age-matched normal collecting tubule [human fetal collecting tubule (HFCT) pool and clone 2C] cell lines were grown in culture, loaded with a Ca(2+) indicator dye, and subjected to laminar shear. Clonal cell lines were derived from single cells present in pools of cells from cyst-lining and collecting tubules, microdissected from human kidney. Resting and peak [Ca(2+)](i) were similar between ARPKD 5E and pool, and HFCT 2C and pool; however, the flow-induced peak [Ca(2+)](i) was greater in ARPKD 5E (700 +/- 87 nM, n = 21) than in HFCT 2C (315 +/- 58 nM, n = 12; P < 0.01) cells. ARPKD 5E cells treated with Gd(3+), an inhibitor of nonselective cation channels, inhibited but did not abolish the shear-induced [Ca(2+)](i) transient. Cilia were approximately 20% shorter in ARPKD than HFCT cells, but no difference in ciliary localization or total cellular expression of polycystin-2, a mechanosenory Gd(3+)-sensitive cation channel, was detected between ARPKD and HFCT cells. The intracellular Ca(2+) stores were similar between cells. In summary, human ARPKD cells exhibit an exaggerated Gd(3+)-sensitive mechano-induced Ca(2+) response compared with controls; whether this represents dysregulated polycystin-2 activity in ARPKD cells remains to be explored.
Collapse
Affiliation(s)
- Rajeev Rohatgi
- The Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1243, New York, New York 10029, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Wessely O, Obara T. Fish and frogs: models for vertebrate cilia signaling. FRONT BIOSCI-LANDMRK 2008; 13:1866-80. [PMID: 17981674 DOI: 10.2741/2806] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The presence of cilia in many vertebrate cell types and its function has been ignored for many years. Only in the past few years has its importance been rediscovered. In part, this was triggered by the realization that many gene products mutated in polycystic kidney diseases are localized to cilia and dysfunctional cilia result in kidney disease. Another breakthrough was the observation that the establishment of the left-right body axis is dependent on cilia function. Since then, many other developmental paradigms have been shown to rely on cilia-dependent signaling. In addition to mouse and Chlamydomonas, lower vertebrate model systems such as zebrafish, medaka and Xenopus have provided important new insights into cilia signaling and its role during embryonic development. This review will summarize those studies. We will also illustrate how these lower vertebrates are promising model systems for future studies defining the physiological function of cilia during organogenesis and disease pathophysiology.
Collapse
Affiliation(s)
- Oliver Wessely
- Department of Cell Biology and Anatomy and Genetics, LSU Health Sciences Center, MEB-6A12, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | |
Collapse
|
25
|
Distelmaier F, Vogel M, Spiekerkötter U, Gempel K, Klee D, Braunstein S, Groneck HP, Mayatepek E, Wendel U, Schwahn B. Cystic renal dysplasia as a leading sign of inherited metabolic disease. Pediatr Nephrol 2007; 22:2119-24. [PMID: 17638024 DOI: 10.1007/s00467-007-0536-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 05/02/2007] [Accepted: 05/04/2007] [Indexed: 12/30/2022]
Abstract
Glutaric acidemia type II and carnitine palmitoyltransferase type II deficiency are rare, but potentially treatable, inherited metabolic diseases. Hallmarks of the early onset form of both conditions are renal abnormalities and neonatal metabolic crisis. In this article, we report on two newborns with cystic renal dysplasia as a leading sign of these metabolic diseases. We focus on the clinical presentation and discuss the diagnostic tests and the available therapeutic options. We conclude that prenatal diagnosis of cystic renal dysplasia should alert the physician to the possibility of these metabolic diseases. This knowledge should prompt careful observation and, where necessary, early intervention during the postnatal period of catabolism.
Collapse
Affiliation(s)
- Felix Distelmaier
- Department of General Pediatrics, University Children's Hospital, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kuehn EW, Walz G, Benzing T. Von hippel-lindau: a tumor suppressor links microtubules to ciliogenesis and cancer development. Cancer Res 2007; 67:4537-40. [PMID: 17510376 DOI: 10.1158/0008-5472.can-07-0391] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Loss of von Hippel-Lindau (VHL) tumor suppressor gene function occurs in familial and most sporadic renal cell carcinoma. The tumor suppressor role of the protein pVHL is based on its ability to target transcription factors of the hypoxia-inducible factor family for degradation, but other functions of pVHL are less clearly defined. New findings show that pVHL is necessary for cilia formation. pVHL interacts with PAR proteins, a complex that specifies the membrane domains of polarized epithelial cells, and directs the orientation of growing microtubules. Loss of pVHL results in aberrant orientation of newly formed microtubules and prevents ciliogenesis. These results add to a growing body of evidence linking cilia and the cell cycle and suggest that the tumor suppressor role of pVHL may involve previously unrecognized pathways.
Collapse
|
27
|
von Schnakenburg C, Fliegauf M, Omran H. Nephrocystin and ciliary defects not only in the kidney? Pediatr Nephrol 2007; 22:765-9. [PMID: 17310360 DOI: 10.1007/s00467-007-0434-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 12/28/2006] [Accepted: 01/02/2007] [Indexed: 11/25/2022]
Abstract
Cystoproteins have been recognized to play a major role in the development of cystic kidney diseases (CKDs) via interaction with the cilia/centrosome complex. We highlight our present knowledge on nephrocystin as the defective protein in nephronophthisis type I. Nephrocystin has been localized to the ciliary transition zone not only of renal tubule cells but also of respiratory and retinal cilia. Thus, multi-system involvement as in Senior-Løken-syndrome (retinal degeneration plus nephronophthisis) can be explained by a functional ciliary defect in various tissues. In addition, we illustrate that ciliated respiratory cells have a high potential for diagnostics in CKDs and will further aid understanding of the underlying molecular mechanisms.
Collapse
|
28
|
Levin M, Palmer AR. Left-right patterning from the inside out: widespread evidence for intracellular control. Bioessays 2007; 29:271-87. [PMID: 17295291 DOI: 10.1002/bies.20545] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The field of left-right (LR) patterning--the study of molecular mechanisms that yield directed morphological asymmetries in otherwise symmetrical organisms--is in disarray. On one hand is the undeniably elegant hypothesis that rotary beating of inclined cilia is the primary symmetry-breaking step: they create an asymmetric extracellular flow across the embryonic midline. On the other hand lurk many early symmetry-breaking steps that, even in some vertebrates, precede the onset of ciliary flow. We highlight an intracellular model of LR patterning where gene expression is initiated by physiological asymmetries that arise from subcellular asymmetries (e.g. motor-protein function along oriented cytoskeletal tracks). A survey of symmetry breaking in eukaryotes ranging from protists to vertebrates suggests that intracellular cytoskeletal elements are ancient and primary LR cues. Evolutionarily, quirky effectors like ciliary motion were likely added later in vertebrates. In some species (like mice), developmentally earlier cues may have been abandoned entirely. Late-developing asymmetries pose a challenge to the intracellular model, but early mid-plane determination in many groups increases its plausibility. Multiple experimental tests are possible.
Collapse
Affiliation(s)
- Michael Levin
- Forsyth Center for Regenerative and Developmental Biology, The Forsyth Institute, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| | | |
Collapse
|
29
|
Abstract
Cysts in the kidney are among the most common inherited human pathologies, and recent research has uncovered that a defect in cilia-mediated signaling activity is a key factor that leads to cyst formation. The cilium is a microtubule-based organelle that is found on most cells in the mammalian body. Multiple proteins whose functions are disrupted in cystic diseases have now been localized to the cilium or at the basal body at the base of the cilium. Current data indicate that the cilium can function as a mechanosensor to detect fluid flow through the lumen of renal tubules. Flow-mediated deflection of the cilia axoneme induces an increase in intracellular calcium and alters gene expression. Alternatively, a recent finding has revealed that the intraflagellar transport 88/polaris protein, which is required for cilia assembly, has an additional role in regulating cell-cycle progression independent of its function in ciliogenesis. Further research directed at understanding the relationship between the cilium, cell-cycle, and cilia-mediated mechanosensation and signaling activity will hopefully provide important insights into the mechanisms of renal cyst pathogenesis and lead to better approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Bradley K Yoder
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|