1
|
Li L, Hossain SM, Eccles MR. The Role of the PAX Genes in Renal Cell Carcinoma. Int J Mol Sci 2024; 25:6730. [PMID: 38928435 PMCID: PMC11203709 DOI: 10.3390/ijms25126730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Renal cell carcinoma (RCC) is a significant oncological challenge due to its heterogeneous nature and limited treatment options. The PAX developmental gene family encodes nine highly conserved transcription factors that play crucial roles in embryonic development and organogenesis, which have been implicated in the occurrence and development of RCC. This review explores the molecular landscape of RCC, with a specific focus on the role of the PAX gene family in RCC tumorigenesis and disease progression. Of the various RCC subtypes, clear cell renal cell carcinoma (ccRCC) is the most prevalent, characterized by the loss of the von Hippel-Lindau (VHL) tumor suppressor gene. Here, we review the published literature on the expression patterns and functional implications of PAX genes, particularly PAX2 and PAX8, in the three most common RCC subtypes, including ccRCC, papillary RCC (PRCC), and chromophobe RCC (ChRCC). Further, we review the interactions and potential biological mechanisms involving PAX genes and VHL loss in driving the pathogenesis of RCC, including the key signaling pathways mediated by VHL in ccRCC and associated mechanisms implicating PAX. Lastly, concurrent with our update regarding PAX gene research in RCC, we review and comment on the targeting of PAX towards the development of novel RCC therapies.
Collapse
Affiliation(s)
- Lei Li
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (L.L.); (S.M.H.)
| | - Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (L.L.); (S.M.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (L.L.); (S.M.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
2
|
Liao MC, Pang YC, Chang SY, Zhao XP, Chenier I, Ingelfinger JR, Chan JSD, Zhang SL. AT 2R deficiency in mice accelerates podocyte dysfunction in diabetic progeny in a sex-dependent manner. Diabetologia 2021; 64:2108-2121. [PMID: 34047808 DOI: 10.1007/s00125-021-05483-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
AIMS/HYPOTHESIS The angiotensin II receptor type 2 (AT2R) may be a potential therapeutic target for the treatment of hypertension and chronic kidney disease (CKD). The expression and function of AT2R in the vasculature and kidney appear sexually dimorphic. We hypothesised that Agtr2 knockout dams (AT2RKO) with gestational diabetes would program their offspring for subsequent hypertension and CKD in a sex-dependent manner. METHODS Age- and sex-matched offspring of non-diabetic and diabetic dams of wild-type (WT) and AT2RKO mice were followed from 4 to 20 weeks of age and were monitored for development of hypertension and nephropathy; a mouse podocyte cell line (mPOD) was also studied. RESULTS Body weight was progressively lower in female compared with male offspring throughout the lifespan. Female but not male offspring from diabetic AT2RKO dams developed insulin resistance. Compared with the offspring of non-diabetic dams, the progeny of diabetic dams had developed more hypertension and nephropathy (apparent glomerulosclerosis with podocyte loss) at 20 weeks of age; this programming was more pronounced in the offspring of AT2RKO diabetic dams, particularly female AT2RKO progeny. Female AT2RKO offspring had lower basal ACE2 glomerular expression, resulting in podocyte loss. The aberrant ACE2/ACE ratio was far more diminished in glomeruli of female progeny of diabetic AT2RKO dams than in male progeny. Knock-down of Agtr2 in mPODs confirmed the in vivo data. CONCLUSIONS/INTERPRETATION AT2R deficiency accelerated kidney programming in female progeny of diabetic dams, possibly due to loss of protective effects of ACE2 expression in the kidney.
Collapse
Affiliation(s)
- Min-Chun Liao
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Yu-Chao Pang
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Shiao-Ying Chang
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Xin-Ping Zhao
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Isabelle Chenier
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - John S D Chan
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Shao-Ling Zhang
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| |
Collapse
|
3
|
Li Y, Kong CH, Feng L, Tang W, Chen M, Zheng Z. MYC Participates in Lipopolysaccharide-Induced Sepsis via Promoting Cell Proliferation and Inhibiting Apoptosis. CELL JOURNAL 2020; 22:68-73. [PMID: 32779435 PMCID: PMC7481895 DOI: 10.22074/cellj.2020.6961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/14/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE This study aimed to explore the potential mechanism of MYC proto-oncogene, BHLH Transcription Factor (MYC) gene, on sepsis. MATERIALS AND METHODS In this experimental study, rat-derived H9C2 cardiomyocyte cells were cultured in vitro, followed by lipopolysaccharide (LPS) treatment with different concentration gradients. The cholecystokinin octapeptide (CCK-8) assay, enzyme-linked immunoassay (ELISA) assay, quantitative reverse transcription polymerase chain reaction (qRT-PCR), cell transfection, Western blot and flow cytometry were used to observe the cellular apoptosis and proliferation of cells in both treated LPS groups and normal control group. RESULTS The result of CCK-8 assay showed that silencing MYC inhibited cellular proliferation of sepsis in absence or presence of LPS treatment. ELISA assay showed that the expressions of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were decreased in MYC silenced group, but they were increased after LPS treatment. Moreover, Flow cytometry assay showed that MYC silencing contributed to the apoptosis of sepsis cells. Furthermore, the expression of inflammatory factors showed that MYC silencing elevated the expression of inflammation factors. CONCLUSION MYC might take part in the process of LPS induced sepsis through suppressing apoptosis and inducing cell proliferation. Moreover, MYC might reduce inflammation during the progression of LPS induced sepsis.
Collapse
Affiliation(s)
- Yin Li
- Emergency Department of Huadong Hospital, Fudan University, Yan'an Xi Road, Shanghai, China
| | - C Hengqi Kong
- Cardiovascular Department of Huadong Hospital, Fudan University, Shanghai, China
| | - Lei Feng
- Emergency Department of Huadong Hospital, Fudan University, Yan'an Xi Road, Shanghai, China
| | - Wenliang Tang
- Emergency Department of Huadong Hospital, Fudan University, Yan'an Xi Road, Shanghai, China
| | - Mengwei Chen
- Cardiovascular Department of Huadong Hospital, Fudan University, Shanghai, China. Electronic Address:
| | - Zhiyuan Zheng
- Cardiovascular Department of Huadong Hospital, Fudan University, Shanghai, China. Electronic Address:
| |
Collapse
|
4
|
Zhao XP, Liao MC, Chang SY, Abdo S, Aliou Y, Chenier I, Ingelfinger JR, Zhang SL. Maternal diabetes modulates kidney formation in murine progeny: the role of hedgehog interacting protein (HHIP). Diabetologia 2014; 57:1986-96. [PMID: 24957663 DOI: 10.1007/s00125-014-3297-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/20/2014] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS We hypothesised that maternal diabetes impairs kidney formation in offspring via augmented expression of hedgehog interacting protein (HHIP). Our gene-array results were performed in neonatal kidneys from our murine model of maternal diabetes and indicated that Hhip expression was significantly modulated by maternal diabetes. METHODS We systematically examined the functional role of HHIP in kidney formation in our murine maternal diabetes model and elucidated the potential mechanisms related to dysnephrogenesis in vitro. RESULTS The kidneys of the offspring of diabetic dams, compared with those of the offspring of control non-diabetic dams, showed retardation of development--small kidneys and less ureteric bud (UB) branching morphogenesis. Augmented HHIP expression was observed in the offspring of diabetic dams, initially localised to differentiated metanephric mesenchyme and UB epithelium and subsequently in maturing glomerular endothelial and tubulointerstitial cells. The heightened HHIP targeting TGF-β1 signalling was associated with dysmorphogenesis. In vitro, HHIP overexpression decreased sonic hedgehog and paired box gene 2 proteins (SHH and PAX2, respectively) and increased transcriptional nuclear factor-kappa B (NFκB, p50/p65), phosphorylation of p53, and TGF-β1 expression. In contrast, overexpression of PAX2 inhibited HHIP and NFκB and activated SHH, N-myc and p27(Kip1) expression. Moreover, high glucose stimulated HHIP expression, and then targeted TGF-β1 signalling. Thus, PAX2, via a negative autocrine feedback mechanism, attenuated the stimulatory effect of high glucose on HHIP expression. CONCLUSIONS/INTERPRETATION Maternal diabetes modulates kidney formation in young progeny mediated, at least in part, via augmented HHIP expression.
Collapse
Affiliation(s)
- Xin-Ping Zhao
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Tour Viger, 900 rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| | | | | | | | | | | | | | | |
Collapse
|
5
|
MicroRNAs: potential regulators of renal development genes that contribute to CAKUT. Pediatr Nephrol 2014; 29:565-74. [PMID: 23996519 PMCID: PMC3944105 DOI: 10.1007/s00467-013-2599-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/31/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the leading cause of childhood chronic kidney disease (CKD). While mutations in several renal development genes have been identified as causes for CAKUT, most cases have not yet been linked to known mutations. Furthermore, the genotype-phenotype correlation is variable, suggesting that there might be additional factors that have an impact on the severity of CAKUT. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level, and are involved in many developmental processes. Although little is known about the function of specific miRNAs in kidney development, several have recently been shown to regulate the expression of, and/or are regulated by, crucial renal development genes present in other organ systems. In this review, we discuss how miRNA regulation of common developmental signaling pathways may be applicable to renal development. We focus on genes that are known to contribute to CAKUT in humans, for which miRNA interactions in other contexts have been identified, with miRNAs that are present in the kidney. We hypothesize that miRNA-mediated processes might play a role in kidney development through similar mechanisms, and speculate that genotypic variations in these small RNAs or their targets could be associated with CAKUT.
Collapse
|
6
|
Involvement of germline DDX1–MYCN duplication in inherited nephroblastoma. Eur J Med Genet 2013; 56:643-7. [DOI: 10.1016/j.ejmg.2013.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/14/2013] [Indexed: 01/06/2023]
|
7
|
Lee JO, Auger C, Park DH, Kang M, Oak MH, Kim KR, Schini-Kerth VB. An ethanolic extract of Lindera obtusiloba stems, YJP-14, improves endothelial dysfunction, metabolic parameters and physical performance in diabetic db/db mice. PLoS One 2013; 8:e65227. [PMID: 23755196 PMCID: PMC3670856 DOI: 10.1371/journal.pone.0065227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/24/2013] [Indexed: 01/08/2023] Open
Abstract
Lindera obtusiloba is a medicinal herb traditionally used in Asia for improvement of blood circulation, treatment of inflammation, and prevention of liver damage. A previous study has shown that an ethanolic extract of Lindera obtusiloba stems (LOE) has vasoprotective and antihypertensive effects. The possibility that Lindera obtusiloba improves endothelial function and metabolic parameters in type 2 diabetes mellitus (T2DM) remains to be examined. Therefore, the aim of the present study was to determine the potential of LOE to prevent the development of an endothelial dysfunction, and improve metabolic parameters including hyperglycemia, albuminuria and physical exercise capacity in db/db mice, an experimental model of T2DM. The effect of LOE (100 mg/kg/day by gavage for 8 weeks) on these parameters was compared to that of an oral antidiabetic drug, pioglitazone (30 mg/kg/day by gavage). Reduced blood glucose level, body weight and albumin-creatinine ratio were observed in the group receiving LOE compared to the control db/db group. The LOE treatment improved endothelium-dependent relaxations, abolished endothelium-dependent contractions to acetylcholine in the aorta, and normalized the increased vascular oxidative stress and expression of NADPH oxidase, cyclooxygenases, angiotensin II, angiotensin type 1 receptors and peroxynitrite and the decreased expression of endothelial NO synthase in db/db mice. The angiotensin-converting enzyme (ACE) activity was reduced in the LOE group compared to that in the control db/db group. LOE also inhibited the activity of purified ACE, COX-1 and COX-2 in a dose-dependent manner. In addition, LOE improved physical exercise capacity. Thus, the present findings indicate that LOE has a beneficial effect on the vascular system in db/db mice by improving endothelium-dependent relaxations and vascular oxidative stress most likely by normalizing the angiotensin system, and also on metabolic parameters, and these effects are associated with an enhanced physical exercise capacity.
Collapse
MESH Headings
- Albuminuria/prevention & control
- Angiotensin II/genetics
- Angiotensin II/metabolism
- Animals
- Aorta/drug effects
- Aorta/physiopathology
- Blood Glucose/metabolism
- Body Weight/drug effects
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Ethanol/chemistry
- Exercise Tolerance/drug effects
- Gene Expression/drug effects
- Humans
- Hyperglycemia/prevention & control
- Hypoglycemic Agents/pharmacology
- Lindera/chemistry
- Male
- Mice
- Mice, Transgenic
- NADPH Oxidases/genetics
- NADPH Oxidases/metabolism
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Pioglitazone
- Plant Extracts/pharmacology
- Prostaglandin-Endoperoxide Synthases/genetics
- Prostaglandin-Endoperoxide Synthases/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Thiazolidinediones/pharmacology
Collapse
Affiliation(s)
- Jung-Ok Lee
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
- Research and Development Center, Hanwha Pharma. Co., Ltd., Chuncheon, Republic of Korea
| | - Cyril Auger
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Dong Hyun Park
- Research Center, YangJi Chemicals, Suwon, Republic of Korea
| | - Moonkyu Kang
- Research and Development Center, Hanwha Pharma. Co., Ltd., Chuncheon, Republic of Korea
| | - Min-Ho Oak
- College of Pharmacy, Mokpo National University, Muan, Jeonam, Republic of Korea
| | - Kyoung Rak Kim
- Research and Development Center, Hanwha Pharma. Co., Ltd., Chuncheon, Republic of Korea
| | - Valérie B. Schini-Kerth
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
- * E-mail:
| |
Collapse
|
8
|
[The role of Pax2 in regulation of kidney development and kidney disease]. YI CHUAN = HEREDITAS 2011; 33:931-8. [PMID: 21951793 DOI: 10.3724/sp.j.1005.2011.00931] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Paired box2 (Pax2) gene plays a crucial role in kidney development and is expressed in the nephric duct, mesenchyme of pronephrons, mesonephrons, and metanephrons with special spatial and temporal characteristic. Research in animals indicate that Pax2 can interact with many important transcription factors such as Gdnf, Ret, SHH, Wnt4, and Fgf to organize the nephric linage specification, pro/mesonephric tubule formation and descent, emergence of the ureteric bud, branching morphogenesis, and nephron induction. Pax2 is associated with various congenital renal and ureter malformations, and the mutation is easist to detected in Renal-coloboma syndrome. In renal cell carcinoma, Wilms tumor and many acquired kidney diseases Pax2 is expressed abnormally, whose diagnose and therapy value will be the focus of further research. This paper reviews the molecular structure, expression and regulation of Pax2 in kidney development and diseases.
Collapse
|
9
|
Chen YW, Chenier I, Chang SY, Tran S, Ingelfinger JR, Zhang SL. High glucose promotes nascent nephron apoptosis via NF-kappaB and p53 pathways. Am J Physiol Renal Physiol 2010; 300:F147-56. [PMID: 20962117 DOI: 10.1152/ajprenal.00361.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A hyperglycemic environment in utero reduces kidney size and nephron number due to nascent nephron apoptosis. However, the underlying mechanisms are incompletely understood. The present study investigated whether the nascent nephron apoptosis promoted by high glucose is mediated via the transcription factor NF-κB and p53 signaling pathways. Neonatal mouse kidneys from the offspring of nondiabetic, diabetic, and insulin-treated diabetic dams were used for in vivo studies, and MK4 cells, an embryonic metanephric mesenchymal (MM) cell line, were used for in vitro studies. Neonatal kidneys of the offspring of diabetic mothers exhibited an increased number of apoptotic cells and reactive oxygen species (ROS) generation, enhanced NF-κB activation, and nuclear translocation of its subunits (p50 and p65 subunits) as well as phosphorylation (Ser 15) of p53 compared with kidneys of offspring of nondiabetic mothers. Insulin treatment of diabetic dams normalized these parameters in the offspring. In vitro, high-glucose (25 mM) induced ROS generation and significantly increased MK4 cell apoptosis and caspase-3 activity via activation of NF-κB pathway, with p53 phosphorylation and nuclear translocation compared with normal glucose (5 mM). These changes in a high-glucose milieu were prevented by transient transfection of small interfering RNAs for dominant negative IκBα or IKK or p53. Our data demonstrate that high glucose-induced nascent nephron apoptosis is mediated, at least in part, via ROS generation and the activation of NF-κB and p53 pathways.
Collapse
Affiliation(s)
- Yun-Wen Chen
- Université de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, CRCHUM, Hôpital Hôtel-Dieu, Pavillon Masson, 3850 Saint-Urbain St., Montreal, Quebec, Canada H2W 1T7
| | | | | | | | | | | |
Collapse
|
10
|
Lindoso RS, Verdoorn KS, Einicker-Lamas M. Renal recovery after injury: the role of Pax-2. Nephrol Dial Transplant 2009; 24:2628-33. [PMID: 19556301 DOI: 10.1093/ndt/gfp307] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
11
|
Deficiency of intrarenal angiotensin II type 2 receptor impairs paired homeo box-2 and N-myc expression during nephrogenesis. Pediatr Nephrol 2008; 23:1769-77. [PMID: 18607644 DOI: 10.1007/s00467-008-0854-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 03/27/2008] [Accepted: 03/31/2008] [Indexed: 10/21/2022]
Abstract
We previously demonstrated that angiotensin II (Ang II) stimulates paired homeo box-2 (Pax-2) via the Ang II type 2 receptor (AT(2)R). The Pax-2 gene and N-myc play pivotal roles in renal morphogenesis via their effects on cell proliferation and differentiation in embryonic mesenchymal cells and embryonic mouse kidneys. Since AT(2)R knock-out (KO) mice have a phenotype that is similar to that of humans with congenital renal and urinary tract anomalies (CAKUT) and develop hypertension in adulthood, these mice and wild-type controls were used for this study. Embryonic kidneys isolated from E12 to term gestation were cultured in Dulbecco's modified Eagle's medium (DMEM) with or without Ang II (10(-6) M) for 24 h ex vivo. Renal morphogenesis was histologically assessed. Mean glomerular tuft volume was determined by the method of Weibel and Gomez with the aid of image analysis software. Pax-2 and N-myc gene expression were determined by immunostaining as well as by Western blotting and real-time-quantitative polymerase chain reaction (RT-qPCR). Glomerular size was significantly smaller, and Pax-2 and N-myc expression down-regulated, in kidneys of AT(2)R KO mice compared with those of wild-type mice. In ex vivo studies, Ang II stimulated Pax-2 and N-myc mRNA expression in embryonic kidneys of wild-type mice, but this stimulatory effect was absent in embryonic kidneys of AT(2)R KO mice. Taken together, these data indicate that intrarenal AT(2)R plays an important role in nephrogenesis. Deficiency of AT(2)R may impair both Pax-2 and N-myc expression, eventually resulting in glomerular hyperfiltration that may, ultimately, lead to later development of hypertension.
Collapse
|
12
|
Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 2008; 359:61-73. [PMID: 18596274 PMCID: PMC3923653 DOI: 10.1056/nejmra0708473] [Citation(s) in RCA: 2608] [Impact Index Per Article: 163.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Peter D Gluckman
- Liggins Institute, University of Auckland, and National Research Centre for Growth and Development, Auckland, New Zealand.
| | | | | | | |
Collapse
|