1
|
Tain YL, Hsu CN. Preterm Birth and Kidney Health: From the Womb to the Rest of Life. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1213. [PMID: 39457178 PMCID: PMC11506578 DOI: 10.3390/children11101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Chronic kidney disease (CKD) is a widespread condition often resulting from multiple factors, including maternal influences. These risk factors not only heighten the likelihood of developing CKD but increase the risk of a preterm birth. Adverse events during nephrogenesis can disrupt kidney development, leading to a reduced number of nephrons. As survival rates for preterm infants improve, more individuals are living into adulthood, thereby elevating their risk of CKD later in life. This review aims to explore the connections between preterm birth, kidney development, and the increased risk of CKD, while proposing practical solutions for the future through a multidisciplinary approach. We examine human studies linking preterm birth to negative kidney outcomes, summarize animal models demonstrating kidney programming and reduced nephron numbers, and consolidate knowledge on common mechanisms driving kidney programming. Additionally, we discuss factors in the postnatal care environment that may act as secondary insults contributing to CKD risk, such as acute kidney injury (AKI), the use of nephrotoxic drugs, preterm nutrition, and catch-up growth. Finally, we outline recommendations for action, emphasizing the importance of avoiding modifiable risk factors and implementing early CKD screening for children born preterm. Together, we can ensure that advancements in kidney health keep pace with improvements in preterm care.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
Farias JS, Santos KM, Lima NK, Cabral EV, Aires RS, Veras AC, Paixão AD, Vieira LD. Maternal endotoxemia induces renal collagen deposition in adult offspring: Role of NADPH oxidase/TGF-β1/MMP-2 signaling pathway. Arch Biochem Biophys 2020; 684:108306. [DOI: 10.1016/j.abb.2020.108306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 01/19/2023]
|
3
|
Cabral EV, Vieira LD, Sant'Helena BRM, Ribeiro VS, Farias JS, Aires RS, Paz ST, Muzi‐Filho H, Paixão AD, Vieyra A. Alpha‐Tocopherol during lactation and after weaning alters the programming effect of prenatal high salt intake on cardiac and renal functions of adult male offspring. Clin Exp Pharmacol Physiol 2019; 46:1151-1165. [DOI: 10.1111/1440-1681.13161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Edjair V. Cabral
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
- National Center of Structural Biology and Bioimaging/CENABIO Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Leucio D. Vieira
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
- National Center of Structural Biology and Bioimaging/CENABIO Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | | | - Valdilene S. Ribeiro
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
| | - Juliane S. Farias
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
| | - Regina S. Aires
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
| | - Silvania T. Paz
- Department of Pathology Federal University of Pernambuco Recife Brazil
| | - Humberto Muzi‐Filho
- National Center of Structural Biology and Bioimaging/CENABIO Federal University of Rio de Janeiro Rio de Janeiro Brazil
- Carlos Chagas Filho Institute of Biophysics Federal University of Rio de Janeiro Rio de Janeiro Brazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERA Rio de Janeiro Brazil
| | - Ana D. Paixão
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
- National Center of Structural Biology and Bioimaging/CENABIO Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Adalberto Vieyra
- National Center of Structural Biology and Bioimaging/CENABIO Federal University of Rio de Janeiro Rio de Janeiro Brazil
- Carlos Chagas Filho Institute of Biophysics Federal University of Rio de Janeiro Rio de Janeiro Brazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERA Rio de Janeiro Brazil
- Graduate Program in Translational Biomedicine/BIOTRANS Grande Rio University Duque de Caxias Brazil
| |
Collapse
|
4
|
Khadangi F, Azzi A. Vitamin E - The Next 100 Years. IUBMB Life 2018; 71:411-415. [PMID: 30550633 DOI: 10.1002/iub.1990] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/13/2018] [Accepted: 11/24/2018] [Indexed: 12/16/2022]
Abstract
α-Tocopherol is the only tocopherol that has been shown to prevent the human deficiency disease Ataxia with Isolated Vitamin E Deficiency (AVED), and thus it is the only one that, for humans, can be called vitamin E. Vitamin E in addition to preventing AVED has documented immune boosting properties and an activity against nonalcoholic hepatosteatosis and low-grade inflammation. Epidemiological studies indicating that vitamin E could prevent cardiovascular events, neurodegenerative disease, macular degeneration, and cancer were in general not confirmed by clinical intervention studies. Vitamin E and some of its metabolites modulate cell signaling and gene transcription. Future research is needed to achieve a better understanding of the molecular events leading to gene regulation by vitamin E, especially in its phosphorylated form. Isolation and characterization of the vitamin E kinase and vitamin E phosphate phosphatase will help in the understanding of cell regulation processes modulated by vitamin E. A clarification of the pathogenesis of AVED remains an important goal to be achieved. © 2018 IUBMB Life, 71(4):411-415, 2019.
Collapse
Affiliation(s)
| | - Angelo Azzi
- Vascular Biology Laboratory, JM USDA-HNRCA at Tufts University, Boston, Massachusetts
| |
Collapse
|
5
|
Vieira LD, Farias JS, de Queiroz DB, Cabral EV, Lima-Filho MM, Sant'Helena BR, Aires RS, Ribeiro VS, Santos-Rocha J, Xavier FE, Paixão AD. Oxidative stress induced by prenatal LPS leads to endothelial dysfunction and renal haemodynamic changes through angiotensin II/NADPH oxidase pathway: Prevention by early treatment with α-tocopherol. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3577-3587. [DOI: 10.1016/j.bbadis.2018.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/04/2018] [Accepted: 09/17/2018] [Indexed: 11/16/2022]
|
6
|
Rodríguez-Rodríguez P, Ramiro-Cortijo D, Reyes-Hernández CG, López de Pablo AL, González MC, Arribas SM. Implication of Oxidative Stress in Fetal Programming of Cardiovascular Disease. Front Physiol 2018; 9:602. [PMID: 29875698 PMCID: PMC5974054 DOI: 10.3389/fphys.2018.00602] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
Lifestyle and genetic background are well known risk factors of cardiovascular disease (CVD). A third contributing factor is suboptimal fetal development, due to nutrient or oxygen deprivation, placental insufficiency, or exposure to toxic substances. The fetus adapts to adverse intrauterine conditions to ensure survival; the immediate consequence is low birth weight (LBW) and the long-term effect is an increased susceptibility to develop CVD in adult life. This process is known as Developmental Origins of Health and Disease (DOHaD) or fetal programming of CVD. The influence of fetal life for the future cardiovascular health of the individual has been evidenced by numerous epidemiologic studies in populations suffering from starvation during intrauterine life. Furthermore, experimental animal models have provided support and enabled exploring the underlying mechanisms. Oxidative stress seems to play a central role in fetal programming of CVD, both in the response of the feto-placental unit to the suboptimal intrauterine environment and in the alterations of physiologic systems of cardiovascular control, ultimately leading to disease. This review aims to summarize current knowledge on the alterations in oxidative balance in response to fetal stress factors covering two aspects. Firstly, the evidence from human studies of the implication of oxidative stress in LBW induced by suboptimal conditions during intrauterine life, emphasizing the role of the placenta. In the second part we summarize data on specific redox alterations in key cardiovascular control organs induced by exposure to known stress factors in experimental animals and discuss the emerging role of the mitochondria.
Collapse
Affiliation(s)
| | - David Ramiro-Cortijo
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Angel L López de Pablo
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - M Carmen González
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Silvia M Arribas
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Ribeiro VS, Cabral EV, Vieira LD, Aires RS, Farias JS, Muzi-Filho H, Vieyra A, Paixão AD. Perinatal α-tocopherol overload programs alterations in kidney development and renal angiotensin II signaling pathways at birth and at juvenile age: Mechanisms underlying the development of elevated blood pressure. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2458-2471. [PMID: 29654944 DOI: 10.1016/j.bbadis.2018.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/26/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022]
Abstract
α-Tocopherol (α-Toc) overload increases the risk of dying in humans (E.R. Miller III et al. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality Ann Int Med. 142 (2005) 37-46), and overload during early development leads to elevation of blood pressure at adult life, but the mechanism(s) remains unknown. We hypothesized that α-Toc overload during organogenesis affects the renal renin angiotensin system (RAS) components and renal Na+ handling, culminating with late elevated blood pressure. Pregnant Wistar rats received α-Toc or the superoxide dismutase mimetic tempol throughout pregnancy. We evaluated components of the intrarenal renin angiotensin system in neonate and juvenile offspring: Ang II-positive cells, Ang II receptors (AT1 and AT2), linked protein kinases, O2- production, NADPH oxidase abundance, lipid peroxidation and activity of Na+-transporting ATPases. In juvenile offspring we followed the evolution of arterial blood pressure. Neonates from α-Toc and tempol mothers presented with accentuated retardment in tubular development, pronounced decrease in glomerular Ang II-positive cells and AT1/AT2 ratio, intense production of O2- and upregulation of the α, ε and λ PKC isoforms. α-Toc decreased or augmented the abundance of renal (Na++K+)ATPase depending on the age and α-Toc dose. In juvenile rats the number of Ang II-positive cells returned to control values as well as PKCα, but co-existing with marked upregulation in the activity of (Na++K+) and Na+-ATPase and elevated arterial pressure at 30 days. We conclude that the mechanisms of these alterations rely on selective targeting of renal RAS components through genic and pro-oxidant effects of the vitamin.
Collapse
Affiliation(s)
- Valdilene S Ribeiro
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Edjair V Cabral
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
| | - Leucio D Vieira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
| | - Regina S Aires
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Juliane S Farias
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Humberto Muzi-Filho
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil; Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil; National Institute in Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil; Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil; National Institute in Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil; Graduate Program in Translational Biomedicine, Grande Rio University, Duque de Caxias 25071-202, Rio de Janeiro, Brazil
| | - Ana D Paixão
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Abstract
Four tocopherols are available in nature and are absorbed with the diet, but only one RRR-α-tocopherol satisfies the criteria of being a vitamin. The biological activity of the different tocopherols studied in the rat by the resorption-gestation test has been inconsistently extrapolated to human beings where the tocopherols have no influence on a successful pregnancy. Diminution of RRR-α-tocopherol intake results in diseases characterized by ataxia, whose pathogenetic mechanism, despite vigorous claims, has not been clarified. The calculation of the Daily Reference Intake (DRI), necessary to prevent disease, is based on an obsolete test, the peroxide-induced erythrocyte hemolysis, called the gold standard, but of highly questioned validity. If many epidemiological studies have given positive results, showing prevention by high vitamin E containing diets of cardiovascular events, neurodegenerative disease, macular degeneration and cancer, the clinical confirmatory intervention studies were mostly negative. On the positive side, besides preventing vitamin E deficiency diseases, vitamin E has shown efficacy as anti-inflammatory and immune boosting compound. It has also shown some efficacy in protecting against nonalcoholic hepato-steatosis. At a molecular level, vitamin E and some of its metabolites have shown capacity of regulating cell signaling and modulating gene transcription.
Collapse
Affiliation(s)
- Angelo Azzi
- Vascular Biology Laboratory, JM USDA-HNRCA at Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
9
|
Tain YL, Hsu CN. Developmental Origins of Chronic Kidney Disease: Should We Focus on Early Life? Int J Mol Sci 2017; 18:ijms18020381. [PMID: 28208659 PMCID: PMC5343916 DOI: 10.3390/ijms18020381] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/24/2017] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease (CKD) is becoming a global burden, despite recent advances in management. CKD can begin in early life by so-called "developmental programming" or "developmental origins of health and disease" (DOHaD). Early-life insults cause structural and functional changes in the developing kidney, which is called renal programming. Epidemiological and experimental evidence supports the proposition that early-life adverse events lead to renal programming and make subjects vulnerable to developing CKD and its comorbidities in later life. In addition to low nephron endowment, several mechanisms have been proposed for renal programming. The DOHaD concept opens a new window to offset the programming process in early life to prevent the development of adult kidney disease, namely reprogramming. Here, we review the key themes on the developmental origins of CKD. We have particularly focused on the following areas: evidence from human studies support fetal programming of kidney disease; insight from animal models of renal programming; hypothetical mechanisms of renal programming; alterations of renal transcriptome in response to early-life insults; and the application of reprogramming interventions to prevent the programming of kidney disease.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
10
|
Ribeiro NE, Cabral EV, Aires RS, Vieira-Filho LD, Ribeiro VS, Gonçalves DRM, Borges LPNC, Melo IMF, Ferreira CGM, Wanderley-Teixeira V, Teixeira ÁAC, Soares AF, Paixão AD. Maternal Na+intake induces renal function injury in rats prevented by a short-term angiotensin converting enzyme inhibitor. Clin Exp Pharmacol Physiol 2017; 44:275-284. [DOI: 10.1111/1440-1681.12702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/26/2016] [Accepted: 11/10/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Natalie E Ribeiro
- Department of Morphology and Animal Physiology; Federal Rural University of Pernambuco; Recife Pernambuco Brazil
| | - Edjair V Cabral
- Department of Physiology and Pharmacology; Centre of Biological Sciences; Federal University of Pernambuco; Recife Pernambuco Brazil
| | - Regina S Aires
- Department of Physiology and Pharmacology; Centre of Biological Sciences; Federal University of Pernambuco; Recife Pernambuco Brazil
| | - Leucio D Vieira-Filho
- Department of Physiology and Pharmacology; Centre of Biological Sciences; Federal University of Pernambuco; Recife Pernambuco Brazil
| | - Valdilene S Ribeiro
- Department of Physiology and Pharmacology; Centre of Biological Sciences; Federal University of Pernambuco; Recife Pernambuco Brazil
| | - Daianna RM Gonçalves
- Department of Physiology and Pharmacology; Centre of Biological Sciences; Federal University of Pernambuco; Recife Pernambuco Brazil
| | - Luis PNC Borges
- Department of Physiology and Pharmacology; Centre of Biological Sciences; Federal University of Pernambuco; Recife Pernambuco Brazil
| | - Ismaela MF Melo
- Department of Morphology and Animal Physiology; Federal Rural University of Pernambuco; Recife Pernambuco Brazil
| | - Cintia GM Ferreira
- Department of Morphology and Animal Physiology; Federal Rural University of Pernambuco; Recife Pernambuco Brazil
| | - Valeria Wanderley-Teixeira
- Department of Morphology and Animal Physiology; Federal Rural University of Pernambuco; Recife Pernambuco Brazil
| | - Álvaro AC Teixeira
- Department of Morphology and Animal Physiology; Federal Rural University of Pernambuco; Recife Pernambuco Brazil
| | - Anísio F Soares
- Department of Morphology and Animal Physiology; Federal Rural University of Pernambuco; Recife Pernambuco Brazil
| | - Ana D Paixão
- Department of Physiology and Pharmacology; Centre of Biological Sciences; Federal University of Pernambuco; Recife Pernambuco Brazil
| |
Collapse
|
11
|
Renal molecular mechanisms underlying altered Na+ handling and genesis of hypertension during adulthood in prenatally undernourished rats. Br J Nutr 2014; 111:1932-44. [PMID: 24661554 DOI: 10.1017/s0007114513004236] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the present study, we investigated the development of hypertension in prenatally undernourished adult rats, including the mechanisms that culminate in dysfunctions of molecular signalling in the kidney. Dams were fed a low-protein multideficient diet throughout gestation with or without α-tocopherol during lactation. The time course of hypertension development followed in male offspring was correlated with alterations in proximal tubule Na+-ATPase activity, expression of angiotensin II (Ang II) receptors, and activity of protein kinases C and A. After the establishment of hypertension, Ang II levels, cyclo-oxygenase 2 (COX-2) and NADPH oxidase subunit expression, lipid peroxidation and macrophage infiltration were examined in renal tissue. Lipid peroxidation in undernourished rats, which was very intense at 60 d, decreased at 90 d and returned to control values by 150 d. During the prehypertensive phase, prenatally undernourished rats exhibited elevated renal Na+-ATPase activity, type 2 Ang II receptor down-regulation and altered protein kinase A:protein kinase C ratio. Stable late hypertension coexisted with highly elevated levels of Ang II-positive cells in the cortical tubulointerstitium, enhanced increase in the expression of p47phox (NADPH oxidase regulatory subunit), marked down-regulation of COX-2 expression, expanded plasma volume and decreased creatinine clearance. These alterations were reduced when the dams were given α-tocopherol during lactation. The offspring of well-nourished dams treated with α-tocopherol exhibited most of the alterations encountered in the offspring of undernourished dams not treated with α-tocopherol. Thus, alterations in proximal tubule Na+ transport, subcellular signalling pathways and reactive oxygen species handling in renal tissue underpin the development of hypertension.
Collapse
|
12
|
Paixão AD, Alexander BT. How the kidney is impacted by the perinatal maternal environment to develop hypertension. Biol Reprod 2013; 89:144. [PMID: 24227755 DOI: 10.1095/biolreprod.113.111823] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Environmental conditions during perinatal development such as maternal undernutrition, maternal glucocorticoids, placental insufficiency, and maternal sodium overload can program changes in renal Na(+) excretion leading to hypertension. Experimental studies indicate that fetal exposure to an adverse maternal environment may reduce glomerular filtration rate by decreasing the surface area of the glomerular capillaries. Moreover, fetal responses to environmental insults during early life that contribute to the development of hypertension may include increased expression of tubular apical or basolateral membrane Na(+) transporters and increased production of renal superoxide leading to enhanced Na(+) reabsorption. This review will address the role of these potential renal mechanisms in the fetal programming of hypertension in experimental models induced by maternal undernutrition, fetal exposure to glucocorticoids, placental insufficiency, and maternal sodium overload in the rat.
Collapse
Affiliation(s)
- Ana D Paixão
- Department of Physiology and Pharmacology, Center of Biological Sciences, Federal University of Pernambuco, Recife, Brazil
| | | |
Collapse
|
13
|
Cabral EV, Vieira-Filho LD, Silva PA, Nascimento WS, Aires RS, Oliveira FST, Luzardo R, Vieyra A, Paixão ADO. Perinatal Na+ overload programs raised renal proximal Na+ transport and enalapril-sensitive alterations of Ang II signaling pathways during adulthood. PLoS One 2012; 7:e43791. [PMID: 22928034 PMCID: PMC3425503 DOI: 10.1371/journal.pone.0043791] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/24/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND High Na(+) intake is a reality in nowadays and is frequently accompanied by renal and cardiovascular alterations. In this study, renal mechanisms underlying perinatal Na(+) overload-programmed alterations in Na(+) transporters and the renin/angiotensin system (RAS) were investigated, together with effects of short-term treatment with enalapril in terms of reprogramming molecular alterations in kidney. METHODOLOGY/PRINCIPAL FINDINGS Male adult Wistar rats were obtained from dams maintained throughout pregnancy and lactation on a standard diet and drinking water (control) or 0.17 M NaCl (saline group). Enalapril (100 mg/l), an angiotensin converting enzyme inhibitor, was administered for three weeks after weaning. Ninety day old offspring from dams that drank saline presented with proximal tubules exhibiting increased (Na(+)+K(+))ATPase expression and activity. Ouabain-insensitive Na(+)-ATPase activity remained unchanged but its response to angiotensin II (Ang II) was lost. PKC, PKA, renal thiobarbituric acid reactive substances (TBARS), macrophage infiltration and collagen deposition markedly increased, and AT(2) receptor expression decreased while AT(1) expression was unaltered. Early treatment with enalapril reduced expression and activity of (Na(+)+K(+))ATPase, partially recovered the response of Na(+)-ATPase to Ang II, and reduced PKC and PKA activities independently of whether offspring were exposed to high perinatal Na(+) or not. In addition, treatment with enalapril per se reduced AT(2) receptor expression, and increased TBARS, macrophage infiltration and collagen deposition. The perinatally Na(+)-overloaded offspring presented high numbers of Ang II-positive cortical cells, and significantly lower circulating Ang I, indicating that programming/reprogramming impacted systemic and local RAS. CONCLUSIONS/SIGNIFICANCE Maternal Na(+) overload programmed alterations in renal Na(+) transporters and in its regulation, as well as severe structural lesions in adult offspring. Enalapril was beneficial predominantly through its influence on Na(+) pumping activities in adult offspring. However, side effects including down-regulation of PKA, PKC and AT(2) receptors and increased TBARS could impair renal function in later life.
Collapse
Affiliation(s)
- Edjair V. Cabral
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Leucio D. Vieira-Filho
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Paulo A. Silva
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Williams S. Nascimento
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Regina S. Aires
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Fabiana S. T. Oliveira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Ricardo Luzardo
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Ana D. O. Paixão
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|