1
|
Ma J, Ren L, Su Q, Lv X, Sun M, Wei Y, Dai L, Bian X. TRPC6 knockdown-mediated ERK1/2 inactivation alleviates podocyte injury in minimal change disease via upregulating Lon peptidase 1. Ren Fail 2024; 46:2431150. [PMID: 39566913 PMCID: PMC11580150 DOI: 10.1080/0886022x.2024.2431150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/16/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
Minimal change disease (MCD) is a universal primary glomerular disease contributing to nephrotic syndrome. Lon peptidase 1 (LONP1) has been suggested to protect podocytes from damage during the progression of MCD. Accordingly, our research further explored the specific mechanisms of LONP1. Initially, the expressions of TRPC6, p-ERK1/2, and LONP1 in the kidney tissues of MCD patients were detected by immunohistochemistry and Western blot. Human podocytes AB8/13 were serially subjected to transfection with shTRPC6/shNC, and 48-h treatment with 30 µg/ml puromycin aminonucleoside (PAN). The viability, apoptosis, and migration of AB8/13 cells were assessed by cell counting kit-8, flow cytometry, and transwell assays. The mRNA and protein expressions of LONP1 were downregulated while those of TRPC6 were upregulated in the kidney tissues of MCD patients. PAN induced podocyte injury and migration and inhibited LONP1 expression, whereas TRPC6 silencing did oppositely. The phosphorylation level of ERK1/2 was reduced in MCD samples, which was negatively associated with TRPC6 expression and positively associated with LONP1 expression. Furthermore, ERK phosphorylation agonist offset the effects of TRPC6 silencing on mitigating podocyte injury and migration as well as upregulating LONP1 expression. Collectively, TRPC6 knockdown-induced ERK1/2 inactivation can ameliorate podocyte injury in MCD by increasing the expression of LONP1.
Collapse
Affiliation(s)
- Jianwei Ma
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo City, Zhejiang Province, China
| | - Liling Ren
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo City, Zhejiang Province, China
| | - Qin Su
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo City, Zhejiang Province, China
| | - Xiuyi Lv
- Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo City, Zhejiang Province, China
| | - Min Sun
- Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo City, Zhejiang Province, China
| | - Yunbo Wei
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo City, Zhejiang Province, China
| | - Lili Dai
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo City, Zhejiang Province, China
| | - Xueyan Bian
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo City, Zhejiang Province, China
| |
Collapse
|
2
|
Issa W, Njeim R, Carrazco A, Burke GW, Mitrofanova A. Role of the Innate Immune Response in Glomerular Disease Pathogenesis: Focus on Podocytes. Cells 2024; 13:1157. [PMID: 38995008 PMCID: PMC11240682 DOI: 10.3390/cells13131157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Accumulating evidence indicates that inflammatory and immunologic processes play a significant role in the development and progression of glomerular diseases. Podocytes, the terminally differentiated epithelial cells, are crucial for maintaining the integrity of the glomerular filtration barrier. Once injured, podocytes cannot regenerate, leading to progressive proteinuric glomerular diseases. However, emerging evidence suggests that podocytes not only maintain the glomerular filtration barrier and are important targets of immune responses but also exhibit many features of immune-like cells, where they are involved in the modulation of the activity of innate and adaptive immunity. This dual role of podocytes may lead to the discovery and development of new therapeutic targets for treating glomerular diseases. This review aims to provide an overview of the innate immunity mechanisms involved in podocyte injury and the progression of proteinuric glomerular diseases.
Collapse
Affiliation(s)
- Wadih Issa
- Department of Internal Medicine, Saint Joseph University, Beirut 1107 2180, Lebanon
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Arianna Carrazco
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - George W. Burke
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
3
|
Gong X, Huang J, Zhang Y, Wang F, Wang X, Meng L, Cheng X, Liu G, Cui Z, Zhao M. Patients with primary focal segmental glomerulosclerosis with detectable urinary CD80 are more similar to patients with minimal change disease in clinicopathological features. Ren Fail 2023; 45:2279642. [PMID: 37942512 PMCID: PMC10653691 DOI: 10.1080/0886022x.2023.2279642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Focal segmental glomerulosclerosis (FSGS) is an important cause of refractory nephrotic syndrome (NS) in children and adults. Urinary CD80 is elevated in some patients with primary FSGS, however, its clinical value is not fully clarified. This study aims to evaluate the clinical and pathological significance of urinary CD80 in patients with primary FSGS. METHODS Sixty-one adult patients with biopsy-proven primary FSGS, with standard treatment and long-term follow up, were enrolled retrospectively. Urinary CD80, on the day of kidney biopsy, was measured using commercial ELISA kits and adjusted by urinary creatinine excretion. Their associations with clinical and pathological parameters were investigated. RESULTS Urinary CD80 was detectable in 30/61 (49.2%) patients, who presented with a higher level of proteinuria (10.7 vs. 5.8 g/24h; p = 0.01), a lower level of serum albumin (19.3 ± 3.9 vs. 24.2 ± 8.2 g/L; p = 0.005), a higher prevalence of hematuria (70.0 vs. 38.7%; p = 0.01), and showed a lower percentage of segmental glomerulosclerosis lesion [4.8 (3.7-14.0) vs. 9.1 (5.6-21.1) %; p = 0.06]. The cumulative relapse rate was remarkably high in these patients (log-rank, p = 0.001). Multivariate analysis identified that the elevated urinary CD80 was an independent risk factor for steroid-dependent NS (OR 8.81, 95% CI 1.41-54.89; p = 0.02) and relapse (HR, 2.87; 95% CI 1.29-6.38; p = 0.01). CONCLUSIONS The elevated urinary CD80 is associated with mild pathological change and steroid-dependent cases of primary FSGS adults, which indicates these patients are more similar to minimal change disease (MCD) in clinicopathological features.
Collapse
Affiliation(s)
- Xiaojie Gong
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China; Beijing, China
| | - Jing Huang
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China; Beijing, China
| | - Yimiao Zhang
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China; Beijing, China
| | - Fang Wang
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China; Beijing, China
| | - Xin Wang
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China; Beijing, China
| | - Liqiang Meng
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China; Beijing, China
| | - Xuyang Cheng
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China; Beijing, China
| | - Gang Liu
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China; Beijing, China
| | - Zhao Cui
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China; Beijing, China
| | - Minghui Zhao
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China; Beijing, China
| |
Collapse
|
4
|
Burke GW, Mitrofanova A, Fontanella A, Ciancio G, Roth D, Ruiz P, Abitbol C, Chandar J, Merscher S, Fornoni A. The podocyte: glomerular sentinel at the crossroads of innate and adaptive immunity. Front Immunol 2023; 14:1201619. [PMID: 37564655 PMCID: PMC10410139 DOI: 10.3389/fimmu.2023.1201619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/26/2023] [Indexed: 08/12/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a common glomerular disorder that manifests clinically with the nephrotic syndrome and has a propensity to recur following kidney transplantation. The pathophysiology and therapies available to treat FSGS currently remain elusive. Since the podocyte appears to be the target of apparent circulating factor(s) that lead to recurrence of proteinuria following kidney transplantation, this article is focused on the podocyte. In the context of kidney transplantation, the performance of pre- and post-reperfusion biopsies, and the establishment of in vitro podocyte liquid biopsies/assays allow for the development of clinically relevant studies of podocyte biology. This has given insight into new pathways, involving novel targets in innate and adaptive immunity, such as SMPDL3b, cGAS-STING, and B7-1. Elegant experimental studies suggest that the successful clinical use of rituximab and abatacept, two immunomodulating agents, in our case series, may be due to direct effects on the podocyte, in addition to, or perhaps distinct from their immunosuppressive functions. Thus, tissue biomarker-directed therapy may provide a rational approach to validate the mechanism of disease and allow for the development of new therapeutics for FSGS. This report highlights recent progress in the field and emphasizes the importance of kidney transplantation and recurrent FSGS (rFSGS) as a platform for the study of primary FSGS.
Collapse
Affiliation(s)
- George W. Burke
- Division of Kidney−Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alla Mitrofanova
- Research, Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Antonio Fontanella
- Research, Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gaetano Ciancio
- Division of Kidney−Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - David Roth
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, and the Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Phil Ruiz
- Transplant Pathology, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Carolyn Abitbol
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jayanthi Chandar
- Division of Pediatric Kidney Transplantation, Department of Pediatrics, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
5
|
Glomerular B7-1 staining: toward precision medicine for treatment of recurrent focal segmental glomerulosclerosis. Pediatr Nephrol 2023; 38:13-15. [PMID: 35725967 DOI: 10.1007/s00467-022-05650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 01/10/2023]
|
6
|
B7-1 mediates podocyte injury and glomerulosclerosis through communication with Hsp90ab1-LRP5-β-catenin pathway. Cell Death Differ 2022; 29:2399-2416. [PMID: 35710882 PMCID: PMC9750974 DOI: 10.1038/s41418-022-01026-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 02/08/2023] Open
Abstract
Podocyte injury is a hallmark of glomerular diseases; however, the underlying mechanisms remain unclear. B7-1 is increased in injured podocytes, but its intrinsic role is controversial. The clinical data here revealed the intimate correlation of urinary B7-1 with severity of glomerular injury. Through transcriptomic and biological assays in B7-1 transgenic and adriamycin nephropathy models, we identified B7-1 is a key mediator in podocyte injury and glomerulosclerosis through a series of signal transmission to β-catenin. Using LC-MS/MS, Hsp90ab1, a conserved molecular chaperone, was distinguished to be an anchor for transmitting signals from B7-1 to β-catenin. Molecular docking and subsequent mutant analysis further identified the residue K69 in the N terminal domain of Hsp90ab1 was the key binding site for B7-1 to activate LRP5/β-catenin pathway. The interaction and biological functions of B7-1-Hsp90ab1-LRP5 complex were further demonstrated in vitro and in vivo. We also found B7-1 is a novel downstream target of β-catenin. Our results indicate an intercrossed network of B7-1, which collectively induces podocyte injury and glomerulosclerosis. Our study provides an important clue to improve the therapeutic strategies to target B7-1.
Collapse
|
7
|
Cara-Fuentes G, Andres-Hernando A, Bauer C, Banks M, Garcia GE, Cicerchi C, Kuwabara M, Shimada M, Johnson RJ, Lanaspa MA. Pulmonary surfactants and the respiratory-renal connection in steroid-sensitive nephrotic syndrome of childhood. iScience 2022; 25:104694. [PMID: 35847557 PMCID: PMC9284382 DOI: 10.1016/j.isci.2022.104694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/23/2022] [Accepted: 06/24/2022] [Indexed: 01/21/2023] Open
Abstract
Steroid-sensitive nephrotic syndrome (SSNS) in childhood is usually due to minimal change disease (MCD). Unlike many glomerular conditions, SSNS/MCD is commonly precipitated by respiratory infections. Of interest, pulmonary inflammation releases surfactants in circulation which are soluble agonists of SIRPα, a podocyte receptor that regulates integrin signaling. Here, we characterized this pulmonary-renal connection in MCD and performed studies to determine its importance. Children with SSNS/MCD in relapse but not remission had elevated plasma surfactants and urinary SIRPα. Sera from relapsing subjects triggered podocyte SIRPα signaling via tyrosine phosphatase SHP-2 and nephrin dephosphorylation, a marker of podocyte activation. Further, addition of surfactants to MCD sera from patients in remission replicated these findings. Similarly, nasal instillation of toll-like receptor 3 and 4 agonists in mice resulted in elevated serum surfactants and their binding to glomeruli triggering proteinuria. Together, our data document a critical pulmonary-podocyte signaling pathway involving surfactants and SIRPα signaling in SSNS/MCD.
Collapse
Affiliation(s)
| | - Ana Andres-Hernando
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA,Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, OR, USA
| | - Colin Bauer
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA
| | - Mindy Banks
- Rocky Mountain Pediatric Kidney Center, Denver, CO, USA
| | - Gabriela E. Garcia
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA
| | - Christina Cicerchi
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA
| | - Masanari Kuwabara
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA
| | - Michiko Shimada
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Richard J. Johnson
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA
| | - Miguel A. Lanaspa
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA,Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, OR, USA,Corresponding author
| |
Collapse
|
8
|
Bauer C, Piani F, Banks M, Ordoñez FA, de Lucas-Collantes C, Oshima K, Schmidt EP, Zakharevich I, Segarra A, Martinez C, Roncal-Jimenez C, Satchell SC, Bjornstad P, Lucia MS, Blaine J, Thurman JM, Johnson RJ, Cara-Fuentes G. Minimal Change Disease Is Associated With Endothelial Glycocalyx Degradation and Endothelial Activation. Kidney Int Rep 2022; 7:797-809. [PMID: 35497798 PMCID: PMC9039905 DOI: 10.1016/j.ekir.2021.11.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/03/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
Introduction Minimal change disease (MCD) is considered a podocyte disorder triggered by unknown circulating factors. Here, we hypothesized that the endothelial cell (EC) is also involved in MCD. Methods We studied 45 children with idiopathic nephrotic syndrome (44 had steroid sensitive nephrotic syndrome [SSNS], and 12 had biopsy-proven MCD), 21 adults with MCD, and 38 healthy controls (30 children, 8 adults). In circulation, we measured products of endothelial glycocalyx (EG) degradation (syndecan-1, heparan sulfate [HS] fragments), HS proteoglycan cleaving enzymes (matrix metalloprotease-2 [MMP-2], heparanase activity), and markers of endothelial activation (von Willebrand factor [vWF], thrombomodulin) by enzyme-linked immunosorbent assay (ELISA) and mass spectrometry. In human kidney tissue, we assessed glomerular EC (GEnC) activation by immunofluorescence of caveolin-1 (n = 11 MCD, n = 5 controls). In vitro, we cultured immortalized human GEnC with sera from control subjects and patients with MCD/SSNS sera in relapse (n = 5 per group) and performed Western blotting of thrombomodulin of cell lysates as surrogate marker of endothelial activation. Results In circulation, median concentrations of all endothelial markers were higher in patients with active disease compared with controls and remained high in some patients during remission. In the MCD glomerulus, caveolin-1 expression was higher, in an endothelial-specific pattern, compared with controls. In cultured human GEnC, sera from children with MCD/SSNS in relapse increased thrombomodulin expression compared with control sera. Conclusion Our data show that alterations involving the systemic and glomerular endothelium are nearly universal in patients with MCD and SSNS, and that GEnC can be directly activated by circulating factors present in the MCD/SSNS sera during relapse.
Collapse
Affiliation(s)
- Colin Bauer
- Section of Pediatric Nephrology, Department of Pediatrics, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Federica Piani
- Section of Pediatric Nephrology, Department of Pediatrics, Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Medicine and Surgery Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Mindy Banks
- Division of Pediatric Nephrology, Rocky Mountain Children’s Hospital, Denver, Colorado, USA
| | - Flor A. Ordoñez
- Division of Pediatric Nephrology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Kaori Oshima
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eric P. Schmidt
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Igor Zakharevich
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alfons Segarra
- Department of Nephrology, Hospital Universitario Arnau de Vilanova, Lleida, Spain
- Lleida Institute for Biomedical Research Dr. Pifarré Foundation, Lleida, Spain
- Division of Nephrology, Hospital General Vall d’Hebron, Barcelona, Spain
| | - Cristina Martinez
- Lleida Institute for Biomedical Research Dr. Pifarré Foundation, Lleida, Spain
| | - Carlos Roncal-Jimenez
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Petter Bjornstad
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatrics, Section of Pediatric Endocrinology, Children’s Hospital Colorado and University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marshall Scott Lucia
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Judith Blaine
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joshua M. Thurman
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Richard J. Johnson
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gabriel Cara-Fuentes
- Section of Pediatric Nephrology, Department of Pediatrics, Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
9
|
Tsuji S, Yamaguchi T, Akagawa Y, Akagawa S, Yamanouchi S, Kimata T, Kaneko K. Significance of regulatory T cells in children with idiopathic nephrotic syndrome. J Nephrol 2022; 35:711-713. [PMID: 35089537 DOI: 10.1007/s40620-021-01201-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Shoji Tsuji
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Tadashi Yamaguchi
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Yuko Akagawa
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Shohei Akagawa
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Sohsaku Yamanouchi
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Takahisa Kimata
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Kazunari Kaneko
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan.
| |
Collapse
|
10
|
Purohit S, Piani F, Ordoñez FA, de Lucas-Collantes C, Bauer C, Cara-Fuentes G. Molecular Mechanisms of Proteinuria in Minimal Change Disease. Front Med (Lausanne) 2022; 8:761600. [PMID: 35004732 PMCID: PMC8733331 DOI: 10.3389/fmed.2021.761600] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Minimal change disease (MCD) is the most common type of idiopathic nephrotic syndrome in childhood and represents about 15% cases in adults. It is characterized by massive proteinuria, edema, hypoalbuminemia, and podocyte foot process effacement on electron microscopy. Clinical and experimental studies have shown an association between MCD and immune dysregulation. Given the lack of inflammatory changes or immunocomplex deposits in the kidney tissue, MCD has been traditionally thought to be mediated by an unknown circulating factor(s), probably released by T cells that directly target podocytes leading to podocyte ultrastructural changes and proteinuria. Not surprisingly, research efforts have focused on the role of T cells and podocytes in the disease process. Nevertheless, the pathogenesis of the disease remains a mystery. More recently, B cells have been postulated as an important player in the disease either by activating T cells or by releasing circulating autoantibodies against podocyte targets. There are also few reports of endothelial injury in MCD, but whether glomerular endothelial cells play a role in the disease remains unexplored. Genome-wide association studies are providing insights into the genetic susceptibility to develop the disease and found a link between MCD and certain human haplotype antigen variants. Altogether, these findings emphasize the complex interplay between the immune system, glomerular cells, and the genome, raising the possibility of distinct underlying triggers and/or mechanisms of proteinuria among patients with MCD. The heterogeneity of the disease and the lack of good animal models of MCD remain major obstacles in the understanding of MCD. In this study, we will review the most relevant candidate mediators and mechanisms of proteinuria involved in MCD and the current models of MCD-like injury.
Collapse
Affiliation(s)
- Shrey Purohit
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pediatrics, Section of Pediatric Nephrology, Children's Hospital Colorado, Aurora, CO, United States
| | - Federica Piani
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Medicine and Surgery Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Flor A Ordoñez
- Division of Pediatric Nephrology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Colin Bauer
- Department of Pediatrics, Section of Pediatric Nephrology, Children's Hospital Colorado, Aurora, CO, United States
| | - Gabriel Cara-Fuentes
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pediatrics, Section of Pediatric Nephrology, Children's Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
11
|
Horinouchi T, Nozu K, Iijima K. An updated view of the pathogenesis of steroid-sensitive nephrotic syndrome. Pediatr Nephrol 2022; 37:1957-1965. [PMID: 35006356 PMCID: PMC9307535 DOI: 10.1007/s00467-021-05401-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/01/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
Idiopathic nephrotic syndrome is the most common childhood glomerular disease. Most forms of this syndrome respond to corticosteroids at standard doses and are, therefore, defined as steroid-sensitive nephrotic syndrome (SSNS). Immunological mechanisms and subsequent podocyte disorders play a pivotal role in SSNS and have been studied for years; however, the precise pathogenesis remains unclear. With recent advances in genetic techniques, an exhaustive hypothesis-free approach called a genome-wide association study (GWAS) has been conducted in various populations. GWASs in pediatric SSNS peaked in the human leukocyte antigen class II region in various populations. Additionally, an association of immune-related CALHM6/FAM26F, PARM1, BTNL2, and TNFSF15 genes, as well as NPHS1, which encodes nephrin expressed in podocytes, has been identified as a locus that achieves genome-wide significance in pediatric SSNS. However, the specific mechanism of SSNS development requires elucidation. This review describes an updated view of SSNS pathogenesis from immunological and genetic aspects, including interactions with infections or allergies, production of circulating factors, and an autoantibody hypothesis.
Collapse
Affiliation(s)
- Tomoko Horinouchi
- grid.31432.370000 0001 1092 3077Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kandai Nozu
- grid.31432.370000 0001 1092 3077Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumoto Iijima
- Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan. .,Department of Advanced Pediatric Medicine, Kobe University Graduate School of Medicine, Minatojimaminami-machi 1-6-7, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
12
|
Cara-Fuentes G, Smoyer WE. Biomarkers in pediatric glomerulonephritis and nephrotic syndrome. Pediatr Nephrol 2021; 36:2659-2673. [PMID: 33389089 DOI: 10.1007/s00467-020-04867-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/16/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022]
Abstract
Glomerular diseases are often chronic or recurring and thus associated with a tremendous physical, psychological, and economic burden. Their etiologies are often unknown, and their pathogeneses are frequently poorly understood. The diagnoses and management of these diseases are therefore based on clinical features, traditional laboratory markers, and, often, kidney pathology. However, the clinical presentation can be highly variable, the kidney pathology may not establish a definitive diagnosis, and the therapeutic responses and resulting clinical outcomes are often unpredictable. To try to address these challenges, significant research efforts have been made over the last decade to identify potential biomarkers that can help clinicians optimize the diagnosis and prognosis at clinical presentation, as well as help predict long-term outcomes. Unfortunately, these efforts have to date only identified a single biomarker for glomerular disease that has been fully validated and developed for widespread clinical use (anti-PLA2R antibodies to diagnose membranous nephropathy). In this manuscript, we review the definitions and development of biomarkers, as well as the current knowledge on both historical and novel candidate biomarkers of glomerular disease, with an emphasis on those associated with idiopathic nephrotic syndrome.
Collapse
Affiliation(s)
- Gabriel Cara-Fuentes
- Department of Pediatrics, Division of Pediatric Nephrology, University of Colorado, 12700 E 19th Ave, R2 building, Room 7420D, Aurora, CO, 80045, USA.
| | - William E Smoyer
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
13
|
Takeuchi K, Ariyoshi Y, Shimizu A, Okumura Y, Cara-Fuentes G, Garcia GE, Pomposelli T, Watanabe H, Boyd L, Ekanayake-Alper DK, Amarnath D, Sykes M, Sachs DH, Johnson RJ, Yamada K. Expression of human CD47 in pig glomeruli prevents proteinuria and prolongs graft survival following pig-to-baboon xenotransplantation. Xenotransplantation 2021; 28:e12708. [PMID: 34418164 DOI: 10.1111/xen.12708] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Nephrotic syndrome is a common complication of pig-to-baboon kidney xenotransplantation (KXTx) that adversely affects outcomes. We have reported that upregulation of CD80 and down-regulation of SMPDL-3b in glomeruli have an important role in the development of proteinuria following pig-to-baboon KXTx. Recently we found induced expression of human CD47 (hCD47) on endothelial cells and podocytes isolated from hCD47 transgenic (Tg) swine markedly reduced phagocytosis by baboon and human macrophages. These observations led us to hypothesize that transplanting hCD47 Tg porcine kidneys could overcome the incompatibility of the porcine CD47-baboon SIRPα interspecies ligand-receptor interaction and prevent the development of proteinuria following KXTx. METHODS Ten baboons received pig kidneys with vascularized thymic grafts (n = 8) or intra-bone bone marrow transplants (n = 2). Baboons were divided into three groups (A, B, and C) based on the transgenic expression of hCD47 in GalT-KO pigs. Baboons in Group A received kidney grafts with expression of hCD47 restricted to glomerular cells (n = 2). Baboons in Group B received kidney grafts with high expression of hCD47 on both glomerular and tubular cells of the kidneys (n = 4). Baboons in Group C received kidney grafts with low/no glomerular expression of hCD47, and high expression of hCD47 on renal tubular cells (n = 4). RESULTS Consistent with this hypothesis, GalT-KO/hCD47 kidney grafts with high expression of hCD47 on glomerular cells developed minimal proteinuria. However, high hCD47 expression in all renal cells including renal tubular cells induced an apparent destructive inflammatory response associated with upregulated thrombospondin-1. This response could be avoided by a short course of weekly anti-IL6R antibody administration, resulting in prolonged survival without proteinuria (mean 170.5 days from 47.8 days). CONCLUSION Data showed that transgenic expression of hCD47 on glomerular cells in the GalT-KO donor kidneys can prevent xenograft nephropathy, a significant barrier for therapeutic applications of xenotransplantation. The ability to prevent nephrotic syndrome following KXTx overcomes a critical barrier for future clinical applications of KXTx.
Collapse
Affiliation(s)
- Kazuhiro Takeuchi
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
| | - Yuichi Ariyoshi
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Yuichiro Okumura
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
| | - Gabriel Cara-Fuentes
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Gabriela E Garcia
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Thomas Pomposelli
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
| | - Hironosuke Watanabe
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
| | - Lennan Boyd
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
| | - Dilrukshi K Ekanayake-Alper
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
| | - Dasari Amarnath
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA.,Department of Surgery, Columbia University Medical Center, New York, New York, USA
| | - David H Sachs
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA.,Department of Surgery, Columbia University Medical Center, New York, New York, USA
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Kazuhiko Yamada
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA.,Department of Surgery, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
14
|
CD80 Insights as Therapeutic Target in the Current and Future Treatment Options of Frequent-Relapse Minimal Change Disease. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6671552. [PMID: 33506028 PMCID: PMC7806396 DOI: 10.1155/2021/6671552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/26/2020] [Indexed: 12/14/2022]
Abstract
Minimal change disease (MCD) is the most common cause of idiopathic nephrotic syndrome in children, and it is well known for its multifactorial causes which are the manifestation of the disease. Proteinuria is an early consequence of podocyte injury and a typical sign of kidney disease. Steroid-sensitive patients react well with glucocorticoids, but there is a high chance of multiple relapses. CD80, also known as B7-1, is generally expressed on antigen-presenting cells (APCs) in steroid-sensitive MCD patients. Various glomerular disease models associated with proteinuria demonstrated that the detection of CD80 with the increase of urinary CD80 was strongly associated closely with frequent-relapse MCD patients. The role of CD80 in MCD became controversial because one contradicts finding. This review covers the treatment alternatives for MCD with the insight of CD80 as a potential therapeutic target. The promising effectiveness of CD20 (rituximab) antibody and CD80 inhibitor (abatacept) encourages further investigation of CD80 as a therapeutic target in frequent-relapse MCD patients. Therapeutic-based antibody towards CD80 (galiximab) had never been investigated in MCD or any kidney-related disease; hence, the role of CD80 is still undetermined. A new therapeutic approach towards MCD is essential to provide broader effective treatment options besides the general immunosuppressive agents with gruesome adverse effects.
Collapse
|
15
|
Gonzalez Guerrico AM, Lieske J, Klee G, Kumar S, Lopez-Baez V, Wright AM, Bobart S, Shevell D, Maldonado M, Troost JP, Hogan MC. Urinary CD80 Discriminates Among Glomerular Disease Types and Reflects Disease Activity. Kidney Int Rep 2020; 5:2021-2031. [PMID: 33163723 PMCID: PMC7609973 DOI: 10.1016/j.ekir.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Introduction Heterogeneity of nephrotic diseases and a lack of validated biomarkers limits interventions and reduces the ability to examine outcomes. Urinary CD80 is a potential biomarker for minimal change disease (MCD) steroid-sensitive nephrotic syndrome (NS). We investigated and validated a CD80 enzyme-linked immunosorbent assay (ELISA) in urine in a large cohort with a variety of nephrotic diseases. Methods A commercial CD80 ELISA was enhanced and analytically validated for urine. Patients were from Mayo Clinic (307) and Nephrotic Syndrome Study Network Consortium (NEPTUNE; 104) as follows: minimal change disease (MCD, 56), focal segmental glomerulosclerosis (FSGS, 92), lupus nephritis (LN, 25), IgA nephropathy (IgAN, 20), membranous nephropathy (MN, 49), autosomal dominant polycystic kidney disease (ADPKD, 10), diabetic nephropathy (DN; 106), pyuria (19), and controls (34). Analysis was by Kruskal−Wallis test, generalized estimating equation (GEE) models, and receiver operating characteristic (AUC) curve. Results Urinary CD80/creatinine values were highest in MCD compared to other glomerular diseases and were increased in DN with proteinuria >2 compared to controls (control = 36 ng/g; MCD = 139 ng/g, P < 0.01; LN = 90 ng/g, P < 0.12; FSGS = 66 ng/g, P = 0.18; DN = 63, P = 0.03; MN = 69 ng/g, P = 0.33; ng/g, P = 0.07; IgA = 19 ng/g, P = 0.09; ADPKD = 42, P = 0.36; and pyuria 31, P = 0.20; GEE, median, P vs. control). In proteinuric patients, CD80 concentration appears to be independent of proteinuria levels, suggesting that it is unrelated to nonspecific passage across the glomeruli. CD80/creatinine values were higher in paired relapse versus remission cases of MCD and FSGS (P < 0.0001, GEE). Conclusion Using a validated ELISA, urinary CD80 levels discriminate MCD from other forms of NS (FSGS, DN, IgA, MN) and primary from secondary FSGS.
Collapse
Affiliation(s)
| | - John Lieske
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - George Klee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sanjay Kumar
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Victor Lopez-Baez
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Adam M. Wright
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Shane Bobart
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Diane Shevell
- Bristol-Myers Squibb, Lawrenceville, New Jersey, USA
| | | | - Jonathan P. Troost
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Marie C. Hogan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Correspondence: Marie C. Hogan, Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55902, USA.
| | | |
Collapse
|