1
|
Damtew YT, Tong M, Varghese BM, Anikeeva O, Hansen A, Dear K, Driscoll T, Zhang Y, Capon T, Bi P. The impact of temperature on non-typhoidal Salmonella and Campylobacter infections: an updated systematic review and meta-analysis of epidemiological evidence. EBioMedicine 2024; 109:105393. [PMID: 39418985 DOI: 10.1016/j.ebiom.2024.105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND As temperatures rise, the transmission and incidence of enteric infections such as those caused by Salmonella and Campylobacter increase. This study aimed to review and synthesise the available evidence on the effects of exposure to ambient temperatures on non-typhoidal Salmonella and Campylobacter infections. METHODS A systematic search was conducted for peer-reviewed epidemiological studies published between January 1990 and March 2024, in PubMed, Scopus, Embase, and Web of Science databases. Original observational studies using ecological time-series, case-crossover or case-series study designs reporting the association between ambient temperature and non-typhoidal Salmonella and Campylobacter infections in the general population were included. A random-effects meta-analysis was performed to pool the relative risks (RRs) per 1 °C temperature increase, and further meta regression, and subgroup analyses by climate zone, temperature metrics, temporal resolution, lag period, and continent were conducted. The Navigation Guide systematic review methodology framework was used to assess the quality and strength of evidence. The study protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO). FINDINGS Out of 3472 results, 44 studies were included in this systematic review encompassing over one million cases each of Salmonella and Campylobacter infections. Geographically, the 44 studies covered 27 countries across five continents and most of the studies were from high income countries. The meta-analysis incorporated 23 Salmonella studies (65 effect estimates) and 15 Campylobacter studies (24 effect estimates). For each 1 °C rise in temperature, the risk of non-typhoidal Salmonella and Campylobacter infections increased by 5% (RR: 1.05, 95% CI: 1.04-1.06), and 5% (RR: 1.05, 95% CI: 1.04-1.07%), respectively, with varying risks across different climate zones. The overall evidence was evaluated as being of "high" quality, and the strength of the evidence was determined to be "sufficient" for both infections. INTERPRETATION These findings emphasise the relationship between temperature and the incidence of Salmonella and Campylobacter infections. It is crucial to exercise caution when generalising these findings, given the limited number of studies conducted in low and middle-income countries. Nevertheless, the results demonstrate the importance of implementing focused interventions and adaptive measures, such as the establishment of localised early warning systems and preventive strategies that account for climatic fluctuations. Furthermore, our research emphasises the ongoing need for surveillance and research efforts to monitor and understand the changing dynamics of temperature-related enteric infections in the context of climate change. FUNDING Australian Research Council Discovery Projects grant (ARC DP200102571) Program.
Collapse
Affiliation(s)
- Yohannes Tefera Damtew
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia; College of Health and Medical Sciences, Haramaya University, P.O.BOX 138, Dire Dawa, Ethiopia.
| | - Michael Tong
- National Centre for Epidemiology and Population Health, ANU College of Health and Medicine, The Australian National University, Canberra, ACT 2601, Australia.
| | - Blesson Mathew Varghese
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Olga Anikeeva
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Alana Hansen
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Keith Dear
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Tim Driscoll
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, New South Wales 2006, Australia.
| | - Ying Zhang
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, New South Wales 2006, Australia.
| | - Tony Capon
- Monash Sustainable Development Institute, Monash University, Melbourne, Victoria, Australia.
| | - Peng Bi
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
2
|
Manchal N, Young MK, Castellanos ME, Leggat P, Adegboye O. A systematic review and meta-analysis of ambient temperature and precipitation with infections from five food-borne bacterial pathogens. Epidemiol Infect 2024; 152:e98. [PMID: 39168633 DOI: 10.1017/s0950268824000839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Studies on climate variables and food pathogens are either pathogen- or region-specific, necessitating a consolidated view on the subject. This study aims to systematically review all studies on the association of ambient temperature and precipitation on the incidence of gastroenteritis and bacteraemia from Salmonella, Shigella, Campylobacter, Vibrio, and Listeria species. PubMed, Ovid MEDLINE, Scopus, and Web of Science databases were searched up to 9 March 2023. We screened 3,204 articles for eligibility and included 83 studies in the review and three in the meta-analysis. Except for one study on Campylobacter, all showed a positive association between temperature and Salmonella, Shigella, Vibrio sp., and Campylobacter gastroenteritis. Similarly, most of the included studies showed that precipitation was positively associated with these conditions. These positive associations were found regardless of the effect measure chosen. The pooled incidence rate ratio (IRR) for the three studies that included bacteraemia from Campylobacter and Salmonella sp. was 1.05 (95 per cent confidence interval (95% CI): 1.03, 1.06) for extreme temperature and 1.09 (95% CI: 0.99, 1.19) for extreme precipitation. If current climate trends continue, our findings suggest these pathogens would increase patient morbidity, the need for hospitalization, and prolonged antibiotic courses.
Collapse
Affiliation(s)
- Naveen Manchal
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Megan K Young
- Metro North Public Health Unit, Metro North Hospital and Health Service, Brisbane, Australia
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
- Faculty of Medicine, School of Public Health, University of Queensland, Brisbane, QLD, Australia
| | - Maria Eugenia Castellanos
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Centre for Vector-Borne and Neglected Tropical Diseases, James Cook University, Townsville, QLD, Australia
| | - Peter Leggat
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Centre for Vector-Borne and Neglected Tropical Diseases, James Cook University, Townsville, QLD, Australia
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Oyelola Adegboye
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Centre for Vector-Borne and Neglected Tropical Diseases, James Cook University, Townsville, QLD, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| |
Collapse
|
3
|
Austhof E, Warner S, Helfrich K, Pogreba-Brown K, Brown HE, Klimentidis YC, Scallan Walter E, Jervis RH, White AE. Exploring the association of weather variability on Campylobacter - A systematic review. ENVIRONMENTAL RESEARCH 2024; 252:118796. [PMID: 38582433 DOI: 10.1016/j.envres.2024.118796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Previous work has found climate change-induced weather variability is suspected to increase the transmission of enteric pathogens, including Campylobacter, a leading cause of bacterial gastroenteritis. While the relationship between extreme weather events and diarrheal diseases has been documented, the specific impact on Campylobacter infections remains underexplored. OBJECTIVE To synthesize the peer-reviewed literature exploring the effect of weather variability on Campylobacter infections in humans. METHODS The review included English language, peer-reviewed articles, published up to September 1, 2022 in PubMed, Embase, GEOBASE, Agriculture and Environmental Science Database, and CABI Global Health exploring the effect of an antecedent weather event on human enteric illness caused by Campylobacter (PROSPERO Protocol # 351884). We extracted study information including data sources, methods, summary measures, and effect sizes. Quality and weight of evidence reported was summarized and bias assessed for each article. RESULTS After screening 278 articles, 47 articles (34 studies, 13 outbreak reports) were included in the evidence synthesis. Antecedent weather events included precipitation (n = 35), temperature (n = 30), relative humidity (n = 7), sunshine (n = 6), and El Niño and La Niña (n = 3). Reviewed studies demonstrated that increases in precipitation and temperature were correlated with Campylobacter infections under specific conditions, whereas low relative humidity and sunshine were negatively correlated. Articles estimating the effect of animal operations (n = 15) found presence and density of animal operations were significantly associated with infections. However, most of the included articles did not assess confounding by seasonality, presence of animal operations, or describe estimates of risk. DISCUSSION This review explores what is known about the influence of weather events on Campylobacter and identifies previously underreported negative associations between low relative humidity and sunshine on Campylobacter infections. Future research should explore pathogen-specific estimates of risk, which can be used to influence public health strategies, improve source attribution and causal pathways, and project disease burden due to climate change.
Collapse
Affiliation(s)
- Erika Austhof
- Department of Epidemiology & Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA.
| | - Shaylee Warner
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Kathryn Helfrich
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Kristen Pogreba-Brown
- Department of Epidemiology & Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Heidi E Brown
- Department of Epidemiology & Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Yann C Klimentidis
- Department of Epidemiology & Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | | | - Rachel H Jervis
- Colorado Department of Public Health and Environment, Denver, CO, USA
| | - Alice E White
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| |
Collapse
|
4
|
Kuhn KG, Nygård KM, Guzman-Herrador B, Sunde LS, Rimhanen-Finne R, Trönnberg L, Jepsen MR, Ruuhela R, Wong WK, Ethelberg S. Campylobacter infections expected to increase due to climate change in Northern Europe. Sci Rep 2020; 10:13874. [PMID: 32807810 PMCID: PMC7431569 DOI: 10.1038/s41598-020-70593-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Global climate change is predicted to alter precipitation and temperature patterns across the world, affecting a range of infectious diseases and particularly foodborne infections such as Campylobacter. In this study, we used national surveillance data to analyse the relationship between climate and campylobacteriosis in Denmark, Finland, Norway and Sweden and estimate the impact of climate changes on future disease patterns. We show that Campylobacter incidences are linked to increases in temperature and especially precipitation in the week before illness, suggesting a non-food transmission route. These four countries may experience a doubling of Campylobacter cases by the end of the 2080s, corresponding to around 6,000 excess cases per year caused only by climate changes. Considering the strong worldwide burden of campylobacteriosis, it is important to assess local and regional impacts of climate change in order to initiate timely public health management and adaptation strategies.
Collapse
Affiliation(s)
- Katrin Gaardbo Kuhn
- Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, Copenhagen, Denmark.
| | - Karin Maria Nygård
- Department of Infectious Disease Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Bernardo Guzman-Herrador
- Department of Infectious Disease Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Linda Selje Sunde
- Department of Infectious Disease Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Ruska Rimhanen-Finne
- Department of Health Security, National Institute for Health and Welfare, Helsinki, Finland
| | - Linda Trönnberg
- Department of Monitoring and Evaluation, Public Health Agency of Sweden, Solna, Sweden
| | | | - Reija Ruuhela
- Weather and Climate Change Impact Research, Finnish Meteorological Institute, Helsinki, Finland
| | - Wai Kwok Wong
- Department of Hydrology, Norwegian Water Resources and Energy Directorate, Oslo, Norway
| | - Steen Ethelberg
- Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, Copenhagen, Denmark
- Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Djennad A, Lo Iacono G, Sarran C, Lane C, Elson R, Höser C, Lake IR, Colón-González FJ, Kovats S, Semenza JC, Bailey TC, Kessel A, Fleming LE, Nichols GL. Seasonality and the effects of weather on Campylobacter infections. BMC Infect Dis 2019; 19:255. [PMID: 30866826 PMCID: PMC6417031 DOI: 10.1186/s12879-019-3840-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/20/2019] [Indexed: 01/08/2023] Open
Abstract
Background Campylobacteriosis is a major public health concern. The weather factors that influence spatial and seasonal distributions are not fully understood. Methods To investigate the impacts of temperature and rainfall on Campylobacter infections in England and Wales, cases of Campylobacter were linked to local temperature and rainfall at laboratory postcodes in the 30 days before the specimen date. Methods for investigation included a comparative conditional incidence, wavelet, clustering, and time series analyses. Results The increase of Campylobacter infections in the late spring was significantly linked to temperature two weeks before, with an increase in conditional incidence of 0.175 cases per 100,000 per week for weeks 17 to 24; the relationship to temperature was not linear. Generalized structural time series model revealed that changes in temperature accounted for 33.3% of the expected cases of Campylobacteriosis, with an indication of the direction and relevant temperature range. Wavelet analysis showed a strong annual cycle with additional harmonics at four and six months. Cluster analysis showed three clusters of seasonality with geographic similarities representing metropolitan, rural, and other areas. Conclusions The association of Campylobacteriosis with temperature is likely to be indirect. High-resolution spatial temporal linkage of weather parameters and cases is important in improving weather associations with infectious diseases. The primary driver of Campylobacter incidence remains to be determined; other avenues, such as insect contamination of chicken flocks through poor biosecurity should be explored. Electronic supplementary material The online version of this article (10.1186/s12879-019-3840-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abdelmajid Djennad
- Statistics, Modelling and Economics Department, National Infection Service, Public Health England, 61, Colindale Avenue, London, NW9 5EQ, UK.
| | | | | | | | - Richard Elson
- National Infection Service, Public Health England, London, UK.,NIHR Health Protection Research Unit in Gastrointestinal Infections, London, UK
| | - Christoph Höser
- Institute for Hygiene and Public Health, GeoHealth Centre, University of Bonn, Bonn, Germany
| | | | | | - Sari Kovats
- London School of Hygiene and Tropical Medicine, London, UK
| | - Jan C Semenza
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | | | - Anthony Kessel
- Statistics, Modelling and Economics Department, National Infection Service, Public Health England, 61, Colindale Avenue, London, NW9 5EQ, UK.,London School of Hygiene and Tropical Medicine, London, UK
| | | | - Gordon L Nichols
- Statistics, Modelling and Economics Department, National Infection Service, Public Health England, 61, Colindale Avenue, London, NW9 5EQ, UK.,University of Exeter, Exeter, UK.,University of Thessaly, Larissa, Thessaly, Greece
| |
Collapse
|
6
|
Skoufos I, Tzora A, Giannenas I, Bonos E, Tsinas A, ΜcCartney Ε, Lester H, Christaki E, Florou-Paneri P, Mahdavi J, Soultanas P. Evaluation of in-field efficacy of dietary ferric tyrosine on performance, intestinal health and meat quality of broiler chickens exposed to natural Campylobacter jejuni challenge. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Cousins M, Sargeant JM, Fisman D, Greer AL. Modelling the transmission dynamics of Campylobacter in Ontario, Canada, assuming house flies, Musca domestica, are a mechanical vector of disease transmission. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181394. [PMID: 30891269 PMCID: PMC6408420 DOI: 10.1098/rsos.181394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/14/2019] [Indexed: 05/29/2023]
Abstract
Campylobacter's complicated dynamics and multiple transmission routes have made it difficult to describe using a mathematical framework. Vector-borne disease transmission has been proposed as a potential transmission route of Campylobacter with house flies acting as a mechanical vector. This study aimed to (i) determine if a basic SIR compartment model that included flies as a mechanical vector and incorporated a seasonally forced environment compartment could be used to capture the observed disease dynamics in Ontario, Canada, and (ii) use this model to determine potential changes to campylobacteriosis incidence using predicted changes to fly population size and fly activity under multiple climate change scenarios. The model was fit to 1 year of data and validated against 8 and 12 years of data. It accurately captured the observed incidence. We then explored changes in human disease incidence under multiple climate change scenarios. When fly activity levels were at a 25% increase, our model predicted a 28.15% increase in incidence by 2050 using the medium-low emissions scenario and 30.20% increase using the high emissions scenario. This model demonstrates that the dynamics of Campylobacter transmission can be captured by a model that assumes that the primary transmission of the pathogen occurs via insect vectors.
Collapse
Affiliation(s)
- Melanie Cousins
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Centre for Public Health and Zoonoses, University of Guelph, Guelph, Ontario, Canada
| | - Jan M. Sargeant
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Centre for Public Health and Zoonoses, University of Guelph, Guelph, Ontario, Canada
| | - David Fisman
- Department of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Amy L. Greer
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Centre for Public Health and Zoonoses, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
8
|
Heng N. Tackling the health impacts of climate change in the twenty-first century. Med Confl Surviv 2018; 33:306-318. [PMID: 29313368 DOI: 10.1080/13623699.2017.1420409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The turn of the twenty-first century has borne witness to the seemingly relentless march of climate change, with global mean temperatures and sea levels projected to rise significantly in the near future. Despite considerable improvements in healthcare, mortality rates and life expectancy worldwide over the past few decades, there is increasing evidence postulating the potentially adverse impacts of environmental alterations on health in more ways than one. These not only involve direct and indirect climatic-related health impacts, but also those modulated by human aspects. Undeniably, there is a pressing need to recognize these issues and come up with appropriate solutions to address them as much as possible. Fortunately, this has led to the development of a wide range of measures encompassing both adaptation and mitigation strategies, alongside the recent Paris accords which highlight renewed global resolve in tackling these challenges in a collaborative and coordinated manner. However, progress has been relatively muted, and whether these prove to be the turning point remains very much to be seen. Nonetheless, taking the above into consideration, there is little doubt about the gravity of the situation, and that much more needs to be done to integrate and bring society forward in this new era.
Collapse
Affiliation(s)
- Nicholas Heng
- a School of Medicine , University Of Dundee , Dundee , UK
| |
Collapse
|
9
|
Poulsen MN, Pollak J, Sills DL, Casey JA, Rasmussen SG, Nachman KE, Cosgrove SE, Stewart D, Schwartz BS. Residential proximity to high-density poultry operations associated with campylobacteriosis and infectious diarrhea. Int J Hyg Environ Health 2017; 221:323-333. [PMID: 29268955 DOI: 10.1016/j.ijheh.2017.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022]
Abstract
Poultry carry zoonotic bacteria that can cause gastroenteritis in humans. Environmental transmission of pathogens from poultry operations may increase gastrointestinal infection risk in surrounding communities. To evaluate associations between residential proximity to high-density poultry operations and individual-level diarrheal illnesses, we conducted a nested case-control study among 514,488 patients in Pennsylvania (2006-2015). Using electronic health records, we identified cases of five gastrointestinal outcomes: three pathogen-specific infections, including Escherichia coli (n = 1425), Campylobacter (n = 567), and Salmonella (n = 781); infectious diarrhea (n = 781); and non-specific diarrhea (2012-2015; n = 28,201). We estimated an inverse-distance squared activity metric for poultry operations based on farm and patient addresses. Patients in the second and fourth (versus first) quartiles of the poultry operation activity metric had increased odds of Campylobacter (AOR [CI], Q2: 1.36 [1.01, 1.82]; Q3: 1.38 [0.98, 1.96]; Q4: 1.75 [1.31, 2.33]). Patients in the second, third, and fourth quartiles had increased odds of infectious diarrhea (Q2: 1.76 [1.29, 2.39]; Q3: 1.76 [1.09, 2.85]; Q4: 1.60 [1.12, 2.30]). Stratification revealed stronger relations of fourth quartile and both Campylobacter and infectious diarrhea in townships, the most rural community type in the study geography. Increasing extreme rainfall in the week prior to diagnosis strengthened fourth quartile Campylobacter associations. The poultry operation activity metric was largely unassociated with E. coli, Salmonella, and non-specific diarrhea. Findings suggest high-density poultry operations may be associated with campylobacteriosis and infectious diarrhea in nearby communities, highlighting additional public health concerns of industrial agriculture.
Collapse
Affiliation(s)
- Melissa N Poulsen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology and Health Services Research, Geisinger, Danville, PA, USA.
| | - Jonathan Pollak
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Deborah L Sills
- Department of Civil and Environmental Engineering, Bucknell University, Lewisburg, PA, USA
| | - Joan A Casey
- Department of Environmental Science, Policy & Management, University of California, Berkeley, CA, USA
| | - Sara G Rasmussen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Keeve E Nachman
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Risk Sciences and Public Policy Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sara E Cosgrove
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Dalton Stewart
- Department of Civil and Environmental Engineering, Bucknell University, Lewisburg, PA, USA
| | - Brian S Schwartz
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology and Health Services Research, Geisinger, Danville, PA, USA; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
10
|
Maertens de Noordhout C, Devleesschauwer B, Haagsma JA, Havelaar AH, Bertrand S, Vandenberg O, Quoilin S, Brandt PT, Speybroeck N. Burden of salmonellosis, campylobacteriosis and listeriosis: a time series analysis, Belgium, 2012 to 2020. Euro Surveill 2017; 22:30615. [PMID: 28935025 PMCID: PMC5709949 DOI: 10.2807/1560-7917.es.2017.22.38.30615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 05/09/2017] [Indexed: 01/06/2023] Open
Abstract
Salmonellosis, campylobacteriosis and listeriosis are food-borne diseases. We estimated and forecasted the number of cases of these three diseases in Belgium from 2012 to 2020, and calculated the corresponding number of disability-adjusted life years (DALYs). The salmonellosis time series was fitted with a Bai and Perron two-breakpoint model, while a dynamic linear model was used for campylobacteriosis and a Poisson autoregressive model for listeriosis. The average monthly number of cases of salmonellosis was 264 (standard deviation (SD): 86) in 2012 and predicted to be 212 (SD: 87) in 2020; campylobacteriosis case numbers were 633 (SD: 81) and 1,081 (SD: 311); listeriosis case numbers were 5 (SD: 2) in 2012 and 6 (SD: 3) in 2014. After applying correction factors, the estimated DALYs for salmonellosis were 102 (95% uncertainty interval (UI): 8-376) in 2012 and predicted to be 82 (95% UI: 6-310) in 2020; campylobacteriosis DALYs were 1,019 (95% UI: 137-3,181) and 1,736 (95% UI: 178-5,874); listeriosis DALYs were 208 (95% UI: 192-226) in 2012 and 252 (95% UI: 200-307) in 2014. New actions are needed to reduce the risk of food-borne infection with Campylobacter spp. because campylobacteriosis incidence may almost double through 2020.
Collapse
Affiliation(s)
| | - Brecht Devleesschauwer
- Department of Public Health and Surveillance, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | | | - Arie H Havelaar
- Utrecht University, Utrecht, the Netherlands
- University of Florida, Gainesville, Florida, United States
| | - Sophie Bertrand
- Department of Public Health and Surveillance, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | | | - Sophie Quoilin
- Department of Public Health and Surveillance, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | | | - Niko Speybroeck
- Institute of Health and Society (IRSS), Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
11
|
Soneja S, Jiang C, Romeo Upperman C, Murtugudde R, S Mitchell C, Blythe D, Sapkota AR, Sapkota A. Extreme precipitation events and increased risk of campylobacteriosis in Maryland, U.S.A. ENVIRONMENTAL RESEARCH 2016; 149:216-221. [PMID: 27214137 DOI: 10.1016/j.envres.2016.05.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/08/2016] [Accepted: 05/13/2016] [Indexed: 06/05/2023]
Abstract
Consumption of contaminated poultry, raw milk and water are significant risk factors for Campylobacter infection. Previous studies also have investigated the association between weather (temperature and precipitation) and increased risk of campylobacteriosis, but limited information exists regarding the impacts of extreme heat and precipitation events on campylobacteriosis risk, and how such risk may differentially impact coastal communities. We obtained Campylobacter case data 2002-2012; n=4804) from the Maryland Foodborne Diseases Active Surveillance Network (FoodNet). We identified extreme heat and extreme precipitation events during this time (2002-2012) using location and calendar day specific thresholds (95th percentile for extreme heat and 90th percentile for extreme precipitation) that were computed based on a 30-year baseline (1960-1989). We linked these datasets using GIS and used negative binomial generalized estimating equations adjusted for demographic confounders to calculate the association between exposure to extreme events and risk of campylobacteriosis in Maryland. We observed that a one-day increase in exposure to extreme precipitation events was associated with a 3% increase in risk of campylobacteriosis in coastal areas of Maryland (Incidence Rate Ratio (IRR): 1.03, 95% confidence interval (CI): 1.01, 1.05), but such an association was not observed in noncoastal areas. Furthermore, the risk associated with extreme precipitation events was considerably higher during La Niña periods (IRR: 1.09, 95% CI: 1.05, 1.13), while there was no evidence of elevated risk during El Niño or ENSO Neutral periods. Exposure to extreme heat events was not associated with an increased risk of campylobacteriosis, except during La Niña periods (IRR: 1.04, 95% CI: 1.01, 1.08). Extreme precipitation events could result in flooding within coastal areas that may bring water contaminated with bacterial pathogens (originating from sources such as septic systems, municipal wastewater treatment plants and concentrated animal feeding operations) into close proximity with individuals, where frequency of contact may be higher.
Collapse
Affiliation(s)
- Sutyajeet Soneja
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States
| | - Chengsheng Jiang
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States
| | - Crystal Romeo Upperman
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States
| | - Raghu Murtugudde
- Earth System Science Interdisciplinary Center, College of Computer, Mathematical and Natural Sciences, University of Maryland, College Park, MD, United States
| | - Clifford S Mitchell
- Prevention and Health Promotion Administration, Maryland Department of Health and Mental Hygiene, Baltimore, MD, United States
| | - David Blythe
- Prevention and Health Promotion Administration, Maryland Department of Health and Mental Hygiene, Baltimore, MD, United States
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States
| | - Amir Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States.
| |
Collapse
|