1
|
Camarero MC, Briegas B, Corbacho J, Labrador J, Román ÁC, Verde A, Gallardo M, Gomez-Jimenez MC. Variations in Fruit Ploidy Level and Cell Size between Small- and Large-Fruited Olive Cultivars during Fruit Ontogeny. PLANTS (BASEL, SWITZERLAND) 2024; 13:990. [PMID: 38611519 PMCID: PMC11013306 DOI: 10.3390/plants13070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Olive (Olea europaea L.) is one of the major oil fruit tree crops worldwide. However, the mechanisms underlying olive fruit growth remain poorly understood. Here, we examine questions regarding the interaction of endoreduplication, cell division, and cell expansion with olive fruit growth in relation to the final fruit size by measuring fruit diameter, pericarp thickness, cell area, and ploidy level during fruit ontogeny in three olive cultivars with different fruit sizes. The results demonstrate that differences in the fruit size are related to the maximum growth rate between olive cultivars during early fruit growth, about 50 days post-anthesis (DPA). Differences in fruit weight between olive cultivars were found from 35 DPA, while the distinctive fruit shape became detectable from 21 DPA, even though the increase in pericarp thickness became detectable from 7 DPA in the three cultivars. During early fruit growth, intense mitotic activity appeared during the first 21 DPA in the fruit, whereas the highest cell expansion rates occurred from 28 to 42 DPA during this phase, suggesting that olive fruit cell number is determined from 28 DPA in the three cultivars. Moreover, olive fruit of the large-fruited cultivars was enlarged due to relatively higher cell division and expansion rates compared with the small-fruited cultivar. The ploidy level of olive fruit pericarp between early and late growth was different, but similar among olive cultivars, revealing that ploidy levels are not associated with cell size, in terms of different 8C levels during olive fruit growth. In the three olive cultivars, the maximum endoreduplication level (8C) occurred just before strong cell expansion during early fruit growth in fruit pericarp, whereas the cell expansion during late fruit growth occurred without preceding endoreduplication. We conclude that the basis for fruit size differences between olive cultivars is determined mainly by different cell division and expansion rates during the early fruit growth phase. These data provide new findings on the contribution of fruit ploidy and cell size to fruit size in olive and ultimately on the control of olive fruit development.
Collapse
Affiliation(s)
- Maria C. Camarero
- Laboratory of Plant Physiology, Universidad de Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Beatriz Briegas
- Laboratory of Plant Physiology, Universidad de Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Jorge Corbacho
- Laboratory of Plant Physiology, Universidad de Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Juana Labrador
- Laboratory of Plant Physiology, Universidad de Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Ángel-Carlos Román
- Department of Molecular Biology, Biochemistry and Genetics, Universidad de Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Antía Verde
- Laboratory of Plant Physiology, Universidad de Vigo, Campus Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Mercedes Gallardo
- Laboratory of Plant Physiology, Universidad de Vigo, Campus Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Maria C. Gomez-Jimenez
- Laboratory of Plant Physiology, Universidad de Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| |
Collapse
|
2
|
Alavilli H, Yolcu S, Skorupa M, Aciksoz SB, Asif M. Salt and drought stress-mitigating approaches in sugar beet (Beta vulgaris L.) to improve its performance and yield. PLANTA 2023; 258:30. [PMID: 37358618 DOI: 10.1007/s00425-023-04189-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
MAIN CONCLUSION Although sugar beet is a salt- and drought-tolerant crop, high salinity, and water deprivation significantly reduce its yield and growth. Several reports have demonstrated stress tolerance enhancement through stress-mitigating strategies including the exogenous application of osmolytes or metabolites, nanoparticles, seed treatments, breeding salt/drought-tolerant varieties. These approaches would assist in achieving sustainable yields despite global climatic changes. Sugar beet (Beta vulgaris L.) is an economically vital crop for ~ 30% of world sugar production. They also provide essential raw materials for bioethanol, animal fodder, pulp, pectin, and functional food-related industries. Due to fewer irrigation water requirements and shorter regeneration time than sugarcane, beet cultivation is spreading to subtropical climates from temperate climates. However, beet varieties from different geographical locations display different stress tolerance levels. Although sugar beet can endure moderate exposure to various abiotic stresses, including high salinity and drought, prolonged exposure to salt and drought stress causes a significant decrease in crop yield and production. Hence, plant biologists and agronomists have devised several strategies to mitigate the stress-induced damage to sugar beet cultivation. Recently, several studies substantiated that the exogenous application of osmolytes or metabolite substances can help plants overcome injuries induced by salt or drought stress. Furthermore, these compounds likely elicit different physio-biochemical impacts, including improving nutrient/ionic homeostasis, photosynthetic efficiency, strengthening defense response, and water status improvement under various abiotic stress conditions. In the current review, we compiled different stress-mitigating agricultural strategies, prospects, and future experiments that can secure sustainable yields for sugar beets despite high saline or drought conditions.
Collapse
Affiliation(s)
- Hemasundar Alavilli
- Department of Biotechnology, GITAM (Deemed to be) University, Visakhapatnam, 530045, India
| | - Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey.
| | - Monika Skorupa
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100, Torun, Poland
| | - Seher Bahar Aciksoz
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Muhammad Asif
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
| |
Collapse
|
3
|
Sliwinska E, Loureiro J, Leitch IJ, Šmarda P, Bainard J, Bureš P, Chumová Z, Horová L, Koutecký P, Lučanová M, Trávníček P, Galbraith DW. Application-based guidelines for best practices in plant flow cytometry. Cytometry A 2021; 101:749-781. [PMID: 34585818 DOI: 10.1002/cyto.a.24499] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
Flow cytometry (FCM) is currently the most widely-used method to establish nuclear DNA content in plants. Since simple, 1-3-parameter, flow cytometers, which are sufficient for most plant applications, are commercially available at a reasonable price, the number of laboratories equipped with these instruments, and consequently new FCM users, has greatly increased over the last decade. This paper meets an urgent need for comprehensive recommendations for best practices in FCM for different plant science applications. We discuss advantages and limitations of establishing plant ploidy, genome size, DNA base composition, cell cycle activity, and level of endoreduplication. Applications of such measurements in plant systematics, ecology, molecular biology research, reproduction biology, tissue cultures, plant breeding, and seed sciences are described. Advice is included on how to obtain accurate and reliable results, as well as how to manage troubleshooting that may occur during sample preparation, cytometric measurements, and data handling. Each section is followed by best practice recommendations; tips as to what specific information should be provided in FCM papers are also provided.
Collapse
Affiliation(s)
- Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, UTP University of Science and Technology, Bydgoszcz, Poland
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ilia J Leitch
- Kew Science Directorate, Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Petr Šmarda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jillian Bainard
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zuzana Chumová
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic.,Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lucie Horová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Koutecký
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Magdalena Lučanová
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic.,Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Pavel Trávníček
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - David W Galbraith
- School of Plant Sciences, BIO5 Institute, Arizona Cancer Center, Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA.,Henan University, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, Kaifeng, China
| |
Collapse
|
4
|
Chomontowski C, Podlaski S. Impact of sugar beet seed priming using the SMP method on the properties of the pericarp. BMC PLANT BIOLOGY 2020; 20:32. [PMID: 31959098 PMCID: PMC6972028 DOI: 10.1186/s12870-020-2246-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND This study determined the effects of two solid matrix priming methods on changes in the characteristics of two lots of the same variety of sugar beet fruits that differ in the level of vigour. RESULTS Seed treatment within each level of vigour did not significantly affect helium and apparent density, total pore volume and total porosity. However, there was a tendency to increase porosity due to priming. This is probably why seed priming significantly increased mesopore diameter in both high and low vigour seeds. These changes increased the water content in the pericarp and the seeds and increased the water potential during germination. The high level of electrical conductivity of the fruit extracts was associated with low seed vigour. Low vigour resulted in higher humidity of the pericarp and decreased seed moisture and was also associated with lower water potential of the pericarp and seeds. CONCLUSIONS A significant difference in the water content in the pericarp and seeds was indicative of imbibition and problems with water flow between these centres, which resulted in a low water diffusion coefficient of the pericarp. This low water diffusion coefficient was correlated with the prolongation of the seed germination time.
Collapse
Affiliation(s)
- C Chomontowski
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska St, 02-776, Warsaw, Poland.
| | - S Podlaski
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska St, 02-776, Warsaw, Poland
| |
Collapse
|
5
|
Ignatz M, Hourston JE, Turečková V, Strnad M, Meinhard J, Fischer U, Steinbrecher T, Leubner-Metzger G. The biochemistry underpinning industrial seed technology and mechanical processing of sugar beet. PLANTA 2019; 250:1717-1729. [PMID: 31414204 PMCID: PMC6790189 DOI: 10.1007/s00425-019-03257-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/06/2019] [Indexed: 05/12/2023]
Abstract
Seed-processing technologies such as polishing and washing enhance crop seed quality by limited removal of the outer layers and by leaching. Combined, this removes chemical compounds that inhibit germination. Industrial processing to deliver high-quality commercial seed includes removing chemical inhibitors of germination, and is essential to produce fresh sprouts, achieve vigorous crop establishment, and high yield potential in the field. Sugar beet (Beta vulgaris subsp. vulgaris var. altissima Doell.), the main sugar source of the temperate agricultural zone, routinely undergoes several processing steps during seed production to improve germination performance and seedling growth. Germination assays and seedling phenotyping was carried out on unprocessed, and processed (polished and washed) sugar beet fruits. Pericarp-derived solutes, known to inhibit germination, were tested in germination assays and their osmolality and conductivity assessed (ions). Abscisic acid (ABA) and ABA metabolites were quantified in both the true seed and pericarp tissue using UPLC-ESI(+)-MS/MS. Physical changes in the pericarp structures were assessed using scanning electron microscopy (SEM). We found that polishing and washing of the sugar beet fruits both had a positive effect on germination performance and seedling phenotype, and when combined, this positive effect was stronger. The mechanical action of polishing removed the outer pericarp (fruit coat) tissue (parenchyma), leaving the inner tissue (sclerenchyma) unaltered, as revealed by SEM. Polishing as well as washing removed germination inhibitors from the pericarp, specifically, ABA, ABA metabolites, and ions. Understanding the biochemistry underpinning the effectiveness of these processing treatments is key to driving further innovations in commercial seed quality.
Collapse
Affiliation(s)
- Michael Ignatz
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - James E Hourston
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Veronika Turečková
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, 78371, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, 78371, Olomouc, Czech Republic
| | - Juliane Meinhard
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37555, Einbeck, Germany
| | - Uwe Fischer
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37555, Einbeck, Germany
| | - Tina Steinbrecher
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Gerhard Leubner-Metzger
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, 78371, Olomouc, Czech Republic.
| |
Collapse
|
6
|
Castro S, Romeiras MM, Castro M, Duarte MC, Loureiro J. Hidden diversity in wild Beta taxa from Portugal: insights from genome size and ploidy level estimations using flow cytometry. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 207:72-78. [PMID: 23602101 DOI: 10.1016/j.plantsci.2013.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/15/2013] [Accepted: 02/23/2013] [Indexed: 06/02/2023]
Abstract
Crop wild relatives constitute a broad pool of potentially useful genetic resources for plant breeders. The genus Beta L. (Amaranthaceae) is an important source of crops, primarily for sugar production. Until recently, species within Section Beta were mostly cytogenetically uniform, with diploidy being prevalent. Still, with the discovery of tetraploid individuals of the wild B. macrocarpa in the Canary Islands, a large-scale study was necessary to evaluate the cytogenetic diversity within the wild Beta. For that, genome size and ploidy level of B. vulgaris subsp. maritima and B. macrocarpa from 21 populations across Portugal mainland and islands, including all know populations of the later taxon, were estimated using propidium iodide flow cytometry. This work revealed a cytogenetically diverse scenario. The analyzed populations were mostly diploid, except for one population of B. vulgaris subsp. maritima that presented both diploid and tetraploid individuals, and for two populations of B. macrocarpa where two or three cytotypes (diploids, tetraploids and/or hexaploids) were found. The nuclear DNA content of diploid individuals was estimated as 1.44±0.035 and 1.41±0.027 pg/2C for B. vulgaris subsp. maritima and B. macrocarpa, respectively. Also, leaves of both species presented variable levels of endopolyploidy. The obtained results are discussed within the context of interspecific hybridization and cryptic diversity and constitute significant data for the conservation of these wild Beta crop relatives.
Collapse
Affiliation(s)
- Sílvia Castro
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, PO Box 3046, 3001-401 Coimbra, Portugal.
| | | | | | | | | |
Collapse
|
7
|
Sliwinska E, Mathur J, Bewley JD. Synchronously developing collet hairs in Arabidopsis thaliana provide an easily accessible system for studying nuclear movement and endoreduplication. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4165-78. [PMID: 22451725 DOI: 10.1093/jxb/ers099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Early Arabidopsis thaliana seedling growth includes the highly synchronous development of hairs from every epidermal cell of the collet (the root-hypocotyl transition zone). The dynamics of collet hair growth, and accompanying nuclear movement and endoreduplication, were followed using a combination of different fluorescent probes for time-lapse imaging and flow cytometry. Using laser-scanning confocal microscopy on the double-transgenic Arabidopsis hybrid line NLS-GFP-GUS × YPM, there appeared to be a correlation between nuclear position and the cell tip during growth of the collet hair cells, as occurs in asynchronously developing root hairs. However, disruption of nuclear movement in the growing collet hairs using low concentrations of cytoskeletal inhibitors demonstrated that nuclear positioning close to the tip of the cell is not essential for tip-directed growth of the hair. Nuclear DNA content increases from 4C to 16C during development of the collet hairs. Following cessation of growth, nuclei moved to the base of the hairs and then their movement became asynchronous and limited. Co-visualization of RFP-highlighted prevacuolar vesicles and GFP-labelled nuclei showed that, whereas small vesicles allowed unimpeded nuclear movement within the hair, transient stops and directional reversals coincided with the presence of larger vesicles in close proximity to the nucleus. Arabidopsis collet hairs provide a robust, easily accessible, naturally synchronized population of single tip-growing cells that can be used as a model cell type for studying nuclear movement and endoreduplication.
Collapse
Affiliation(s)
- Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Department of Plant Genetics and Biotechnology, University of Technology and Life Sciences, Kaliskiego Ave. 7, 85-789 Bydgoszcz, Poland.
| | | | | |
Collapse
|
8
|
Lukaszewska E, Virden R, Sliwinska E. Hormonal control of endoreduplication in sugar beet (Beta vulgaris L.) seedlings growing in vitro. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:216-222. [PMID: 21973015 DOI: 10.1111/j.1438-8677.2011.00477.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The effect on endoreduplication in sugar beet (Beta vulgaris L.) seedlings of five plant hormones in MS medium, ethylene, 24-epibrassinolide (EBR), gibberellic acid (GA(3) ), kinetin and 1-naphthaleneacetic acid (NAA), as well as a combination of kinetin and NAA at two different concentrations, was studied using flow cytometry. Analyses of DNA content in nuclei of the root, hypocotyl and cotyledons of seedlings growing in vitro were performed during their early development, starting from when the root was 0.5-1.0 cm long until expansion of the first pair of leaves. The proportions of nuclei with different DNA contents were established and the mean C-value calculated. The presence of exogenous plant hormones changed endoreduplication intensity, although to different extents, depending on the organ and developmental stage. Ethylene and NAA stimulated the process, while EBR and kinetin suppressed it and GA did not clearly affect it.
Collapse
Affiliation(s)
- E Lukaszewska
- Laboratory of Molecular Biology and Cytometry, Department of Plant Genetics and Biotechnology, University of Technology and Life Sciences, Bydgoszcz, Poland
| | | | | |
Collapse
|
9
|
Bourdon M, Frangne N, Mathieu-Rivet E, Nafati M, Cheniclet C, Renaudin JP, Chevalier C. Endoreduplication and Growth of Fleshy Fruits. PROGRESS IN BOTANY 2010. [DOI: 10.1007/978-3-642-02167-1_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
10
|
Weber J, Georgiev V, Pavlov A, Bley T. Flow cytometric investigations of diploid and tetraploid plants and in vitro cultures of Datura stramonium and Hyoscyamus niger. Cytometry A 2008; 73:931-9. [PMID: 18698633 DOI: 10.1002/cyto.a.20628] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Plant in vitro systems are valuable sources for the production of biological active substances. However, changed profiles of secondary metabolites, and low, variable yields possibly caused by genetic instabilities complicate their industrial implementation. DNA profiling of plant in vitro cultures may provide data for the selection of highly producing in vitro cultures. Diploid and tetraploid Datura stramonium and Hyoscyamus niger plant as well as calli, and hairy root lines derived from them were analyzed by flow cytometry. Plant in vitro cultures undergo several cycles of endoreduplication more than the explants from which they were obtained. The highest cycle values were observed in calli (e.g. 1.19 for diploid H. niger) possibly induced by the growth factors. However, hairy roots cultivated without growth factor exhibited significant degrees of endoreduplication (cycle value 0.88 for diploid H. niger). Sets of five hairy root lines from each plant and ploidy level showed consistent within-set ploidy patterns. The ploidy profiles of investigated plant in vitro and in vivo differ. For the first time we report that hairy roots of two Solanaceae species undergo endoreduplication. Theploidy profiles of in vitro cultures (hairy roots and calli) seem to be influenced by the genome size, the growth factors applied, and the type of in vitro culture. The transformation of several hairy root lines showed no differences in the ploidy patterns.
Collapse
Affiliation(s)
- Jost Weber
- Partec GmbH, Am Flugplatz 13, 02828 Görlitz, Germany.
| | | | | | | |
Collapse
|