1
|
Tanaka W, Ohyama A, Toriba T, Tominaga R, Hirano HY. FINE CULM1 Encoding a TEOSINTE BRANCHED1-like TCP Transcription Factor Negatively Regulates Axillary Meristem Formation in Rice. PLANT & CELL PHYSIOLOGY 2024:pcae109. [PMID: 39431787 DOI: 10.1093/pcp/pcae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024]
Abstract
Shoot branching is a critical determinant of plant architecture and a key factor affecting crop yield. The shoot branching involves two main processes: axillary meristem formation and subsequent bud outgrowth. While considerable progress has been made in elucidating the genetic mechanisms underlying the latter process, our understanding of the former process remains limited. Rice FINE CULM1 (FC1), which is an ortholog of teosinte branched1 in maize (Zea mays) and BRANCHED1/2 in Arabidopsis (Arabidopsis thaliana), is known to act in the latter process by repressing bud outgrowth. In this study, we found that FC1 also plays a role in the former process, i.e. axillary meristem formation, in rice. This study was triggered by our unexpected observation that fc1 mutation suppresses the loss of axillary meristems in the loss-of-function mutant of the rice WUSCHEL gene TILLERS ABSENT1 (TAB1). In tab1 fc1, unlike in tab1, both stem cells and undifferentiated cells were maintained during axillary meristem formation, similar to the wild type. Morphological analysis showed that axillary meristem formation was accelerated in fc1, compared to the wild type. Consistent with this, cell proliferation was more active in the region containing stem cells and undifferentiated cells during axillary meristem formation in fc1 than in the wild type. Taken altogether, these findings suggest that FC1 negatively regulates axillary meristem formation by mildly repressing cell proliferation during this process.
Collapse
Grants
- Hiroshima University Research Encouragement Award for Young Scientists
- 20H04880 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 22K06267 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- Takeda Science Foundation
- Hiroshima University Research Encouragement Award for Young Scientists
- 20H04880 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 22K06267 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- Takeda Science Foundation
Collapse
Affiliation(s)
- Wakana Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528 Japan
| | - Ami Ohyama
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528 Japan
| | - Taiyo Toriba
- School of Food Industrial Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi, 982-0215 Japan
| | - Rumi Tominaga
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528 Japan
| | - Hiro-Yuki Hirano
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8654 Japan
| |
Collapse
|
2
|
Ren Z, Zhang D, Jiao C, Li D, Wu Y, Wang X, Gao C, Lin Y, Ruan Y, Xia Y. Comparative transcriptome and metabolome analyses identified the mode of sucrose degradation as a metabolic marker for early vegetative propagation in bulbs of Lycoris. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:115-134. [PMID: 35942603 PMCID: PMC9826282 DOI: 10.1111/tpj.15935] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/26/2022] [Accepted: 08/07/2022] [Indexed: 06/01/2023]
Abstract
Vegetative propagation (VP) is an important practice for production in many horticultural plants. Sugar supply constitutes the basis of VP in bulb flowers, but the underlying molecular basis remains elusive. By performing a combined sequencing technologies coupled with ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry approach for metabolic analyses, we compared two Lycoris species with contrasting regeneration rates: high-regeneration Lycoris sprengeri and low-regeneration Lycoris aurea. A comprehensive multi-omics analyses identified both expected processes involving carbohydrate metabolism and transcription factor networks, as well as the metabolic characteristics for each developmental stage. A higher abundance of the differentially expressed genes including those encoding ethylene responsive factors was detected at bulblet initiation stage compared to the late stage of bulblet development. High hexose-to-sucrose ratio correlated to bulblet formation across all the species examined, indicating its role in the VP process in Lycoris bulb. Importantly, a clear difference between cell wall invertase (CWIN)-catalyzed sucrose unloading in high-regeneration species and the sucrose synthase-catalyzed pathway in low-regeneration species was observed at the bulblet initiation stage, which was supported by findings from carboxyfluorescein tracing and quantitative real-time PCR analyses. Collectively, the findings indicate a sugar-mediated model of the regulation of VP in which high CWIN expression or activity may promote bulblet initiation via enhancing apoplasmic unloading of sucrose or sugar signals, whereas the subsequent high ratio of hexose-to-sucrose likely supports cell division characterized in the next phase of bulblet formation.
Collapse
Affiliation(s)
- Zi‐Ming Ren
- Department of Landscape Architecture, School of Civil Engineering and ArchitectureZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Dong Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Chen Jiao
- Key Lab of Molecular Biology of Crop Pathogens and InsectsInstitute of Biotechnology, Zhejiang UniversityHangzhou310058China
| | - Dan‐Qing Li
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Yun Wu
- Department of Landscape Architecture, School of Civil Engineering and ArchitectureZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Xiu‐Yun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Cong Gao
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Ye‐Fan Lin
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Yong‐Ling Ruan
- Division of Plant Sciences, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Yazhou Bay LaboratorySanya572024China
| | - Yi‐Ping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| |
Collapse
|
3
|
Wang L, Gao J, Wang C, Xu Y, Li X, Yang J, Chen K, Kang Y, Wang Y, Cao P, Xie X. Comprehensive Analysis of Long Non-coding RNA Modulates Axillary Bud Development in Tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:809435. [PMID: 35237286 PMCID: PMC8884251 DOI: 10.3389/fpls.2022.809435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression and are crucial for plant growth and development. However, the mechanisms underlying the effects of activated lncRNAs on axillary bud development remain largely unknown. By lncRNA transcriptomes of axillary buds in topped and untopped tobacco plants, we identified a total of 13,694 lncRNAs. LncRNA analysis indicated that the promoted growth of axillary bud by topping might be partially ascribed to the genes related to hormone signal transduction and glycometabolism, trans-regulated by differentially expressed lncRNAs, such as MSTRG.52498.1, MSTRG.60026.1, MSTRG.17770.1, and MSTRG.32431.1. Metabolite profiling indicated that auxin, abscisic acid and gibberellin were decreased in axillary buds of topped tobacco lines, while cytokinin was increased, consistent with the expression levels of related lncRNAs. MSTRG.52498.1, MSTRG.60026.1, MSTRG.17770.1, and MSTRG.32431.1 were shown to be influenced by hormones and sucrose treatments, and were associated with changes of axillary bud growth in the overexpression of NtCCD8 plants (with reduced axillary buds) and RNA interference of NtTB1 plants (with increased axillary buds). Moreover, MSTRG.28151.1 was identified as the antisense lncRNA of NtTB1. Silencing of MSTRG.28151.1 in tobacco significantly attenuated the expression of NtTB1 and resulted in larger axillary buds, suggesting the vital function of MSTRG.28151.1 axillary bud developmen by NtTB1. Our findings shed light on lncRNA-mRNA interactions and their functional roles in axillary bud growth, which would improve our understanding of lncRNAs as important regulators of axillary bud development and plant architecture.
Collapse
Affiliation(s)
- Lin Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Junping Gao
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Chen Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaoxu Li
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Kai Chen
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yile Kang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yaofu Wang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| |
Collapse
|
4
|
Sun Q, Zhang B, Yang C, Wang W, Xiang L, Wang Y, Chan Z. Jasmonic acid biosynthetic genes TgLOX4 and TgLOX5 are involved in daughter bulb development in tulip (Tulipa gesneriana). HORTICULTURE RESEARCH 2022; 9:uhac006. [PMID: 35147193 PMCID: PMC8947238 DOI: 10.1093/hr/uhac006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/30/2021] [Indexed: 06/02/2023]
Abstract
The tulip bulbs are modified underground stems which originate from axillary meristems of mother bulb scales. Hormones including jasmonic acids (JAs) play key roles in regulating tulip bulb development. Here, we compared variations of daughter bulb development through transcriptomic profiling analysis and characterized the functions of JA biosynthesis related genes during daughter bulb enlargement. The results showed that tulip varieties exhibited contrasting bulb size variations. Transcriptomic analyses revealed that genes involved in plant hormones and development were significantly changed following tulip bulb growth, including two lipoxygenase genes TgLOX4 and TgLOX5. Ectopic overexpression of TgLOX4 and TgLOX5 in Arabidopsis enhanced endogenous JA content, improved plant growth and increased lateral root numbers. Silencing of these two genes in tulip repressed the growth of daughter bulbs. Furthermore, exogenous JA treatment promoted tulip bulb growth, whereas JA biosynthesis inhibitor sodium diethyldithiocarbamate (DIECA) inhibited this process. This study offers supporting evidence for the involvement of tulip TgLOX4 and TgLOX5 in the regulation of daughter bulb growth and development.
Collapse
Affiliation(s)
- Qi Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bei Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaolong Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weiliang Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Xiang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanping Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
5
|
Hou X, Qi N, Wang C, Li C, Huang D, Li Y, Wang N, Liao W. Hydrogen-rich water promotes the formation of bulblets in Lilium davidii var. unicolor through regulating sucrose and starch metabolism. PLANTA 2021; 254:106. [PMID: 34689230 PMCID: PMC8542194 DOI: 10.1007/s00425-021-03762-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/18/2021] [Indexed: 05/08/2023]
Abstract
HRW increased the content of starch and sucrose via regulating a series of sucrose and starch synthesis genes, which induced the formation of bulblets and adventitious roots of Lilium davidii var. unicolor. Hydrogen gas (H2), as a signaling molecule, has been reported to be involved in plant growth and development. Here, the effect of hydrogen-rich water (HRW) on the formation of bulblets and adventitious roots in the scale cuttings of Lilium davidii var. unicolor and its mechanisms at the molecular levels were investigated. The results revealed that compared with distilled water treatment (Con), the number of bulblets and adventitious roots were significantly promoted by different concentrations of HRW treatment. Treatment with 100% HRW obtained the most positive effects. RNA sequencing (RNA-seq) analysis found that compared with Con, a total of 1702 differentially expressed genes (DEGs, upregulated 552 DEGs, downregulated 1150 DEGs) were obtained under HRW treatment. The sucrose and starch metabolism, cysteine and methionine metabolism and phenylalanine metabolism were significantly enriched in the analysis of the Kyoto encyclopedia of genes and genomes (KEGG). In addition, the genes involved in carbohydrate metabolism were significantly upregulated or downregulated (upregulated 22 DEGs, downregulated 15 DEGs), indicating that starch and sucrose metabolism held a central position. The expressions of 12 DEGs were identified as coding for key enzymes in metabolism of carbohydrates was validated by qPCR during bulblet formation progress. RNA-seq analysis and expression profiles indicated that the unigene levels such as glgc, Susy, otsA and glgP, BMY and TPS were well correlated with sucrose and starch metabolism during HRW-induced bulblet formation. The change of key enzyme content in starch and sucrose metabolism pathway was explored during bulblet formation in Lilium under HRW treatment. Meanwhile, compared with Con, 100% HRW treatment increased the levels of sucrose and starch, and decreased the trehalose content, which were agreed with the expression pattern of DEGs related to the biosynthesis pathway of sucrose, starch and trehalose. Therefore, this study suggested that HRW could promote the accumulation of sucrose and starch contents in mother scales, and decreased the trehalose content, this might provide more energy for bulblet formation.
Collapse
Affiliation(s)
- Xuemei Hou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Nana Qi
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Changxia Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Dengjing Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yihua Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Ni Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
6
|
Shi J, Zhou H, Liu X, Wang N, Xu Q, Yan G. Correlation analysis of the transcriptome and metabolome reveals the role of the flavonoid biosynthesis pathway in regulating axillary buds in upland cotton (Gossypium hirsutum L.). PLANTA 2021; 254:7. [PMID: 34142246 DOI: 10.1007/s00425-021-03597-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Flavonoids are involved in axillary bud development in upland cotton. The phenylpropanoid and flavonoid biosynthesis pathways regulate axillary bud growth by promoting the transport of auxin in upland cotton. In cotton production, simplified cultivation and mechanical harvesting are emerging trends that depend on whether the cotton plant type meets production requirements. The axillary bud is an important index of cotton plant-type traits, and the molecular mechanism of axillary bud development in upland cotton has not yet been completely studied. Here, a combined investigation of transcriptome and metabolome analyses in G. hirsutum CCRI 117 at the fourth week (stage 1), fifth week (stage 2) and sixth week (stage 3) after seedling emergence was performed. The metabolome results showed that the total lipid, amino acid and organic acid contents in the first stalk node decreased during axillary bud development. The abundance of 71 metabolites was altered between stage 2 and stage 1, and 32 metabolites exhibited significantly altered abundance between stage 3 and stage 2. According to the correlation analysis of metabolome and transcriptome profiles, we found that phenylpropanoid and flavonoid biosynthesis pathways exhibit high enrichment degrees of both differential metabolites and differential genes in three stages. Based on the verification of hormone, soluble sugar and flavonoid detection, we propose a model for flavonoid-mediated regulation of axillary bud development in upland cotton, revealing that the decrease in secondary metabolites of phenylpropanoid and flavonoid biosynthesis is an essential factor to promote the transport of auxin and subsequently promote the growth of axillary buds. Our findings provide novel insights into the regulation of phenylpropanoid and flavonoid biosynthesis in axillary bud development and could prove useful for cultivating machine-harvested cotton varieties with low axillary buds.
Collapse
Affiliation(s)
- Jianbin Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaohong Liu
- Xinjiang Qianhai Seed Industry Limited Liability Company, Tumsuk, 843901, China
| | - Ning Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qinghua Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Gentu Yan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
7
|
Khosa J, Bellinazzo F, Kamenetsky Goldstein R, Macknight R, Immink RGH. PHOSPHATIDYLETHANOLAMINE-BINDING PROTEINS: the conductors of dual reproduction in plants with vegetative storage organs. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2845-2856. [PMID: 33606013 DOI: 10.1093/jxb/erab064] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/08/2021] [Indexed: 05/18/2023]
Abstract
Geophytes, the plants that form vegetative storage organs, are characterized by a dual reproduction system, in which vegetative and sexual propagation are tightly regulated to ensure fitness in harsh climatic conditions. Recent findings highlight the role of the PEBP (PHOSPHATIDYLETHANOLAMINE-BINDING PROTEIN) gene family in geophytes as major players in the molecular cascades underlying both types of reproduction. In this review, we briefly explain the life cycle and reproduction strategies of different geophytes and what is known about the physiological aspects related to these processes. Subsequently, an in-depth overview is provided of the molecular and genetic pathways driving these processes. In the evolution of plants, the PEBP gene family has expanded, followed by neo- and subfunctionalization. Careful characterization revealed that differential expression and differential protein complex formation provide the members of this gene family with unique functions, enabling them to mediate the crosstalk between the two reproductive events in geophytes in response to environmental and endogenous cues. Taking all these studies into account, we propose to regard the PEBPs as conductors of geophyte reproductive development.
Collapse
Affiliation(s)
- Jiffinvir Khosa
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Francesca Bellinazzo
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | | | - Richard Macknight
- Department of Biochemistry, University of Otago, 9016 Dunedin, PO Box 56 Dunedin, New Zealand
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
8
|
Fang Y, Zheng Y, Lu W, Li J, Duan Y, Zhang S, Wang Y. Roles of miR319-regulated TCPs in plant development and response to abiotic stress. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.cj.2020.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Vayssières A, Mishra P, Roggen A, Neumann U, Ljung K, Albani MC. Vernalization shapes shoot architecture and ensures the maintenance of dormant buds in the perennial Arabis alpina. THE NEW PHYTOLOGIST 2020; 227:99-115. [PMID: 32022273 DOI: 10.1111/nph.16470] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/29/2020] [Indexed: 05/11/2023]
Abstract
Perennials have a complex shoot architecture with axillary meristems organized in zones of differential bud activity and fate. This includes zones of buds maintained dormant for multiple seasons and used as reservoirs for potential growth in case of damage. The shoot of Arabis alpina, a perennial relative of Arabidopsis thaliana, consists of a zone of dormant buds placed between subapical vegetative and basal flowering branches. This shoot architecture is shaped after exposure to prolonged cold, required for flowering. To understand how vernalization ensures the maintenance of dormant buds, we performed physiological and transcriptome studies, followed the spatiotemporal changes of auxin, and generated transgenic plants. Our results demonstrate that the complex shoot architecture in A. alpina is shaped by its flowering behavior, specifically the initiation of inflorescences during cold treatment and rapid flowering after subsequent exposure to growth-promoting conditions. Dormant buds are already formed before cold treatment. However, dormancy in these buds is enhanced during, and stably maintained after, vernalization by a BRC1-dependent mechanism. Post-vernalization, stable maintenance of dormant buds is correlated with increased auxin response, transport, and endogenous indole-3-acetic acid levels in the stem. Here, we provide a functional link between flowering and the maintenance of dormant buds in perennials.
Collapse
Affiliation(s)
- Alice Vayssières
- Institute for Plant Sciences, University of Cologne, Zülpicher Straße 47b, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences 'From Complex Traits towards Synthetic Modules', Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Priyanka Mishra
- Institute for Plant Sciences, University of Cologne, Zülpicher Straße 47b, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences 'From Complex Traits towards Synthetic Modules', Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Adrian Roggen
- Institute for Plant Sciences, University of Cologne, Zülpicher Straße 47b, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences 'From Complex Traits towards Synthetic Modules', Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Ulla Neumann
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Maria C Albani
- Institute for Plant Sciences, University of Cologne, Zülpicher Straße 47b, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences 'From Complex Traits towards Synthetic Modules', Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| |
Collapse
|
10
|
Fang Z, Ji Y, Hu J, Guo R, Sun S, Wang X. Strigolactones and Brassinosteroids Antagonistically Regulate the Stability of the D53-OsBZR1 Complex to Determine FC1 Expression in Rice Tillering. MOLECULAR PLANT 2020; 13:586-597. [PMID: 31837469 DOI: 10.1016/j.molp.2019.12.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/10/2019] [Accepted: 12/04/2019] [Indexed: 05/21/2023]
Abstract
Rice tillering, a key architecture trait determining grain yield, is highly regulated by a class of newly identified phytohormones, strigolactones (SLs). However, the whole SL signaling pathway from the receptor to downstream transcription factors to finally inhibit tillering remains unrevealed. In this study, we first found that brassinosteroids (BRs) strongly enhance tillering by promoting bud outgrowth in rice, which is largely different from the function of BRs in Arabidopsis. Genetic and biochemical analyses indicated that both the SL and BR signaling pathways control rice tillering by regulating the stability of D53 and/or the OsBZR1-RLA1-DLT module, a transcriptional complex in the rice BR signaling pathway. We further found that D53 interacts with OsBZR1 to inhibit the expression of FC1, a local inhibitor of tillering, and that this inhibition depends on direct DNA binding by OsBZR1, which recruits D53 to the FC1 promoter in rice buds. Taken together, these findings uncover a mechanism illustrating how SLs and BRs coordinately regulate rice tillering via the early responsive gene FC1.
Collapse
Affiliation(s)
- Zhongming Fang
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 China; College of Agricultural Sciences, Guizhou University, Guiyang 550025 China
| | - Yuanyuan Ji
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 China; Department of Genetics, School of Life Sciences, Fudan University, Shanghai 200438 China
| | - Jie Hu
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 China
| | - Renkang Guo
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 China
| | - Shiyong Sun
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 China.
| | - Xuelu Wang
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 China.
| |
Collapse
|
11
|
Zhu Y, Wagner D. Plant Inflorescence Architecture: The Formation, Activity, and Fate of Axillary Meristems. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a034652. [PMID: 31308142 DOI: 10.1101/cshperspect.a034652] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The above-ground plant body in different plant species can have very distinct forms or architectures that arise by recurrent redeployment of a finite set of building blocks-leaves with axillary meristems, stems or branches, and flowers. The unique architectures of plant inflorescences in different plant families and species, on which this review focuses, determine the reproductive success and yield of wild and cultivated plants. Major contributors to the inflorescence architecture are the activity and developmental trajectories adopted by axillary meristems, which determine the degree of branching and the number of flowers formed. Recent advances in genetic and molecular analyses in diverse flowering plants have uncovered both common regulatory principles and unique players and/or regulatory interactions that underlie inflorescence architecture. Modulating activity of these regulators has already led to yield increases in the field. Additional insight into the underlying regulatory interactions and principles will not only uncover how their rewiring resulted in altered plant form, but will also enhance efforts at optimizing plant architecture in desirable ways in crop species.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
12
|
Liu MM, Wang MM, Yang J, Wen J, Guo PC, Wu YW, Ke YZ, Li PF, Li JN, Du H. Evolutionary and Comparative Expression Analyses of TCP Transcription Factor Gene Family in Land Plants. Int J Mol Sci 2019; 20:E3591. [PMID: 31340456 PMCID: PMC6679135 DOI: 10.3390/ijms20143591] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 01/01/2023] Open
Abstract
The plant-specific Teosinte-branched 1/Cycloidea/Proliferating (TCP) transcription factor genes are involved in plants' development, hormonal pathways, and stress response but their evolutionary history is uncertain. The genome-wide analysis performed here for 47 plant species revealed 535 TCP candidates in terrestrial plants and none in aquatic plants, and that TCP family genes originated early in the history of land plants. Phylogenetic analysis divided the candidate genes into Classes I and II, and Class II was further divided into CYCLOIDEA (CYC) and CINCINNATA (CIN) clades; CYC is more recent and originated from CIN in angiosperms. Protein architecture, intron pattern, and sequence characteristics were conserved in each class or clade supporting this classification. The two classes significantly expanded through whole-genome duplication during evolution. Expression analysis revealed the conserved expression of TCP genes from lower to higher plants. The expression patterns of Class I and CIN genes in different stages of the same tissue revealed their function in plant development and their opposite effects in the same biological process. Interaction network analysis showed that TCP proteins tend to form protein complexes, and their interaction networks were conserved during evolution. These results contribute to further functional studies on TCP family genes.
Collapse
Affiliation(s)
- Ming-Ming Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Mang-Mang Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jin Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jing Wen
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Peng-Cheng Guo
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Yun-Wen Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Yun-Zhuo Ke
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Peng-Feng Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jia-Na Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
13
|
Barbier FF, Dun EA, Kerr SC, Chabikwa TG, Beveridge CA. An Update on the Signals Controlling Shoot Branching. TRENDS IN PLANT SCIENCE 2019; 24:220-236. [PMID: 30797425 DOI: 10.1016/j.tplants.2018.12.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 05/21/2023]
Abstract
Many new questions on the regulation of shoot branching have been raised in recent years, prompting a review and reassessment of the role of each signal involved. Sugars and their signaling networks have been attributed a major role in the early events of axillary bud outgrowth, whereas cytokinin appears to play a critical role in the modulation of this process in response to the environment. Perception of the recently discovered hormone strigolactone is now quite well understood, while the downstream targets remain largely unknown. Recent literature has highlighted that auxin export from a bud is important for its subsequent growth.
Collapse
Affiliation(s)
- Francois F Barbier
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia
| | - Elizabeth A Dun
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia; These authors contributed equally to this publication
| | - Stephanie C Kerr
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia; These authors contributed equally to this publication
| | - Tinashe G Chabikwa
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia
| | - Christine A Beveridge
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia.
| |
Collapse
|