1
|
Zusi C, Rioda M, Maguolo A, Emiliani F, Unali I, Costantini S, Corradi M, Contreas G, Morandi A, Maffeis C. IGF1 and PPARG polymorphisms are associated with reduced estimated glomerular filtration rate in a cohort of children and adolescents with type 1 diabetes. Acta Diabetol 2023; 60:1351-1358. [PMID: 37338602 PMCID: PMC10442246 DOI: 10.1007/s00592-023-02128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 06/03/2023] [Indexed: 06/21/2023]
Abstract
INTRODUCTION Several genetic loci have been associated with diabetic nephropathy; however, the underlying genetic mechanisms are still poorly understood, with no robust candidate genes identified yet. AIM We aimed to determine whether two polymorphisms, previously associated with renal decline, influence kidney impairment evaluating their association with markers of renal function in a pediatric population with type 1 diabetes (T1D). MATERIAL AND METHODS Renal function was evaluated by glomerular filtration rate (eGFR) and albumin-to-creatinine ratio (ACR) in a cohort of pediatric subjects with T1D (n = 278). Risk factors for diabetes complications (diabetes duration, blood pressure, HbA1c) were assessed. The IGF1 rs35767 and PPARG rs1801282 SNPs were genotyped by TaqMan RT-PCR system. An additive genetic interaction was calculated. Association analysis between markers of renal function and both SNPs or their additive interaction were performed. RESULTS Both SNPs showed a significant association with eGFR: the A allele of rs35767 or the C allele of rs1801282 were associated to reduced eGFR compared to G alleles. Multivariate regression analysis adjusted for age, sex, z-BMI, T1D duration, blood pressure and Hba1c values showed that the additive genetic interaction was independently associated with lower eGFR (β = -3.59 [-6.52 to -0.66], p = 0.017). No associations were detected between SNPs, their additive interaction and ACR. CONCLUSIONS These results provide new insight into the genetic predisposition to renal dysfunction, showing that two polymorphisms in IGF1 and PPARG genes can lead to a reduction in renal filtration rate leading these patients to be exposed to a higher risk of early renal complications.
Collapse
Affiliation(s)
- Chiara Zusi
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Section of Pediatric Diabetes and Metabolism, University and Azienda Ospedaliera, Università di Verona, Piazzale A. Stefani, 1, 37126, Verona, Italy.
| | - Marco Rioda
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Section of Pediatric Diabetes and Metabolism, University and Azienda Ospedaliera, Università di Verona, Piazzale A. Stefani, 1, 37126, Verona, Italy
| | - Alice Maguolo
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Section of Pediatric Diabetes and Metabolism, University and Azienda Ospedaliera, Università di Verona, Piazzale A. Stefani, 1, 37126, Verona, Italy
| | - Federica Emiliani
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Section of Pediatric Diabetes and Metabolism, University and Azienda Ospedaliera, Università di Verona, Piazzale A. Stefani, 1, 37126, Verona, Italy
| | - Ilaria Unali
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Section of Pediatric Diabetes and Metabolism, University and Azienda Ospedaliera, Università di Verona, Piazzale A. Stefani, 1, 37126, Verona, Italy
| | - Silvia Costantini
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Section of Pediatric Diabetes and Metabolism, University and Azienda Ospedaliera, Università di Verona, Piazzale A. Stefani, 1, 37126, Verona, Italy
| | - Massimiliano Corradi
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Section of Pediatric Diabetes and Metabolism, University and Azienda Ospedaliera, Università di Verona, Piazzale A. Stefani, 1, 37126, Verona, Italy
| | - Giovanna Contreas
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Section of Pediatric Diabetes and Metabolism, University and Azienda Ospedaliera, Università di Verona, Piazzale A. Stefani, 1, 37126, Verona, Italy
| | - Anita Morandi
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Section of Pediatric Diabetes and Metabolism, University and Azienda Ospedaliera, Università di Verona, Piazzale A. Stefani, 1, 37126, Verona, Italy
| | - Claudio Maffeis
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Section of Pediatric Diabetes and Metabolism, University and Azienda Ospedaliera, Università di Verona, Piazzale A. Stefani, 1, 37126, Verona, Italy
| |
Collapse
|
2
|
Song Y, Li S, He C. PPARγ Gene Polymorphisms, Metabolic Disorders, and Coronary Artery Disease. Front Cardiovasc Med 2022; 9:808929. [PMID: 35402540 PMCID: PMC8984027 DOI: 10.3389/fcvm.2022.808929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/22/2022] [Indexed: 01/14/2023] Open
Abstract
Being activated by endogenous and exogenous ligands, nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) enhances insulin sensitivity, promotes adipocyte differentiation, stimulates adipogenesis, and has the properties of anti-atherosclerosis, anti-inflammation, and anti-oxidation. The Human PPARγ gene (PPARG) contains thousands of polymorphic loci, among them two polymorphisms (rs10865710 and rs7649970) in the promoter region and two polymorphisms (rs1801282 and rs3856806) in the exonic region were widely reported to be significantly associated with coronary artery disease (CAD). Mechanistically, PPARG polymorphisms lead to abnormal expression of PPARG gene and/or dysfunction of PPARγ protein, causing metabolic disorders such as hypercholesterolemia and hypertriglyceridemia, and thereby increasing susceptibility to CAD.
Collapse
Affiliation(s)
- Yongyan Song
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Shujin Li
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Chuan He
- Department of Cardiology, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
- *Correspondence: Chuan He,
| |
Collapse
|
3
|
Chatzopoulou F, Kyritsis KA, Papagiannopoulos CI, Galatou E, Mittas N, Theodoroula NF, Papazoglou AS, Karagiannidis E, Chatzidimitriou M, Papa A, Sianos G, Angelis L, Chatzidimitriou D, Vizirianakis IS. Dissecting miRNA–Gene Networks to Map Clinical Utility Roads of Pharmacogenomics-Guided Therapeutic Decisions in Cardiovascular Precision Medicine. Cells 2022; 11:cells11040607. [PMID: 35203258 PMCID: PMC8870388 DOI: 10.3390/cells11040607] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) create systems networks and gene-expression circuits through molecular signaling and cell interactions that contribute to health imbalance and the emergence of cardiovascular disorders (CVDs). Because the clinical phenotypes of CVD patients present a diversity in their pathophysiology and heterogeneity at the molecular level, it is essential to establish genomic signatures to delineate multifactorial correlations, and to unveil the variability seen in therapeutic intervention outcomes. The clinically validated miRNA biomarkers, along with the relevant SNPs identified, have to be suitably implemented in the clinical setting in order to enhance patient stratification capacity, to contribute to a better understanding of the underlying pathophysiological mechanisms, to guide the selection of innovative therapeutic schemes, and to identify innovative drugs and delivery systems. In this article, the miRNA–gene networks and the genomic signatures resulting from the SNPs will be analyzed as a method of highlighting specific gene-signaling circuits as sources of molecular knowledge which is relevant to CVDs. In concordance with this concept, and as a case study, the design of the clinical trial GESS (NCT03150680) is referenced. The latter is presented in a manner to provide a direction for the improvement of the implementation of pharmacogenomics and precision cardiovascular medicine trials.
Collapse
Affiliation(s)
- Fani Chatzopoulou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
- Labnet Laboratories, Department of Molecular Biology and Genetics, 54638 Thessaloniki, Greece
| | - Konstantinos A. Kyritsis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Christos I. Papagiannopoulos
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Eleftheria Galatou
- Department of Life & Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
| | - Nikolaos Mittas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
| | - Nikoleta F. Theodoroula
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Andreas S. Papazoglou
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Efstratios Karagiannidis
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Maria Chatzidimitriou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Anna Papa
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
| | - Georgios Sianos
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Lefteris Angelis
- Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitrios Chatzidimitriou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
- Department of Life & Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
- Correspondence: or
| |
Collapse
|
4
|
Shawki HA, Abo-hashem EM, Youssef MM, Shahin M, Elzehery R. PPARɣ2, aldose reductase, and TCF7L2 gene polymorphisms: relation to diabetes mellitus. J Diabetes Metab Disord 2022; 21:241-250. [PMID: 35673413 PMCID: PMC9167404 DOI: 10.1007/s40200-021-00963-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/25/2021] [Indexed: 01/05/2023]
Abstract
Purpose Diabetes mellitus (DM) is a growing global health concern. Genetic factors play a pivotal role in the development of diabetes. Therefore, the present work aimed to study the relation between peroxisome proliferator-activate receptors (PPARɣ2) (rs3856806), aldose reductase (AR) (rs759853), transcription factor 7 like 2 (TCF7L2) (rs7903146) gene polymorphism with diabetes in the Egyptian population. Methods The study included 260 diabetics and 120 healthy subjects. Genotyping was done using polymerase chain reaction-restriction fragment length polymorphism. Results Regression analysis revealed that PPARɣ2 TT, TCF7L2 TT were suggested to be independent risk predictors for T1DM and TCF7L2 TC, CC genotype were suggested to be independent protective factors against T1DM development. On the other hand, PPARɣ2 TT, AR TT genotypes were suggested to be independent risk predictors for T2DM susceptibility, and PPARɣ2 CT genotypes were suggested to be independent protective factors against T2DM development. Conclusion The present study revealed that PPARγ2 (rs3856806), TCF7L2 (rs7903146) and AR (rs759853) gene polymorphism may play an important role in the susceptibility of diabetes. Therefore, these polymorphisms may have a prognostic value for diabetes in the Egyptian population. Further work is required to confirm the role of these polymorphisms in diabetes.
Collapse
Affiliation(s)
- Hadeel Ahmed Shawki
- grid.10251.370000000103426662Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt ,grid.10251.370000000103426662Mansoura Ophthalmic Center, Mansoura University, Mansoura, Egypt
| | - Ekbal M. Abo-hashem
- grid.10251.370000000103426662Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Magdy M. Youssef
- grid.10251.370000000103426662Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Maha Shahin
- grid.10251.370000000103426662Mansoura Ophthalmic Center, Mansoura University, Mansoura, Egypt
| | - Rasha Elzehery
- grid.10251.370000000103426662Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
C1431T Variant of PPARγ Is Associated with Preeclampsia in Pregnant Women. Life (Basel) 2021; 11:life11101052. [PMID: 34685423 PMCID: PMC8540421 DOI: 10.3390/life11101052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/16/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is essential for placental development, whose SNPs have shown increased susceptibility to pregnancy-related diseases, such as preeclampsia. Our aim was to investigate the association between preeclampsia and three PPARγ SNPs (Pro12Ala, C1431T, and C681G), which together with nine clinical factors were used to build a pragmatic model for preeclampsia prediction. Data were collected from 1648 women from the EDEN cohort, of which 35 women had preeclamptic pregnancies, and the remaining 1613 women had normal pregnancies. Univariate analysis comparing preeclamptic patients to the control resulted in the SNP C1431T being the only factor significantly associated with preeclampsia (p < 0.05), with a confidence interval of 95% and odds ratio ranging from 4.90 to 8.75. On the other hand, three methods of multivariate feature selection highlighted seven features that could be potential predictors of preeclampsia: maternal C1431T and C681G variants, obesity, body mass index, number of pregnancies, primiparity, cigarette use, and education. These seven features were further used as input into eight different machine-learning algorithms to create predictive models, whose performances were evaluated based on metrics of accuracy and the area under the receiver operating characteristic curve (AUC). The boost tree-based model performed the best, with respective accuracy and AUC values of 0.971 ± 0.002 and 0.991 ± 0.001 in the training set and 0.951 and 0.701 in the testing set. A flowchart based on the boost tree model was constructed to depict the procedure for preeclampsia prediction. This final decision tree showed that the C1431T variant of PPARγ is significantly associated with susceptibility to preeclampsia. We believe that this final decision tree could be applied in the clinical prediction of preeclampsia in the very early stages of pregnancy.
Collapse
|
6
|
Maciejewska-Skrendo A, Pawlik A, Sawczuk M, Rać M, Kusak A, Safranow K, Dziedziejko V. PPARA, PPARD and PPARG gene polymorphisms in patients with unstable angina. Gene 2019; 711:143947. [PMID: 31252163 DOI: 10.1016/j.gene.2019.143947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Peroxisome proliferator-activated receptors (PPARs) include the nuclear receptor superfamily of ligand-activated transcription factors involved in several metabolic processes, including carbohydrate and lipid metabolism. MATERIAL AND METHODS In this study we examined PPARA: rs4253778, rs1800206, PPARD: rs2267668, rs2016520, rs1053049, PPARG rs1801282 and PPARGC1A rs8192678 polymorphisms in patients with unstable angina. This study included 246 patients with unstable angina confirmed by coronary angiography (defined by >70% stenosis in at least one major coronary artery) and 189 healthy controls. RESULTS We observed statistically significant difference in distribution of PPARG rs1801282 genotypes and alleles between patients and control group. Among patients there was the increased frequency of CG and GG genotypes and G alleles. The association between PPARG rs1801282 G allele and unstable angina was confirmed in multivariate regression analysis. There were no statistically significant differences in the distributions of other studied polymorphisms between patients with unstable angina and the control group. CONCLUSIONS The results of our study suggest the association between PPARG rs1801282 G allele and unstable angina in Polish population.
Collapse
Affiliation(s)
- Agnieszka Maciejewska-Skrendo
- Unit of Biology, Ecology and Sports Medicine, Chair of Natural Sciences, Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland.
| | - Marek Sawczuk
- Laboratory of Physical Medicine, Chair of Sport, Faculty of Tourism and Recreation, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Monika Rać
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Kusak
- Department of Cardiology, County Hospital, Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
7
|
Genetic Polymorphisms in Sepsis and Cardiovascular Disease: Do Similar Risk Genes Suggest Similar Drug Targets? Chest 2019; 155:1260-1271. [PMID: 30660782 DOI: 10.1016/j.chest.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 01/10/2023] Open
Abstract
Genetic variants are associated with altered clinical outcome of patients with sepsis and cardiovascular diseases. Common gene signaling pathways may be involved in the pathophysiology of these diseases. A better understanding of genetic commonality among these diseases may enable the discovery of important genes, signaling pathways, and therapeutic targets for these diseases. We investigated the common genetic factors by a systematic search of the literature. Twenty-four genes (ADRB2, CD14, FGB, FV, HMOX1, IL1B, IL1RN, IL6, IL10, IL17A, IRAK1, MASP2, MBL, MIR608, MIF, NOD2, PCSK9, PPARG, PROC, SERPINE1, SOD2, SVEP1, TF, TIRAP, TLR1) were extracted as reported genetic variations associated with altered outcome of both sepsis and cardiovascular diseases. Of these genes, the adverse allele (or combinations) was same in nine (ADRB2, FV, HMOX1, IL6, MBL, MIF, NOD2, PCSK9, SERPINE1), and the effect appears to be in the same direction in both sepsis and cardiovascular disease. Shared gene signaling pathways suggest that these are true biological results and could point to overlapping drug targets in sepsis and cardiovascular disease.
Collapse
|
8
|
Early Detection System of Vascular Disease and Its Application Prospect. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1723485. [PMID: 28042567 PMCID: PMC5155081 DOI: 10.1155/2016/1723485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/30/2016] [Accepted: 10/25/2016] [Indexed: 01/12/2023]
Abstract
Markers of imaging, structure, and function reflecting vascular damage, integrating a long time accumulation effect of traditional and unrecognized cardiovascular risk factors, can be regarded as surrogate endpoints of target organ damage before the occurrence of clinical events. Prevention of cardiovascular disease requires risk stratification and treatment of traditional risk factors, such as smoking, hypertension, hyperlipidemia, and diabetes. However, traditional risk stratification is not sufficient to provide accurate assessment of future cardiovascular events. Therefore, vascular injury related parameters obtained by ultrasound or other noninvasive devices, as a surrogate parameter of subclinical cardiovascular disease, can improve cardiovascular risk assessment and optimize the preventive treatment strategy. Thus, we will summarize the research progress and clinical application of early assessment technology of vascular diseases in the present review.
Collapse
|
9
|
Qian Y, Li P, Zhang J, Shi Y, Chen K, Yang J, Wu Y, Ye X. Association between peroxisome proliferator-activated receptor-alpha, delta, and gamma polymorphisms and risk of coronary heart disease: A case-control study and meta-analysis. Medicine (Baltimore) 2016; 95:e4299. [PMID: 27512842 PMCID: PMC4985297 DOI: 10.1097/md.0000000000004299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Risk of coronary heart disease (CHD) has been suggested to be associated with polymorphisms of peroxisome proliferator-activated receptors (PPARs), while the results were controversial. We aimed to systematically assess the association between PPAR polymorphisms and CHD risk. METHODS A case-control study with 446 subjects was conducted to evaluate the association between CHD risk and C161T polymorphism, which was of our special interest as this polymorphism showed different effects on risks of CHD and acute coronary syndrome (ACS). Meta-analyses were conducted to assess all PPAR polymorphisms. Either a fixed- or a random-effects model was adopted to estimate overall odds ratios (ORs). RESULTS In the case-control study, T allele carriers of C161T polymorphism were not significantly associated with CHD risk (Odds ratio (OR) = 0.74, 95% confidence interval (CI) 0.47-1.15, P = 0.19), while T allele carriers showed higher risk of ACS (OR = 1.63, 95% CI 1.00-2.65, P = 0.048). The meta-analysis indicated that compared with CC homozygous, T allele carriers had lower CHD risk (OR = 0.69, 95% CI 0.59-0.82, P < 0.001) but higher ACS risk (OR = 1.43, 95% CI 1.09-1.87, P = 0.010). Three other polymorphisms were also found to be significantly associated with CHD risk under dominant model: PPAR-alpha intron 7G/C polymorphism (CC+GC vs GG, OR 1.42, 95% CI 1.13-1.78, P = 0.003), L162V polymorphism (VV+LV vs LL, OR 0.74, 95% CI 0.56-0.97, P = 0.031), and PPAR-delta +294T/C polymorphism (CC+TC vs TT, OR 1.51, 95% CI 1.12-2.05, P = 0.007). CONCLUSIONS The results suggested that PPAR-alpha intron 7G/C and L162V, PPAR-delta +294T/C and PPAR-gamma C161T polymorphisms could affect CHD susceptibility, and C161T polymorphism might have different effects on CHD and ACS.
Collapse
Affiliation(s)
- Yufeng Qian
- Department of Cardiology, Hangzhou First People's Hospital
| | - Peiwei Li
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health
| | - Jinjie Zhang
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health
| | - Yu Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine
| | - Kun Chen
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health
| | - Jun Yang
- Department of Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Yihua Wu
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health
| | - Xianhua Ye
- Department of Cardiology, Hangzhou First People's Hospital
| |
Collapse
|
10
|
Polymorphisms of the PPAR-γ (rs1801282) and Its Coactivator (rs8192673) Have a Minor Effect on Markers of Carotid Atherosclerosis in Patients with Type 2 Diabetes Mellitus. PPAR Res 2016; 2016:4934251. [PMID: 26949382 PMCID: PMC4754488 DOI: 10.1155/2016/4934251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 01/14/2016] [Indexed: 12/30/2022] Open
Abstract
Background. The present study was designed to clarify whether common single nucleotide polymorphisms (SNPs) of the Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ) gene (rs1801282) and the Peroxisome Proliferator-Activated Receptor-γ Coactivator-1 (PGC-1α) gene (rs8192673) are associated with markers of carotid and coronary atherosclerosis in Caucasians with type 2 diabetes mellitus (T2DM). Patients and Methods. 595 T2DM subjects and 200 control subjects were enrolled in the cross-sectional study. Markers of carotid atherosclerosis were assessed ultrasonographically. In 215 out of 595 subjects with T2DM, a coronary computed tomography angiography (CCTA) was performed for diagnostic purposes. Genotyping of either rs1801282 or rs8192673 was performed using KASPar assays. Results. In our study, we demonstrated an effect of the rs1801282 on markers of carotid atherosclerosis (presence of plaques) in Caucasians with T2DM in univariate and in multivariable linear regression analyses. Finally, we did not demonstrate any association between either rs1801282 or rs8192673 and markers of coronary atherosclerosis. Conclusions. In our study, we demonstrated a minor effect of the rs1801282 on markers of carotid atherosclerosis (presence of plaques) in Caucasians with T2DM. Moreover, we demonstrated a minor effect of the rs8192673 on CIMT progression in the 3.8-year follow-up in Caucasians with T2DM.
Collapse
|
11
|
Oladi M, Nohtani M, Avan A, Mirhafez SR, Tajbakhsh A, Ghasemi F, Asadi A, Elahdadi Salmani M, Mohammadi A, Hoseinzadeh L, Ferns GA, Ghayour Mobarhan M. Impact of the C1431T Polymorphism of the Peroxisome Proliferator Activated Receptor-Gamma (PPAR-γ) Gene on Fasted Serum Lipid Levels in Patients with Coronary Artery Disease. ANNALS OF NUTRITION AND METABOLISM 2015; 66:149-154. [PMID: 25896411 DOI: 10.1159/000381358] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/28/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The C1431T polymorphism of peroxisome proliferator activated receptor-γ (PPAR-γ) gene is related to diabetes and metabolic-syndrome. However, studies have been inconclusive about its association with coronary artery disease (CAD) and there have been no studies analyzing the association of this polymorphism with fasted-serum-lipid levels in Iranian-individuals with CAD. We investigated the association of PPAR-γ C1431T-polymorphism with CAD and dyslipidaemia in 787 individuals. METHODS Anthropometric-parameters and biochemical-measurements were evaluated, followed by genotyping. The association of the genetic-polymorphisms with CAD and lipid-profile was determined by univariate/multivariate-analyses. RESULTS Patients with CT or CT+TT genotype were at an increased-risk of CAD relative to CC-carriers (adjusted odds ratio: 2.03; 95% confidence interval, 1.01-4.09; p = 0.046). However, in the larger population, CT genotype was present at a higher frequency in the group with a positive angiogram. Furthermore, CT+TT genotypes were associated with an altered fasted-lipid-profile in the initial population sample of patients with a positive angiogram, compared to the group with a negative-angiogram. The angiogram-positive patients carrying the T allele had a significantly higher triglyceride, serum C-reactive protein and fasting-blood-glucose. CONCLUSION We have found the PPAR-γ C1431T polymorphism was significantly associated with fasted serum lipid profile in individuals with angiographically defined CAD. Since accumulating data support the role of PPAR-γ polymorphisms in CAD, further studies are required to investigate the association of this polymorphism with coronary artery disease.
Collapse
|
12
|
Wang P, Wang Q, Yin Y, Yang Z, Li W, Liang D, Zhou P. Association between Peroxisome Proliferator-activated Receptor Gamma Gene Polymorphisms and Atherosclerotic Diseases: A Meta-analysis of Case-control Studies. J Atheroscler Thromb 2015; 22:912-25. [PMID: 25832497 DOI: 10.5551/jat.26138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM The aim of this study was to perform a meta-analysis to investigate the association between PPARγ rs1801282/rs3856806 polymorphisms and atherosclerotic diseases. METHODS The meta-analysis was performed by searching the PubMed, Embase and Web of Science databases from the first available year to September 10, 2013. Additionally, reference lists from the identified articles, reviews and abstracts presented at the meetings of related scientific societies were also checked. All case-control studies investigating the association between PPARγ rs1801282/rs3856806 polymorphisms and the risk of atherosclerotic disease were included. The association was assessed according to the odds ratio (OR) with a 95% confidence interval (CI). Publication bias was analyzed using Begg's funnel plot and Egger's regression test. RESULTS A total of 29 studies reporting PPARγ rs1801282/rs3856806 polymorphism were included in the final meta-analysis. Neither the rs1801282 (Pro12Ala) nor rs3856806 (C161T) polymorphisms showed any significant associations with susceptibility to atherosclerotic diseases. In the meta-analysis performed to assess the association between the rs3856806 gene polymorphism and atherosclerotic disease based on ethnicity and the type of disease, significant associations were found in the Caucasian subgroup, Asian, CAD and MI subgroups. CONCLUSIONS The present data suggest that there is no statistical evidence of a significant association between the PPARγ gene rs1801282/rs3856806 polymorphism and the risk of atherosclerotic disease. In contrast, the rs3856806 polymorphism was associated with an increased risk in the Caucasian and MI subgroups, whereas decreased risks were noted in the Asian and CAD subgroups. Due to significant between-study heterogeneity, further studies with a larger sample size involving homogeneous AS patients and well-matched controls are required in the future.
Collapse
Affiliation(s)
- Peijian Wang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College
| | | | | | | | | | | | | |
Collapse
|
13
|
Gao H, Li L, Rao S, Shen G, Xi Q, Chen S, Zhang Z, Wang K, Ellis SG, Chen Q, Topol EJ, Wang QK. Genome-wide linkage scan identifies two novel genetic loci for coronary artery disease: in GeneQuest families. PLoS One 2014; 9:e113935. [PMID: 25485937 PMCID: PMC4259362 DOI: 10.1371/journal.pone.0113935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/30/2014] [Indexed: 11/18/2022] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. Recent genome-wide association studies (GWAS) identified >50 common variants associated with CAD or its complication myocardial infarction (MI), but collectively they account for <20% of heritability, generating a phenomena of “missing heritability”. Rare variants with large effects may account for a large portion of missing heritability. Genome-wide linkage studies of large families and follow-up fine mapping and deep sequencing are particularly effective in identifying rare variants with large effects. Here we show results from a genome-wide linkage scan for CAD in multiplex GeneQuest families with early onset CAD and MI. Whole genome genotyping was carried out with 408 markers that span the human genome by every 10 cM and linkage analyses were performed using the affected relative pair analysis implemented in GENEHUNTER. Affected only nonparametric linkage (NPL) analysis identified two novel CAD loci with highly significant evidence of linkage on chromosome 3p25.1 (peak NPL = 5.49) and 3q29 (NPL = 6.84). We also identified four loci with suggestive linkage on 9q22.33, 9q34.11, 17p12, and 21q22.3 (NPL = 3.18–4.07). These results identify novel loci for CAD and provide a framework for fine mapping and deep sequencing to identify new susceptibility genes and novel variants associated with risk of CAD.
Collapse
Affiliation(s)
- Hanxiang Gao
- Heart Center, the First Affiliated Hospital, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Lin Li
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Shaoqi Rao
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
- Institute of Medical Systems Biology and School of Public Health, Guangdong Medical College, Dongguan, Guangdong, 523808, P. R. China
| | - Gongqing Shen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Quansheng Xi
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Shenghan Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Zheng Zhang
- Heart Center, the First Affiliated Hospital, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Kai Wang
- Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Stephen G. Ellis
- Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Eric J. Topol
- Scripps Translational Science Institute, Scripps Research Institute, Scripps Clinic, La Jolla, California, 92037, United States of America
- * E-mail: (EJT); (QKW)
| | - Qing K. Wang
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
- Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
- Center for Sleep Medicine, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China
- * E-mail: (EJT); (QKW)
| |
Collapse
|
14
|
Association of peroxisome proliferator-activated receptorγ gene Pro12Ala and C161T polymorphisms with cardiovascular risk factors in maintenance hemodialysis patients. Mol Biol Rep 2014; 41:7555-65. [PMID: 25096510 DOI: 10.1007/s11033-014-3645-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
Abstract
The Pro12Ala and C161T polymorphisms in peroxisome proliferator-activated receptor γ (PPARγ) have been shown to be associated with carotid artery atherosclerosis. It remains unclear whether these two polymorphisms are associated with risk factors for cardiovascular disease (CVD) in hemodialysis (HD) patients. Therefore, the PPARγ genotypes in 99 HD patients and 149 controls were determined, and clinical characteristics among the different genotypes were compared. We found that the frequency of the Pro12Ala and C161T polymorphisms in HD patients was similar to that in healthy controls, but C161T polymorphism and T allele frequencies in HD patients with CVD were lower than that in HD patients without CVD. Carotid artery plaque (CAP) and carotid intima-media thickness (CIMT) in HD patients with CT + TT or Pro12Ala genotypes were also less than that in patients with CCor Pro12Pro genotypes, respectively. HD patients with CT + TT genotype had lower serum C reactive protein (CRP) levels, as well as higher triceps skin fold (TSF) thickness, mid arm circumference (MAC) and mean mid arm circumference (MMAC) than HD patients with CC genotype (P < 0.05). Moreover, CIMT of the Pro12Ala-CT161 subgroup was less than the Pro12Pro-CC161 and Pro12Pro-CT161 subgroup, and, CAP amounts of the Pro12Ala-CT161 subgroup was less than the Pro12Pro-CC161 subgroup. Our results indicate that the Pro12Ala and C161T polymorphisms were associated with some important risk factors for CVD in HD patients in the Han Chinese population.
Collapse
|
15
|
Effect of the PPARγ C161T gene variant on serum lipids in ischemic stroke patients with and without type 2 diabetes mellitus. J Mol Neurosci 2014; 54:730-8. [PMID: 24841086 DOI: 10.1007/s12031-014-0326-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/06/2014] [Indexed: 12/17/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated transcription factor involved in the regulation of lipid metabolism, diabetes, obesity, atherogenesis and inflammation. PPARγ genetic variation has been associated with metabolic and cardiovascular diseases. The aim of this study was to explore, for the first time, the relationship between PPARγ C161T polymorphism and the risk of ischemic stroke (IS) among patients with type 2 diabetes mellitus (T2DM). A total of 196 patients with IS (117 diabetics and 79 nondiabetics) and 192 controls were recruited to enroll in this study. PPARγ C161T genotyping was performed by PCR-RFLP technique. The 161T allele as compared with C allele was found to be higher in controls than in IS patients (with or without T2DM). After adjusting for multiple risk factors, the T allele carriers had significantly reduced IS risk (OR=0.575, 95% CI 0.348-0.951, p=0.030) compared to the CC homozygotes which increased significantly the risk in IS patients with T2DM (OR=1.85, 95% CI 1.23-2.62). Moreover, the triglycerides (TG) and ApoB levels in CC homozygote carriers were significantly higher than those in T allele carriers. These results indicate that the C161T of PPARγ may reduce the risk of IS by modulation of adipose metabolism especially TG and ApoB in IS patients with T2DM.
Collapse
|
16
|
Vergotine Z, Kengne AP, Erasmus RT, Yako YY, Matsha TE. Rare mutations of peroxisome proliferator-activated receptor gamma: frequencies and relationship with insulin resistance and diabetes risk in the mixed ancestry population from South Africa. Int J Endocrinol 2014; 2014:187985. [PMID: 25197274 PMCID: PMC4150434 DOI: 10.1155/2014/187985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/16/2014] [Indexed: 11/17/2022] Open
Abstract
Background. Genetic variants in the nuclear transcription receptor, PPARG, are associated with cardiometabolic traits, but reports remain conflicting. We determined the frequency and the clinical relevance of PPARG SNPs in an African mixed ancestry population. Methods. In a cross-sectional study, 820 participants were genotyped for rs1800571, rs72551362, rs72551363, rs72551364, and rs3856806, using allele-specific TaqMan technology. The homeostatic model assessment of insulin (HOMA-IR), β-cells function (HOMA-B%), fasting insulin resistance index (FIRI), and the quantitative insulin-sensitivity check index (QUICKI) were calculated. Results. No sequence variants were found except for the rs3856806. The frequency of the PPARG-His447His variant was 23.8% in the overall population group, with no difference by diabetes status (P = 0.215). The His447His allele T was associated with none of the markers of insulin resistance overall and by diabetes status. In models adjusted for 2-hour insulin, the T allele was associated with lower prevalent diabetes risk (odds ratio 0.56 (95% CI 0.31-0.95)). Conclusion. Our study confirms the almost zero occurrences of known rare PPARG SNPs and has shown for the first time in an African population that one of the common SNPs, His447His, may be protective against type 2 diabetes.
Collapse
Affiliation(s)
- Z. Vergotine
- Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, Cape Town 7530, South Africa
- Division of Chemical Pathology, Stellenbosch University, Cape Town 7505, South Africa
| | - A. P. Kengne
- Non-Communicable Diseases Research Unit, South African Medical Research Council and University of Cape Town, Cape Town 7505, South Africa
| | - R. T. Erasmus
- Division of Chemical Pathology, Stellenbosch University, Cape Town 7505, South Africa
| | - Y. Y. Yako
- Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, Cape Town 7530, South Africa
| | - T. E. Matsha
- Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, Cape Town 7530, South Africa
- *T. E. Matsha:
| |
Collapse
|