1
|
Makwana B, Malode A, Khadke S, Patel V, Shah R, Patel M, Parikh A, Dani SS, Ganatra S. Cardiac Complications of Immune Checkpoint Inhibitors and Chimeric Antigen Receptor T Cell Therapy. Cardiol Clin 2025; 43:151-167. [PMID: 39551556 DOI: 10.1016/j.ccl.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Immune checkpoint inhibitors and chimeric antigen receptor T-cell therapy have revolutionized cancer treatment but can cause life-threatening cardiovascular toxicities through immune-related adverse events. Myocarditis is the most common and potentially fatal toxicity with immune checkpoint inhibitors. T-cell therapies can potentially lead to cytokine release syndrome. Diagnosis of ICI-myocarditis requires a multimodal approach, including biomarkers, imaging, and endomyocardial biopsy, while CRS is characterized by a clinical syndrome resembling distributive shock. Management involves discontinuing the offending therapy, immunosuppression with corticosteroids for ICI-myocarditis, and interleukin-6 antagonists for CRS. Collaboration between oncologists and cardiologists is crucial for early recognition and prompt treatment.
Collapse
Affiliation(s)
- Bhargav Makwana
- Division of Cardiology, Department of Internal Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, USA
| | - Aishwarya Malode
- Division of Cardiology, Department of Internal Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, USA
| | - Sumanth Khadke
- Division of Cardiology, Department of Internal Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, USA
| | - Vahin Patel
- Division of Cardiology, Department of Internal Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, USA
| | - Rushin Shah
- Division of Cardiology, Department of Internal Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, USA
| | - Manav Patel
- Division of Cardiology, Department of Internal Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, USA
| | - Aneri Parikh
- Division of Cardiology, Department of Internal Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, USA
| | - Sourbha S Dani
- Division of Cardiology, Department of Internal Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, USA
| | - Sarju Ganatra
- Division of Cardiology, Department of Internal Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, USA; Department of Medicine (Research), Cardio-Oncology Program, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, USA.
| |
Collapse
|
2
|
Di Napoli R, Balzano N, Ruggiero R, Mascolo A, Scavone C, di Mauro G, Capuano A. T-cell malignancies following CAR T-Cell therapy: insights from the FDA Adverse Event Reporting System (FAERS). Expert Opin Drug Saf 2024:1-10. [PMID: 39696955 DOI: 10.1080/14740338.2024.2443965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Concern about post-CAR T-cell lymphomas has recently emerged. Analysis of pharmacovigilance data contributes to continuous safety monitoring, especially for newly authorized medicines, like CAR-T therapies. RESEARCH DESIGN AND METHODS Individual case safety reports (ICSRs) reporting at least one CAR T-cell therapy as a suspect drug were extracted from the Food and Drug Administration Adverse Event Reporting System database up to 6 February 2024. Descriptive and disproportionality analysis were performed. RESULTS Seventeen ICSRs reported T-cell malignancies associated with CAR T-cell therapy. Gender distribution was similar between females and males, and adult patients accounted for 41.2% of ICSRs. All cases were serious, with 41.2% resulting in death. The most reported Preferred Terms (PTs) for T-cell malignancies was 'T-cell lymphoma' (70.6%). Over 70% of ICSRs reported at least one other adverse event, predominantly gastrointestinal disorders (14.3%). Axicabtagene ciloleucel and tisagenlecleucel were associated with a statistically higher reporting frequency of T-cell lymphoma compared to all other drugs (p-value <0.001, for both). Statistically higher reporting frequencies of 'Haematological malignant tumors' and 'Malignant lymphomas' SMQs emerged when tisagenlecleucel was compared with axicabtagene ciloleucel (p-value <0.001, for both). CONCLUSIONS Axicabtagene ciloleucel and tisagenlecleucel may be associated with a higher reporting frequency of T-cell lymphoma than other drugs.
Collapse
Affiliation(s)
- Raffaella Di Napoli
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy
| | - Nunzia Balzano
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy
| | - Rosanna Ruggiero
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy
- Department of Life Science, Health, and Health Professions, Link Campus University, Roma, Italy
| | - Annamaria Mascolo
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy
- Department of Life Science, Health, and Health Professions, Link Campus University, Roma, Italy
| | - Cristina Scavone
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy
- Department of Life Science, Health, and Health Professions, Link Campus University, Roma, Italy
| | - Gabriella di Mauro
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy
- UOC Pharmacy, AORN Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy
| |
Collapse
|
3
|
Armstrong A, Tang Y, Mukherjee N, Zhang N, Huang G. Into the storm: the imbalance in the yin-yang immune response as the commonality of cytokine storm syndromes. Front Immunol 2024; 15:1448201. [PMID: 39318634 PMCID: PMC11420043 DOI: 10.3389/fimmu.2024.1448201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
There is a continuous cycle of activation and contraction in the immune response against pathogens and other threats to human health in life. This intrinsic yin-yang of the immune response ensures that inflammatory processes can be appropriately controlled once that threat has been resolved, preventing unnecessary tissue and organ damage. Various factors may contribute to a state of perpetual immune activation, leading to a failure to undergo immune contraction and development of cytokine storm syndromes. A literature review was performed to consider how the trajectory of the immune response in certain individuals leads to cytokine storm, hyperinflammation, and multiorgan damage seen in cytokine storm syndromes. The goal of this review is to evaluate how underlying factors contribute to cytokine storm syndromes, as well as the symptomatology, pathology, and long-term implications of these conditions. Although the recognition of cytokine storm syndromes allows for universal treatment with steroids, this therapy shows limitations for symptom resolution and survival. By identifying cytokine storm syndromes as a continuum of disease, this will allow for a thorough evaluation of disease pathogenesis, consideration of targeted therapies, and eventual restoration of the balance in the yin-yang immune response.
Collapse
Affiliation(s)
- Amy Armstrong
- Department of Cell Systems and Anatomy, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Yuting Tang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Neelam Mukherjee
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Urology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Nu Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Gang Huang
- Department of Cell Systems and Anatomy, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Pathology & Laboratory Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
4
|
Cucchiaro B, Davies NA, Weekes CE, O'Reilly M, Roddie C, Slee A. Malnutrition and cachexia are associated with poor CAR T-cell therapy outcomes including survival. Clin Nutr ESPEN 2024; 62:206-215. [PMID: 38901943 DOI: 10.1016/j.clnesp.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND & AIMS Chimeric Antigen Receptor (CAR) T-cell therapy has emerged as a revolutionary treatment for patients with refractory or relapsed B-cell malignancies. However, a significant proportion of patients experience negative outcomes, including severe inflammatory toxicities and relapse. Cachexia and malnutrition are known secondary syndromes in many cancer patients, attributed to the effects of active malignancy, systemic inflammation, and cumulative treatment burden; however, further research is required to accurately characterise these issues in CAR T-cell patients. The aims of this service evaluation were to explore the changes in nutritional status (malnutrition and cachexia) in CAR T-cell therapy patients and the potential impact on patient outcomes including survival. Additionally, we describe the utilisation of dietetic resources in this specific patient population in a London tertiary referral centre. METHODS Adult haematology patients receiving licensed CD19-targeting CAR T-cell therapy at University College London Hospital between 01/04/19 and 01/09/21 were included. Data were collected from the time of treatment consent, and throughout admission to day of discharge: body weight (BW), C-reactive protein, albumin, lactate dehydrogenase, nutrition-risk screening scores (hospital-specific) and dietetic input. Clinical outcomes such as 12-month all-cause mortality, intensive care unit (ICU) admission, high-grade toxicities, and length of hospital stay (LoS) were also recorded. Cachexia and malnutrition were defined using the modified Glasgow Prognostic Score (mGPS) and Global Leadership Initiative on Malnutrition (GLIM) consensus, respectively. RESULTS 114 patients (55.6 ± 15.1 years; 57% males) with B-cell non-Hodgkin's lymphoma (n = 109) and B-cell acute lymphoblastic leukaemia (n = 5), receiving axicabtagene ciloleucel (n = 89) and tisagenlecleucel (n = 25) were included. Median LoS for treatment was 34 (27-38) days. Prior to treatment, 31.5% of patients developed malnutrition, with pre-cachexia/refractory cachexia (mGPS) identified in 43.6% of patients. This altered nutritional status pre-treatment was significantly associated with adverse patient outcomes post-infusion; mGPS was independently associated with inferior overall survival (HR = 3.158, CI = 1.36-7.323, p = 0.007), with malnutrition and mGPS associated with increased LoS (p = 0.037), sepsis (p = 0.022) and ICU admission (p = 0.039). During admission, patients experienced significant BW loss (-5.6% (-8.8 to -2.4); p=<0.001), with 68.4% developing malnutrition. Malnutrition screening during admission identified 57% patients at-risk, with 66.6% of patients referred to dietetics; however, there was a lack of malnutrition screening and dietetic referrals prior to treatment. CONCLUSION Pre-treatment malnutrition and cachexia was significantly associated with adverse CAR T patient outcomes, including mGPS cachexia status independently associated with inferior overall survival. Further research in this novel space is essential to confirm the extent and impact of nutritional issues, to assist with implementing dietetic pathways, and to identify potential interventions with a view to optimising outcomes.
Collapse
Affiliation(s)
- B Cucchiaro
- University College London, Division of Medicine, Rayne Institute, 5 University Street, London, WC1E 6BT, UK; University College London Hospital, Nutrition and Dietetics Department, 250 Euston Road, NW1 2PG, UK
| | - N A Davies
- University College London, Division of Medicine, Rayne Institute, 5 University Street, London, WC1E 6BT, UK
| | - C E Weekes
- University College London, Division of Medicine, Rayne Institute, 5 University Street, London, WC1E 6BT, UK
| | - M O'Reilly
- University College London Hospital, 250 Euston Road, NW1 2PG, UK
| | - C Roddie
- University College London, Cancer Institute, 72 Huntley Street, WC1E 6DD, UK
| | - A Slee
- University College London, Division of Medicine, Rayne Institute, 5 University Street, London, WC1E 6BT, UK.
| |
Collapse
|
5
|
Lupo KB, Panjwani MK, Shahid S, Sottile R, Lawry C, Kolk G, Kontopolous T, Daniyan AF, Chandran SS, Klebanoff CA, Hsu KC. Engineered NKG2C + NK-like T cells exhibit superior antitumor efficacy while mitigating cytokine release syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603785. [PMID: 39211122 PMCID: PMC11360970 DOI: 10.1101/2024.07.16.603785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Engineered T and NK cell therapies have widely been used to treat hematologic malignancies and solid tumors, with promising clinical results. Current chimeric antigen receptor (CAR) T cell therapeutics have, however, been associated with treatment-related adverse events such as cytokine release syndrome (CRS) and are prone to immunologic exhaustion. CAR-NK therapeutics, while not associated with CRS, have limited in vivo persistence. We now demonstrate that an NK-like TCRαβ + CD8 T cell subset, identified and expanded ex vivo through its expression of the activating receptor NKG2C (NKG2C + NK-like T cells), can be transduced to express a second-generation CD19 CAR (1928z), resulting in superior tumor clearance, longer persistence and decreased exhaustion compared to conventional 1928z CAR + CD8 T cells and 1928z CAR+ NK cells. Moreover, CAR-modified NKG2C + NK-like T cells resulted in significantly reduced CRS compared to conventional CAR + CD8 T cells. Similarly, NKG2C + NK-like T cells engineered with a TCR targeting the NY-ESO-1 antigen exhibit robust tumor control and minimal exhaustion compared to TCR-engineered conventional CD8 T cells. These data establish NKG2C + NK-like T cells as a robust platform for cell engineering, and offer a safer, more durable alternative to conventional CAR-T and CAR-NK therapies.
Collapse
|
6
|
Hadiloo K, Taremi S, Safa SH, Amidifar S, Esmaeilzadeh A. The new era of immunological treatment, last updated and future consideration of CAR T cell-based drugs. Pharmacol Res 2024; 203:107158. [PMID: 38599467 DOI: 10.1016/j.phrs.2024.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
Cancer treatment is one of the fundamental challenges in clinical setting, especially in relapsed/refractory malignancies. The novel immunotherapy-based treatments bring new hope in cancer therapy and achieve various treatment successes. One of the distinguished ways of cancer immunotherapy is adoptive cell therapy, which utilizes genetically modified immune cells against cancer cells. Between different methods in ACT, the chimeric antigen receptor T cells have more investigation and introduced a promising way to treat cancer patients. This technology progressed until it introduced six US Food and Drug Administration-approved CAR T cell-based drugs. These drugs act against hematological malignancies appropriately and achieve exciting results, so they have been utilized widely in cell therapy clinics. In this review, we introduce all CAR T cells-approved drugs based on their last data and investigate them from all aspects of pharmacology, side effects, and compressional. Also, the efficacy of drugs, pre- and post-treatment steps, and expected side effects are introduced, and the challenges and new solutions in CAR T cell therapy are in the last speech.
Collapse
Affiliation(s)
- Kaveh Hadiloo
- Department of immunology, Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran; School of Medicine, Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran
| | - Siavash Taremi
- Department of immunology, Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran; School of Medicine, Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran
| | - Salar Hozhabri Safa
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran
| | - Sima Amidifar
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran.
| |
Collapse
|
7
|
Winidmanokul P, Panya A, Okada S. Tri-specific killer engager: unleashing multi-synergic power against cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:432-448. [PMID: 38745768 PMCID: PMC11090690 DOI: 10.37349/etat.2024.00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/13/2023] [Indexed: 05/16/2024] Open
Abstract
Cancer continues to be a global health concern, necessitating innovative solutions for treatment. Tri-specific killer engagers (TriKEs) have emerged as a promising class of immunotherapeutic agents, offering a multifaceted approach to cancer treatment. TriKEs simultaneously engage and activate natural killer (NK) cells while specifically targeting cancer cells, representing an outstanding advancement in immunotherapy. This review explores the generation and mechanisms of TriKEs, highlighting their advantages over other immunotherapies and discussing their potential impact on clinical trials and cancer treatment. TriKEs are composed of three distinct domains, primarily antibody-derived building blocks, linked together by short amino acid sequences. They incorporate critical elements, anti-cluster of differentiation 16 (CD16) and interleukin-15 (IL-15), which activate and enhance NK cell function, together with specific antibody to target each cancer. TriKEs exhibit remarkable potential in preclinical and early clinical studies across various cancer types, making them a versatile tool in cancer immunotherapy. Comparative analyses with other immunotherapies, such as chimeric antigen receptor-T (CAR-T) cell therapy, immune checkpoint inhibitors (ICIs), cytokine therapies, and monoclonal antibodies (mAbs), reveal the unique advantages of TriKEs. They offer a safer pathway for immunotherapy by targeting cancer cells without hyperactivating T cells, reducing off-target effects and complications. The future of TriKEs involves addressing challenges related to dosing, tumor-associated antigen (TAA) expression, and NK cell suppression. Researchers are exploring innovative dosing strategies, enhancing specificity through tumor-specific antigens (TSAs), and combining TriKEs with other therapies for increased efficacy.
Collapse
Affiliation(s)
- Peeranut Winidmanokul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Cell Engineering for Cancer Therapy Research Group, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
8
|
Jung I, Shin S, Baek MC, Yea K. Modification of immune cell-derived exosomes for enhanced cancer immunotherapy: current advances and therapeutic applications. Exp Mol Med 2024; 56:19-31. [PMID: 38172594 PMCID: PMC10834411 DOI: 10.1038/s12276-023-01132-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/05/2023] [Indexed: 01/05/2024] Open
Abstract
Cancer immunotherapy has revolutionized the approach to cancer treatment of malignant tumors by harnessing the body's immune system to selectively target cancer cells. Despite remarkable advances, there are still challenges in achieving successful clinical responses. Recent evidence suggests that immune cell-derived exosomes modulate the immune system to generate effective antitumor immune responses, making them a cutting-edge therapeutic strategy. However, natural exosomes are limited in clinical application due to their low drug delivery efficiency and insufficient antitumor capacity. Technological advancements have allowed exosome modifications to magnify their intrinsic functions, load different therapeutic cargoes, and preferentially target tumor sites. These engineered exosomes exert potent antitumor effects and have great potential for cancer immunotherapy. In this review, we describe ingenious modification strategies to attain the desired performance. Moreover, we systematically summarize the tumor-controlling properties of engineered immune cell-derived exosomes in innate and adaptive immunity. Collectively, this review provides a comprehensive and intuitive guide for harnessing the potential of modified immune cell-derived exosome-based approaches, offering valuable strategies to enhance and optimize cancer immunotherapy.
Collapse
Affiliation(s)
- Inseong Jung
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Sanghee Shin
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| | - Kyungmoo Yea
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
- New Biology Research Center, DGIST, Daegu, 43024, Republic of Korea.
| |
Collapse
|
9
|
Federico M. The Limitations of Current T Cell-Driven Anticancer Immunotherapies Can Be Overcome with an Original Extracellular-Vesicle-Based Vaccine Strategy. Vaccines (Basel) 2023; 11:1847. [PMID: 38140250 PMCID: PMC10747787 DOI: 10.3390/vaccines11121847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The emergence of tumors associated with defects in immune surveillance often involve the impairment of key functions of T lymphocytes. Therefore, several anticancer immunotherapies have focused on the induction/strengthening of the tumor-specific activity of T cells. In particular, strategies based on immune checkpoint inhibitors, CAR-T cells, and mRNA vaccines share a common goal of inducing/recovering an effective antitumor cytotoxic activity, often resulting in either exhausted or absent in patients' lymphocytes. In many instances, these approaches have been met with success, becoming part of current clinic protocols. However, the most practiced strategies sometimes also pay significant tolls in terms of adverse events, a lack of target specificity, tumor escape, and unsustainable costs. Hence, new antitumor immunotherapies facing at least some of these issues need to be explored. In this perspective article, the characteristics of a novel CD8+ T cell-specific anticancer vaccine strategy based on in vivo-engineered extracellular vesicles are described. How this approach can be exploited to overcome at least some of the limitations of current antitumor immunotherapies is also discussed.
Collapse
Affiliation(s)
- Maurizio Federico
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
10
|
Seipel K, Frey M, Nilius H, Akhoundova D, Banz Y, Bacher U, Pabst T. Low-Frequency PPM1D Gene Mutations Affect Treatment Response to CD19-Targeted CAR T-Cell Therapy in Large B-Cell Lymphoma. Curr Oncol 2023; 30:10463-10476. [PMID: 38132396 PMCID: PMC10742331 DOI: 10.3390/curroncol30120762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Chimeric antigen receptor T (CAR T)-cell therapy has become a standard treatment option for patients with relapsed or refractory diffuse large B-cell lymphoma (r/r DLBCL). Mutations in the PPM1D gene, a frequent driver alteration in clonal hematopoiesis (CH), lead to a gain of function of PPM1D/Wip1 phosphatase, impairing p53-dependent G1 checkpoint and promoting cell proliferation. The presence of PPM1D mutations has been correlated with reduced response to standard chemotherapy in lymphoma patients. In this study, we analyzed the impact of low-frequency PPM1D mutations on the safety and efficacy of CD19-targeted CAR T-cell therapy in a cohort of 85 r/r DLBCL patients. In this cohort, the prevalence of PPM1D gene mutations was 20% with a mean variant allele frequency (VAF) of 0.052 and a median VAF of 0.036. CAR T-induced cytokine release syndrome (CRS) and immune effector cell-associated neuro-toxicities (ICANS) occurred at similar frequencies in patients with and without PPM1D mutations. Clinical outcomes were globally worse in the PPM1D mutated (PPM1Dmut) vs. PPM1D wild type (PPM1Dwt) subset. While the prevalent treatment outcome within the PPM1Dwt subgroup was complete remission (56%), the majority of patients within the PPM1Dmut subgroup had only partial remission (60%). Median progression-free survival (PFS) was 3 vs. 12 months (p = 0.07) and median overall survival (OS) was 5 vs. 37 months (p = 0.004) for the PPM1Dmut and PPM1Dwt cohort, respectively. Our data suggest that the occurrence of PPM1D mutations in the context of CH may predict worse outcomes after CD19-targeted CAR T-cell therapy in patients with r/r DLBCL.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/adverse effects
- Receptors, Chimeric Antigen
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/therapeutic use
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Treatment Outcome
- Antigens, CD19/genetics
- Antigens, CD19/therapeutic use
- Protein Phosphatase 2C/genetics
Collapse
Affiliation(s)
- Katja Seipel
- Department for Biomedical Research (DBMR), University of Bern, 3008 Bern, Switzerland;
- Department of Medical Oncology, University Hospital Bern, 3010 Bern, Switzerland;
| | - Michèle Frey
- Department of Medical Oncology, University Hospital Bern, 3010 Bern, Switzerland;
| | - Henning Nilius
- Department of Clinical Chemistry, University of Bern, 3010 Bern, Switzerland;
| | - Dilara Akhoundova
- Department for Biomedical Research (DBMR), University of Bern, 3008 Bern, Switzerland;
- Department of Medical Oncology, University Hospital Bern, 3010 Bern, Switzerland;
| | - Yara Banz
- Institute of Tissue Medicine and Pathology (IGMP), University of Bern, 3010 Bern, Switzerland;
| | - Ulrike Bacher
- Department of Hematology, University Hospital Bern, 3010 Bern, Switzerland;
| | - Thomas Pabst
- Department of Medical Oncology, University Hospital Bern, 3010 Bern, Switzerland;
| |
Collapse
|
11
|
Patel R, Patel M, Laxmidhar F, Lakhatariya K, Patel D, Patel Z, Shaikh S. Cytokine Release Syndrome in Patients Treated With Chimeric Antigen Receptor T-cell Therapy: A Retrospective Study Analyzing Risks, Outcomes, and Healthcare Burden. Cureus 2023; 15:e49452. [PMID: 38152777 PMCID: PMC10751860 DOI: 10.7759/cureus.49452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 12/29/2023] Open
Abstract
Background Chimeric antigen receptor T-cell (CAR-T) therapy has emerged as a promising immunotherapy for various malignancies. However, its use is associated with challenges, including cytokine release syndrome (CRS), a potentially severe complication. This retrospective study aims to analyze the risks, outcomes, and healthcare burden of CRS in patients undergoing CAR-T therapy. Method Data from the 2020 National Inpatient Sample (NIS) were utilized, comprising 415 CAR-T-related hospitalizations. They were categorized into those with CRS (n = 68) and those without CRS (n = 347). Baseline characteristics, including age, gender, race, income, insurance status, and comorbidities, were compared. Outcomes of interest included in-hospital mortality, length of stay (LOS), total hospital charges, and access to complications, associations, and interventions. Statistical analyses, including multivariable models, were employed to assess associations. Results Hospitalizations with CRS did not exhibit significant differences in age, gender, race, income, or insurance status compared to those without CRS. The multivariable analysis showed no statistically significant difference in mortality (adjusted odds ratio (aOR) = 2.48, 95% confidence interval (CI): 0.71 to 8.69, p = 0.151), LOS (coefficient = -2.1 days, 95% CI: -5.43 to 1.21, p = 0.207), or total hospital charges (coefficient = $207,456, 95% CI: $6119 to $421,031, p = 0.057) between the two groups. The CRS group had a higher incidence of fever (aOR = 1.91, 95% CI: 1.15 to 3.17, p = 0.014), acute respiratory failure (aOR = 2.10, 95% CI: 1.01 to 4.40, p= 0.049), and the need for intubation/mechanical ventilation (aOR = 2.59, 95% CI: 1.14 to 5.88, p = 0.024). Hemophagocytic lymphohistiocytosis (HLH) was significantly associated with CRS (aOR = 6.72, 95% CI: 2.03 to 22.18, p = 0.002). Conclusion While the development of CRS in CAR-T-treated patients did not significantly increase mortality, LOS, or total hospital charges, it was associated with specific risks and outcomes, including fever, respiratory failure, and HLH. This study emphasizes the importance of vigilance in recognizing and managing CRS in CAR-T therapy to optimize patient outcomes. The findings contribute valuable insights to guide clinical decision-making in the context of CAR-T therapy.
Collapse
Affiliation(s)
- Rushin Patel
- Internal Medicine, Community Hospital of San Bernardino, San Bernardino, USA
| | - Mrunal Patel
- Internal Medicine, Trumbull Regional Medical Center, Niles, USA
| | | | | | - Darshil Patel
- Clinical Research, Rush University Medical Center, Chicago, USA
| | - Zalak Patel
- Internal Medicine, University of California Riverside School of Medicine, Riverside, USA
| | - Safia Shaikh
- Internal Medicine, Washington University School of Medicine, St. Louis, USA
| |
Collapse
|
12
|
Messerli C, Wiedemann G, Porret N, Nagler M, Seipel K, Jeker B, Novak U, Zeerleder S, Bacher U, Pabst T. Correlation of Peripheral Chimeric Antigen Receptor T-cell (CAR-T Cell) mRNA Expression Levels with Toxicities and Outcomes in Patients with Diffuse Large B-cell Lymphoma. Turk J Haematol 2023; 40:187-196. [PMID: 37519105 PMCID: PMC10476258 DOI: 10.4274/tjh.galenos.2023.2023.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023] Open
Abstract
Cytokine-release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) are significant complications in patients with relapsed/refractory diffuse large B-cell lymphoma undergoing chimeric antigen receptor T-cell (CAR-T cell) therapy. However, it remains unclear whether CAR-T cell expression itself is clinically relevant. We assessed CAR-T cell mRNA expression and DNA concentration by digital droplet PCR in peripheral blood from 14 sequential CAR-T cell recipients. Patients were grouped according to CAR-T cell peak expression. Patients with high CAR-T cell peak expression (8 patients; 57%) had higher rates of ICANS (p=0.0308) and intensive care unit admission (p=0.0404), longer durations of hospitalization (p=0.0077), and, although not statistically significant, a higher rate of CRS (p=0.0778). There was a correlation of CAR-T cell mRNA expression with DNA concentration, but CAR-T cell expression levels failed to correlate to response or survival. Our data suggest that higher CAR-T cell peak mRNA expression is associated with increased risk for ICANS and possibly CRS, requiring further investigation in larger studies.
Collapse
Affiliation(s)
- Christian Messerli
- University Hospital and University of Bern, Department of Medical Oncology, Bern, Switzerland
| | - Gertrud Wiedemann
- University Hospital and University of Bern, Department of Hematology and Central Hematology Laboratory, Bern, Switzerland
| | - Naomi Porret
- University Hospital and University of Bern, Department of Hematology and Central Hematology Laboratory, Bern, Switzerland
| | - Michael Nagler
- University Institute of Clinical Chemistry, University Hospital and University of Bern, Bern, Switzerland
| | - Katja Seipel
- University of Bern, Department for Biomedical Research, Bern, Switzerland
| | - Barbara Jeker
- University Hospital and University of Bern, Department of Medical Oncology, Bern, Switzerland
| | - Urban Novak
- University Hospital and University of Bern, Department of Medical Oncology, Bern, Switzerland
| | - Sacha Zeerleder
- University Hospital and University of Bern, Department of Hematology and Central Hematology Laboratory, Bern, Switzerland
| | - Ulrike Bacher
- University Hospital and University of Bern, Department of Hematology and Central Hematology Laboratory, Bern, Switzerland
- These authors contributed equally to this work
| | - Thomas Pabst
- University Hospital and University of Bern, Department of Medical Oncology, Bern, Switzerland
- These authors contributed equally to this work
| |
Collapse
|
13
|
Litchfield I, Calvert MJ, Kinsella F, Sungum N, Aiyegbusi OL. "I just wanted to speak to someone- and there was no one…": using Burden of Treatment Theory to understand the impact of a novel ATMP on early recipients. Orphanet J Rare Dis 2023; 18:86. [PMID: 37069697 PMCID: PMC10111696 DOI: 10.1186/s13023-023-02680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 04/02/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Advanced therapy medicinal products such as Chimeric antigen receptor T-cell therapy offer ground-breaking opportunities for the treatment of various cancers, inherited diseases, and chronic conditions. With development of these novel therapies continuing to increase it's important to learn from the experiences of patients who were among the first recipients of ATMPs. In this way we can improve the clinical and psychosocial support offered to early patient recipients in the future to support the successful completion of treatments and trials. STUDY DESIGN We conducted a qualitative investigation informed by the principles of the key informant technique to capture the experience of some of the first patients to experience CAR-T therapy in the UK. A directed content analysis was used to populate a theoretical framework informed by Burden of Treatment Theory to determine the lessons that can be learnt in supporting their care, support, and ongoing self-management. RESULTS A total of five key informants were interviewed. Their experiences were described within the three domains of the burden of treatment framework; (1) The health care tasks delegated to patients, Participants described the frequency of follow-up and the resources involved, the esoteric nature of the information provided by clinicians; (2) Exacerbating factors of the treatment, which notably included the lack of understanding of the clinical impacts of the treatment in the broader health service, and the lack of a peer network to support patient understanding; (3) Consequences of the treatment, in which they described the anxiety induced by the process surrounding their selection for treatment, and the feeling of loneliness and isolation at being amongst the very first recipients. CONCLUSIONS If ATMPs are to be successfully introduced at the rates forecast, then it is important that the burden placed on early recipients is minimised. We have discovered how they can feel emotionally isolated, clinically vulnerable, and structurally unsupported by a disparate and pressured health service. We recommend that where possible, structured peer support be put in place alongside signposting to additional information that includes the planned pattern of follow-up, and the management of discharged patients would ideally accommodate individual circumstances and preferences to minimize the burden of treatment.
Collapse
Affiliation(s)
- Ian Litchfield
- Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Melanie J Calvert
- Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre for Patient Reported Outcomes Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK
- NIHR Blood and Transplant Research Unit (BTRU) in Precision Transplant and Cellular Therapeutics, University of Birmingham, Birmingham, UK
- Applied Research Collaboration (ARC) - West Midlands, Birmingham, UK
- Birmingham Health Partners (BHP) Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK
| | - Francesca Kinsella
- NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK
- NIHR Blood and Transplant Research Unit (BTRU) in Precision Transplant and Cellular Therapeutics, University of Birmingham, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Nisha Sungum
- Midlands and Wales Advanced Therapy Treatment Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Research Development and Innovation, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Olalekan L Aiyegbusi
- Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre for Patient Reported Outcomes Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK
- NIHR Blood and Transplant Research Unit (BTRU) in Precision Transplant and Cellular Therapeutics, University of Birmingham, Birmingham, UK
- Applied Research Collaboration (ARC) - West Midlands, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Birmingham Health Partners (BHP) Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK
| |
Collapse
|
14
|
Sanoyan DA, Seipel K, Bacher U, Kronig MN, Porret N, Wiedemann G, Daskalakis M, Pabst T. Real-life experiences with CAR T-cell therapy with idecabtagene vicleucel (ide-cel) for triple-class exposed relapsed/refractory multiple myeloma patients. BMC Cancer 2023; 23:345. [PMID: 37061680 PMCID: PMC10105393 DOI: 10.1186/s12885-023-10824-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment landscape of relapsed/refractory multiple myeloma (RRMM), leading to unprecedented responses in this patient population. Idecabtagene vicleucel (ide-cel) has been recently approved for treatment of triple-class exposed RRMM. We report real-life experiences with the commercial use of ide-cel in RRMM patients. METHODS We performed a retrospective analysis of the first 16 triple-class exposed RRMM patients treated with ide-cel at a single academic center. We assessed toxicities, response to treatment, CAR T expansion and soluble BCMA (sBCMA) levels. RESULTS We identified 16 consecutive RRMM patients treated with ide-cel between 06-10/2022. Median age was 69 years, 6 (38%) patients had high-risk cytogenetics, 3 (19%) R-ISS stage III, and 5 (31%) extramedullary disease. Median number of previous treatment lines was 6 (3-12). Manufacturing success rate was 88% (6% required second lymphapheresis, 6% received an out-of-specification product). At 3 months, the overall response rate (ORR) was 69% (44% sCR, 6% CR, 19% VGPR). Cytokine release syndrome (CRS) occurred in 15 (94%) patients (88% G1, 6% G2), immune effector-cell associated neurotoxicity syndrome (ICANS) in 1 (6% G1), febrile neutropenia in 11 (69%), and infections in 5 (31%). Prolonged hematologic toxicity occurred in 4/16 (25%) patients. Other non-hematological toxicities were elevated hepatic enzymes (38%), colitis (6%, G3) and DIC (6%, G2). Responses were more frequent in patients with higher CAR T expansion (100% vs 38%), and lack of decrease or plateau of sBCMA levels was typically observed in non-responders. CONCLUSIONS We report one of the first cohorts of RRMM treated with commercial ide-cel. The ORR was 69% and safety profile was manageable, but prolonged hematologic toxicity still represents a major challenge. Responses correlated with in vivo CAR T cell expansion, underlining the need of further research to optimize CAR T expansion.
Collapse
Affiliation(s)
- Dilara Akhoundova Sanoyan
- Department of Medical Oncology, Inselspital, University Hospital of Bern, Center for Hemato-Oncology; University Cancer Center, Bern, 3010, Switzerland
- Department for Biomedical Research, University of Bern, Bern, 3008, Switzerland
| | - Katja Seipel
- Department for Biomedical Research, University of Bern, Bern, 3008, Switzerland
| | - Ulrike Bacher
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marie-Noelle Kronig
- Department of Medical Oncology, Inselspital, University Hospital of Bern, Center for Hemato-Oncology; University Cancer Center, Bern, 3010, Switzerland
| | - Naomi Porret
- Clinical Genomics Lab, Inselspital, University Hospital of Bern, Bern, 3010, Switzerland
| | - Gertrud Wiedemann
- Clinical Genomics Lab, Inselspital, University Hospital of Bern, Bern, 3010, Switzerland
| | - Michael Daskalakis
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, Inselspital, University Hospital of Bern, Center for Hemato-Oncology; University Cancer Center, Bern, 3010, Switzerland.
| |
Collapse
|
15
|
Marques A, Torre C, Pinto R, Sepodes B, Rocha J. Treatment Advances in Sepsis and Septic Shock: Modulating Pro- and Anti-Inflammatory Mechanisms. J Clin Med 2023; 12:2892. [PMID: 37109229 PMCID: PMC10142733 DOI: 10.3390/jcm12082892] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Sepsis is currently defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection, and it affects over 25 million people every year. Even more severe, septic shock is a subset of sepsis defined by persistent hypotension, and hospital mortality rates are higher than 40%. Although early sepsis mortality has greatly improved in the past few years, sepsis patients who survive the hyperinflammation and subsequent organ damage often die from long-term complications, such as secondary infection, and despite decades of clinical trials targeting this stage of the disease, currently, no sepsis-specific therapies exist. As new pathophysiological mechanisms have been uncovered, immunostimulatory therapy has emerged as a promising path forward. Highly investigated treatment strategies include cytokines and growth factors, immune checkpoint inhibitors, and even cellular therapies. There is much to be learned from related illnesses, and immunotherapy trials in oncology, as well as the recent COVID-19 pandemic, have greatly informed sepsis research. Although the journey ahead is a long one, the stratification of patients according to their immune status and the employment of combination therapies represent a hopeful way forward.
Collapse
Affiliation(s)
- Adriana Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.M.); (C.T.); (R.P.); (B.S.)
| | - Carla Torre
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.M.); (C.T.); (R.P.); (B.S.)
| | - Rui Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.M.); (C.T.); (R.P.); (B.S.)
- Joaquim Chaves Saúde, Joaquim Chaves Laboratório de Análises Clínicas, Miraflores, 1495-069 Algés, Portugal
| | - Bruno Sepodes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.M.); (C.T.); (R.P.); (B.S.)
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.M.); (C.T.); (R.P.); (B.S.)
| |
Collapse
|
16
|
Early Use of Corticosteroids following CAR T-Cell Therapy Correlates with Reduced Risk of High-Grade CRS without Negative Impact on Neurotoxicity or Treatment Outcome. Biomolecules 2023; 13:biom13020382. [PMID: 36830750 PMCID: PMC9953517 DOI: 10.3390/biom13020382] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor T-cell therapy (CAR T-cell therapy) is associated with potentially life-threatening toxicities, most commonly cytokine release syndrome (CRS) and immune-effector-cell-associated neurotoxicity syndrome (ICANS). These frequent adverse events are managed with the IL-6 receptor antagonist tocilizumab and/or corticosteroids. The prophylactic and early use of corticosteroids for CRS and ICANS have previously been reported, but eventual negative impacts on CAR T-cell efficacy are feared. METHODS Retrospective comparative analysis of two patient cohorts with hematological malignancies treated with CAR T-cell therapy: 43 patients received early administration of 10 mg dexamethasone preceding each dose of tocilizumab ("early corticosteroid/ tocilizumab", EcsTcz cohort) vs. 40 patients who received tocilizumab alone ("tocilizumab alone", Tcz cohort) for treatment of low-grade CRS. RESULTS Despite overall higher CRS incidence (91% vs. 70%; p = 0.0249), no high-grade CRS was observed (0% vs. 10%; p = 0.0497) among patients receiving early corticosteroids in combination with tocilizumab. In terms of neurotoxicity, no worsening regarding incidence of ICANS (30% vs. 33%; p = 0.8177) or high-grade ICANS (20% vs. 14%; p = 0.5624) was observed in the EcsTcz cohort. Moreover, overall response rates (80% vs. 77%; p = 0.7936), complete response rates (50% vs. 44%; p = 0.6628), progression-free survival (p = 0.6345) and overall survival (p = 0.1215) were comparable for both cohorts. CONCLUSIONS Our study suggests that the early use of corticosteroids in combination with the standard tocilizumab schedule for low-grade CRS following CAR T-cell therapy may significantly reduce the risk of high-grade CRS without negative impact on neurotoxicity or treatment outcome.
Collapse
|
17
|
Keshavarz A, Salehi A, Khosravi S, Shariati Y, Nasrabadi N, Kahrizi MS, Maghsoodi S, Mardi A, Azizi R, Jamali S, Fotovat F. Recent findings on chimeric antigen receptor (CAR)-engineered immune cell therapy in solid tumors and hematological malignancies. Stem Cell Res Ther 2022; 13:482. [PMID: 36153626 PMCID: PMC9509604 DOI: 10.1186/s13287-022-03163-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
Advancements in adoptive cell therapy over the last four decades have revealed various new therapeutic strategies, such as chimeric antigen receptors (CARs), which are dedicated immune cells that are engineered and administered to eliminate cancer cells. In this context, CAR T-cells have shown significant promise in the treatment of hematological malignancies. However, many obstacles limit the efficacy of CAR T-cell therapy in both solid tumors and hematological malignancies. Consequently, CAR-NK and CAR-M cell therapies have recently emerged as novel therapeutic options for addressing the challenges associated with CAR T-cell therapies. Currently, many CAR immune cell trials are underway in various human malignancies around the world to improve antitumor activity and reduce the toxicity of CAR immune cell therapy. This review will describe the comprehensive literature of recent findings on CAR immune cell therapy in a wide range of human malignancies, as well as the challenges that have emerged in recent years.
Collapse
Affiliation(s)
- Ali Keshavarz
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Salehi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Islamic Azad University,, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Setareh Khosravi
- Department of Orthodontics, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Yasaman Shariati
- Department of General Surgery, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Navid Nasrabadi
- Department of Endodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Sairan Maghsoodi
- Department of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amirhossein Mardi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramyar Azizi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Jamali
- Department of Endodontics, College of Stomatology, Stomatological Hospital, Xi’an Jiaotong University, Shaanxi, People’s Republic of China
| | - Farnoush Fotovat
- Department of Prosthodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
18
|
Experiences with Glofitamab Administration following CAR T Therapy in Patients with Relapsed Mantle Cell Lymphoma. Cells 2022; 11:cells11172747. [PMID: 36078155 PMCID: PMC9454987 DOI: 10.3390/cells11172747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a rare type of B-cell Non-Hodgkin lymphoma (NHL) affecting predominantly male patients. While complete remissions following first-line treatment are frequent, most patients ultimately relapse, with a usually aggressive further disease course. The use of cytarabine-comprising induction chemotherapy and autologous stem cell transplantation, Rituximab maintenance, Bruton’s tyrosine kinase (BTK) inhibitors and CAR T therapy has substantially improved survival. Still, options for patients relapsing after CAR T therapy are limited and recommendations for the treatment of these patients are lacking. We report two cases of patients with mantle cell lymphoma who relapsed after CAR T therapy and were treated with the bispecific CD20/CD3 T cell engaging antibody glofitamab. Both patients showed marked increases of circulating CAR T cells and objective responses after glofitamab administration. Therapy was tolerated without relevant side effects in both patients. One patient completed all 12 planned cycles of glofitamab therapy and was alive and without clinical progression at the last follow-up. The second patient declined further treatment after the first cycle and succumbed to disease progression. We review the literature and investigate possible mechanisms involved in the observed responses after administration of glofitamab, such as proliferation of CAR T cells, anti-tumor effects of the bispecific antibody and the role of other possibly contributing factors. Therapy with bispecific antibodies might offer an effective and well-tolerated option for patients with mantle cell lymphoma relapsing after CAR T therapy.
Collapse
|
19
|
Humoral Responses to Repetitive Doses of COVID-19 mRNA Vaccines in Patients with CAR-T-Cell Therapy. Cancers (Basel) 2022; 14:cancers14143527. [PMID: 35884587 PMCID: PMC9319387 DOI: 10.3390/cancers14143527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Data on the efficacy of SARS-CoV-2 mRNA vaccinations in patients with CAR-T-cell therapy is very limited. We analyzed patients (predominantly DLBCL) undergoing CAR-T-cell therapy and receiving BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccination. This single center retrospective analysis aimed to evaluate the number of B-cells and CAR-T-cell copies as prognostic factors of humoral antibody test results as well as the effects of a third and fourth dose on humoral antibody response. Our results demonstrate that patients with more B-cells and fewer CAR-T-cells at vaccination were more likely to produce a positive antibody test result. Overall, we found very poor humoral antibody responses, while additional doses increased rates of seroconversion and antibody titers. Abstract Background: Due to B-cell aplasia following CAR-T-cell therapy, patients are at risk of severe SARS-CoV-2 course. Methods: COVID-19 vaccines were assessed by IgG antibody tests against SARS-CoV-2 spike protein (anti-S1/S2). Vaccination procedures: group (1): CAR-T-cells followed by two to four vaccine doses; group (2): Two vaccine doses prior to CAR-T-cells, followed by doses 3 or 4. Results: In group 1 (n = 32), 7/30 patients (23.2%) had positive antibody tests after a second dose, 9/23 (39.1%) after a third dose, and 3/3 patients after a fourth dose. A third dose led to seroconversion in 5 of 21 patients (23.8%) with available data, while a fourth dose did so in 2/3 patients. Higher B-cells (AUC: 96.2%, CI: 89–100, p = 0.0006) and lower CAR-T-cell copies (AUC: 77.3%, CI: 57–97, p = 0.0438) were predictive of positive humoral vaccine response. In group 2 (n = 14), 6/14 patients (42.9%) had a positive antibody test after a second dose, 3/8 patients (37.5%) after a third dose, and 3/4 patients after a fourth dose. A third dose led to seroconversion in 1/8 patients (12.5%), while a fourth dose did so in 3/4 patients. Conclusion: Additional vaccine doses increased seroconversion rates whilst high B-cell counts and low CAR-T-cell copy numbers were associated with positive antibody response.
Collapse
|
20
|
Heini AD, Bacher U, Kronig MN, Wiedemann G, Novak U, Zeerleder S, Mansouri Taleghani B, Daskalakis M, Pabst T. Chimeric antigen receptor T-cell therapy for relapsed mantle cell lymphoma: real-world experience from a single tertiary care center. Bone Marrow Transplant 2022; 57:1010-1012. [PMID: 35383289 DOI: 10.1038/s41409-022-01658-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 01/08/2023]
Affiliation(s)
- Alexander D Heini
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Ulrike Bacher
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Marie-Noëlle Kronig
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Gertrud Wiedemann
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Urban Novak
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Sacha Zeerleder
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Behrouz Mansouri Taleghani
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Michael Daskalakis
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
21
|
Glofitamab Treatment in Relapsed or Refractory DLBCL after CAR T-Cell Therapy. Cancers (Basel) 2022; 14:cancers14102516. [PMID: 35626120 PMCID: PMC9139991 DOI: 10.3390/cancers14102516] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary CAR T-cell therapies represent a major advance in the treatment of relapsed B-cell non-Hodgkin lymphomas. Nevertheless, a significant proportion of these patients will experience disease progression following CAR T treatment. For these patients, no standard therapeutic procedure is established so far. The novel bispecific antibody glofitamab has shown promising activity in the treatment of refractory or relapsed B-cell non-Hodgkin lymphomas. In this study, we provide evidence for good tolerance and promising efficacy of glofitamab administration in patients relapsing after CAR T-cell therapy. Abstract Chimeric antigen receptor T-cells (CAR T) treatment has become a standard option for patients with diffuse large B-cell lymphomas (DLBCL), which are refractory or relapse after two prior lines of therapy. However, little evidence exists for treatment recommendations in patients who relapse after CAR T-cell treatment and the outcome for such patients is poor. In this study, we evaluated the safety and efficacy of a monotherapy with the bispecific CD20xCD3 antibody glofitamab in patients who progressed after CAR T treatment. We report nine consecutive patients with progressive DLBCL after preceding CAR T-cell therapy. The patients received a maximum of 12 cycles of glofitamab after a single obinutuzumab pre-treatment at an academic institution. CRS was observed in two patients (grade 2 in both patients). We observed an overall response rate of 67%, with four patients achieving a complete response and a partial remission in two patients. Interestingly, we identified increased persistence of circulating CAR T-cells in peripheral blood in three of the five patients with measurable CAR T-cells. Our data suggest that glofitamab treatment is well tolerated and effective in patients with DLBCL relapsing after CAR T-cell therapy and can enhance residual CAR T-cell activity.
Collapse
|
22
|
Dabi YT, Andualem H, Degechisa ST, Gizaw ST. Targeting Metabolic Reprogramming of T-Cells for Enhanced Anti-Tumor Response. Biologics 2022; 16:35-45. [PMID: 35592358 PMCID: PMC9113448 DOI: 10.2147/btt.s365490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/05/2022] [Indexed: 11/26/2022]
Abstract
Cancer immunotherapy is an effective treatment option against cancer. One of the approaches of cancer immunotherapy is the modification of T cell-based anti-tumor immune responses. T-cells, a type of adaptive immune response cells responsible for cell-mediated immunity, have long been recognized as key regulators of immune-mediated anti-tumor immunity. T-cell activities have been reported to be suppressed or enhanced by changes in cell metabolism. Moreover, metabolic reprogramming during activation of T cells is required for the development of distinct differentiation profiles of these cells, which may allow the development of long-term cell-mediated anti-tumor immunity. However, T cells have been shown to undergo metabolic exhaustion in tumor microenvironment (TME) as it poses several obstacles to their function. Applications of several mechanistic solutions to improve the efficacy of T cell-based therapies including chimeric antigen receptor (CAR) T cell therapy are yet to be determined. Modifying the metabolic properties of these cells and employing them in cancer immunotherapy is a potential strategy for improving their anti-tumor activity and therapeutic efficacy. To give an insight, in this review paper, we endeavoured to cover metabolic reprogramming in cancer and T cells, signalling mechanisms involved in immuno-metabolic regulation, the effects of the TME on T cell metabolic fitness, and targeting metabolic reprogramming of T cells for an enhanced anti-tumor response.
Collapse
Affiliation(s)
- Yosef Tsegaye Dabi
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, Wollega University, Nekemte, Ethiopia
- Correspondence: Yosef Tsegaye Dabi, Tel +251911364465, Email
| | - Henok Andualem
- Immunology and Molecular Biology, Department of Medical Laboratory Science, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Sisay Teka Degechisa
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Solomon Tebeje Gizaw
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
23
|
Seipel K, Porret N, Wiedemann G, Jeker B, Bacher VU, Pabst T. sBCMA Plasma Level Dynamics and Anti-BCMA CAR-T-Cell Treatment in Relapsed Multiple Myeloma. Curr Issues Mol Biol 2022; 44:1463-1471. [PMID: 35723356 PMCID: PMC9164019 DOI: 10.3390/cimb44040098] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Novel chimeric antigen receptor T-cells (CAR-T) target the B-cell maturation antigen (BCMA) expressed on multiple myeloma cells. Assays monitoring CAR-T cell expansion and treatment response are being implemented in clinical routine. METHODS Plasma levels of soluble BCMA (sBCMA) and anti-BCMA CAR-T cell copy numbers were monitored in the blood, following CAR-T cell infusion in patients with relapsed multiple myeloma. sBCMA peptide concentration was determined in the plasma, applying a human BCMA/TNFRS17 ELISA. ddPCR was performed using probes targeting the intracellular signaling domains 4-1BB und CD3zeta of the anti-BCMA CAR-T construct. RESULTS We report responses in the first five patients who received anti-BCMA CAR- T cell therapy at our center. Four patients achieved a complete remission (CR) in the bone marrow one month after CAR-T infusion, with three patients achieving stringent CR, determined by flow cytometry techniques. Anti-BCMA CAR-T cells were detectable in the peripheral blood for up to 300 days, with copy numbers peaking 7 to 14 days post-infusion. sBCMA plasma levels started declining one to ten days post infusion, reaching minimal levels 30 to 60 days post infusion, before rebounding to normal levels. CONCLUSIONS Our data confirm a favorable response to treatment in four of the first five patients receiving anti-BCMA CAR-T at our hospital. Anti-BCMA CAR-T cell expansion seems to peak in the peripheral blood in a similar pattern compared to the CAR-T cell products already approved for lymphoma treatment. sBCMA plasma level may be a valid biomarker in assessing response to BCMA-targeting therapies in myeloma patients.
Collapse
Affiliation(s)
- Katja Seipel
- Department for Biomedical Research, University of Bern, 2008 Bern, Switzerland
| | - Naomi Porret
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (N.P.); (G.W.); (V.U.B.)
| | - Gertrud Wiedemann
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (N.P.); (G.W.); (V.U.B.)
| | - Barbara Jeker
- Department of Medical Oncology, Bern University Hospital, 3010 Bern, Switzerland;
| | - Vera Ulrike Bacher
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (N.P.); (G.W.); (V.U.B.)
| | - Thomas Pabst
- Department of Medical Oncology, Bern University Hospital, 3010 Bern, Switzerland;
| |
Collapse
|
24
|
Novel Adaptive T-Cell Oncological Treatments Lead to New Challenges for Medical Emergency Teams: A 2-Year Experience From a Tertiary-Care Hospital in Switzerland. Crit Care Explor 2021; 3:e0552. [PMID: 34651139 PMCID: PMC8509991 DOI: 10.1097/cce.0000000000000552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|