1
|
Mohammed A, Kadry A, Abo-Adma M, Samahy AE, Elazab R. Continuous-time robust frequency regulation in isolated microgrids with decentralized fixed structure μ-synthesis and comparative analysis with PID and FOPID controllers. Sci Rep 2024; 14:20800. [PMID: 39242584 PMCID: PMC11379935 DOI: 10.1038/s41598-024-70405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024] Open
Abstract
Isolated microgrids, which are crucial for supplying electricity to remote areas using local energy sources, have garnered increased attention due to the escalating integration of renewable energy sources in modern microgrids. This integration poses technical challenges, notably in mitigating frequency deviations caused by non-dispatchable renewables, which threaten overall system stability. Therefore, this paper introduces decentralized fixed structure robust μ-synthesis controllers for continuous-time applications, surpassing the limitations of conventional centralized controllers. Motivated by the increasing importance of microgrids, this work contributes to the vital area of frequency regulation. The research challenge involves developing a controller that not only addresses the identified technical issues but also surpasses the limitations of conventional centralized controllers. In contrast to their centralized counterparts, the proposed decentralized controllers prove more reliable, demonstrating enhanced disturbance rejection capabilities amidst substantial uncertainties, represented through normalized co-prime factorization. The proposed controllers are designed using the D-K iteration technique, incorporating performance weight filters on control actions to maintain low control sensitivity and ensure specific frequency band operation for each sub-system. Importantly, the design considers unstructured uncertainty up to 40%, addressing real-world uncertainties comprehensively. Rigorous robust stability and performance tests underscore the controller's superiority, demonstrating its robustness against elevated uncertainty levels. Robust stability is verified for all controllers, with the proposed controller showing robust stability against up to 171% of the modeled uncertainty. Notably, the controller boasts a fixed structure with lower order compared to other H-infinity controllers, enhancing its practical implementation. Comparative analyses against Coronavirus Herd Immunity Optimizer tuned Proportional-Integral-Derivative (CHIO-PID) controller and CHIO tuned Fractional-Order Proportional-Integral-Derivative (CHIO-FOPID) controller further validate the superior performance of the proposed solution, offering a significant step towards ensuring the stability and reliability of microgrid systems in the face of evolving energy landscapes.
Collapse
Affiliation(s)
| | - Ahmed Kadry
- Faculty of Engineering, Helwan University, Cairo, Egypt.
| | | | | | - Rasha Elazab
- Faculty of Engineering, Helwan University, Cairo, Egypt
| |
Collapse
|
2
|
Benmamoun Z, Khlie K, Bektemyssova G, Dehghani M, Gherabi Y. Bobcat Optimization Algorithm: an effective bio-inspired metaheuristic algorithm for solving supply chain optimization problems. Sci Rep 2024; 14:20099. [PMID: 39209916 PMCID: PMC11362341 DOI: 10.1038/s41598-024-70497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Supply chain efficiency is a major challenge in today's business environment, where efficient resource allocation and coordination of activities are essential for competitive advantage. Traditional efficiency strategies often struggle for resources for the complex and dynamic network. In response, bio-inspired metaheuristic algorithms have emerged as powerful tools to solve these optimization problems. Referring to the random search nature of metaheuristic algorithms and emphasizing that no metaheuristic algorithm is the best optimizer for all optimization applications, the No Free Lunch (NFL) theorem encourages researchers to design newer algorithms to be able to provide more effective solutions to optimization problems. Motivated by the NFL theorem, the innovation and novelty of this paper is in designing a new meta-heuristic algorithm called Bobcat Optimization Algorithm (BOA) that imitates the natural behavior of bobcats in the wild. The basic inspiration of BOA is derived from the hunting strategy of bobcats during the attack towards the prey and the chase process between them. The theory of BOA is stated and then mathematically modeled in two phases (i) exploration based on the simulation of the bobcat's position change while moving towards the prey and (ii) exploitation based on simulating the bobcat's position change during the chase process to catch the prey. The performance of BOA is evaluated in optimization to handle the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100, as well as to address CEC 2020. The optimization results show that BOA has a high ability in exploration, exploitation, and balance them during the search process in order to achieve a suitable solution for optimization problems. The results obtained from BOA are compared with the performance of twelve well-known metaheuristic algorithms. The findings show that BOA has been successful in handling the CEC 2017 test suite in 89.65, 79.31, 93.10, and 89.65% of the functions for the problem dimension equal to 10, 30, 50, and 100, respectively. Also, the findings show that in order to handle the CEC 2020 test suite, BOA has been successful in 100% of the functions of this test suite. The statistical analysis confirms that BOA has a significant statistical superiority in the competition with the compared algorithms. Also, in order to analyze the efficiency of BOA in dealing with real world applications, twenty-two constrained optimization problems from CEC 2011 test suite and four engineering design problems have been selected. The findings show that BOA has been successful in 90.90% of CEC2011 test suite optimization problems and in 100% of engineering design problems. In addition, the efficiency of BOA to handle SCM applications has been challenged to solve ten case studies in the field of sustainable lot size optimization. The findings show that BOA has successfully provided superior performance in 100% of the case studies compared to competitor algorithms.
Collapse
Affiliation(s)
| | | | - Gulnara Bektemyssova
- Department of Computer Engineering, International Information Technology University, 050000, Almaty, Kazakhstan
| | - Mohammad Dehghani
- Department of Power and Control Engineering, School of Electrical and Computer Engineering, Shiraz University, Shiraz, 71557-13876, Iran
| | - Youness Gherabi
- Research Laboratory in Economics, Management, and Business Management (LAREGMA), Faculty of Economics and Management, Hassan I University, 26002, Settat, Morocco
| |
Collapse
|
3
|
Alghassab MA, Hatata AY, Sokrana AH, El-Saadawi MM. Optimal location of PMUs for full observability of power system using coronavirus herd immunity optimizer. Heliyon 2024; 10:e31832. [PMID: 38841515 PMCID: PMC11152686 DOI: 10.1016/j.heliyon.2024.e31832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Phasor measurement units (PMU) are currently considered as an essential step toward the future smart grid due to their capability in increasing the power system's situation awareness. Due to their high costs and limited resources, optimal placement of PMUs (OPP) is an important challenge to compute the minimum number of PMUs and their optimal distribution in the power systems for achieving full monitoring. The coronavirus herd immunity optimizer (CHIO) is a novel optimization algorithm that emulates the flock immunity strategies for the elimination of the coronavirus pandemic. In this research, the CHIO is adapted for the OPP problem for full fault observability. The proposed algorithm is implemented on power systems considering the zero injection bus impacts. A program is created in MATLAB® environment to implement the proposed algorithm. The algorithm is applied to different test systems including; IEEE 9-bus, 14-bus, 30-bus, 118-bus, 300-bus, New England 39-bus and Polish 2383-bus. The proposed CHIO-based OPP is compared to some exact and metaheuristic-based OPP techniques. Compared to these techniques, the promising results have proved the effectiveness and robustness of the proposed CHIO to solve the OPP problem for full fault observability.
Collapse
Affiliation(s)
- Mohammed A. Alghassab
- Department of Electrical Engineering, College of Engineering, Shaqra University, Al-Dawadmi, Riyadh, 11911, Saudi Arabia
| | - Ahmed Y. Hatata
- Department of Electrical Engineering, College of Engineering, Shaqra University, Al-Dawadmi, Riyadh, 11911, Saudi Arabia
- Dept. of Electrical Engineering, Faculty of Engineering, Mansoura University, Egypt
| | - Ahmed H. Sokrana
- Egyptian Electricity Transmission Company “EETC”, Delta Zone, Protection Sector, Egypt
| | - Magdi M. El-Saadawi
- Dept. of Electrical Engineering, Faculty of Engineering, Mansoura University, Egypt
| |
Collapse
|
4
|
Agushaka JO, Ezugwu AE, Saha AK, Pal J, Abualigah L, Mirjalili S. Greater cane rat algorithm (GCRA): A nature-inspired metaheuristic for optimization problems. Heliyon 2024; 10:e31629. [PMID: 38845929 PMCID: PMC11154226 DOI: 10.1016/j.heliyon.2024.e31629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
This paper introduces a new metaheuristic technique known as the Greater Cane Rat Algorithm (GCRA) for addressing optimization problems. The optimization process of GCRA is inspired by the intelligent foraging behaviors of greater cane rats during and off mating season. Being highly nocturnal, they are intelligible enough to leave trails as they forage through reeds and grass. Such trails would subsequently lead to food and water sources and shelter. The exploration phase is achieved when they leave the different shelters scattered around their territory to forage and leave trails. It is presumed that the alpha male maintains knowledge about these routes, and as a result, other rats modify their location according to this information. Also, the males are aware of the breeding season and separate themselves from the group. The assumption is that once the group is separated during this season, the foraging activities are concentrated within areas of abundant food sources, which aids the exploitation. Hence, the smart foraging paths and behaviors during the mating season are mathematically represented to realize the design of the GCR algorithm and carry out the optimization tasks. The performance of GCRA is tested using twenty-two classical benchmark functions, ten CEC 2020 complex functions, and the CEC 2011 real-world continuous benchmark problems. To further test the performance of the proposed algorithm, six classic problems in the engineering domain were used. Furthermore, a thorough analysis of computational and convergence results is presented to shed light on the efficacy and stability levels of GCRA. The statistical significance of the results is compared with ten state-of-the-art algorithms using Friedman's and Wilcoxon's signed rank tests. These findings show that GCRA produced optimal or nearly optimal solutions and evaded the trap of local minima, distinguishing it from the rival optimization algorithms employed to tackle similar problems. The GCRA optimizer source code is publicly available at: https://www.mathworks.com/matlabcentral/fileexchange/165241-greater-cane-rat-algorithm-gcra.
Collapse
Affiliation(s)
- Jeffrey O. Agushaka
- Department of Computer Science, Federal University of Lafia, Lafia 950101, Nigeria
| | - Absalom E. Ezugwu
- Unit for Data Science and Computing, North-West University, 11 Hoffman Street, Potchefstroom, 2520, South Africa
| | - Apu K. Saha
- Department of Mathematics, National Institute of Technology Agartala, Agartala, Tripura, 799046, India
| | - Jayanta Pal
- Department of IT, Tripura University, Suryamaninagar, Tripura 799022, India
| | - Laith Abualigah
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, Jordan
- Computer Science Department, Al Al-Bayt University, Mafraq 25113, Jordan
- MEU Research Unit, Middle East University, Amman, Jordan
- Applied science research center, Applied science private university, Amman 11931, Jordan
| | - Seyedali Mirjalili
- Centre for Artificial Intelligence Research and Optimization, Torrens University, Australia
| |
Collapse
|
5
|
Gopi S, Mohapatra P. Learning cooking algorithm for solving global optimization problems. Sci Rep 2024; 14:13359. [PMID: 38858429 PMCID: PMC11165014 DOI: 10.1038/s41598-024-60821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/27/2024] [Indexed: 06/12/2024] Open
Abstract
In recent years, many researchers have made a continuous effort to develop new and efficient meta-heuristic algorithms to address complex problems. Hence, in this study, a novel human-based meta-heuristic algorithm, namely, the learning cooking algorithm (LCA), is proposed that mimics the cooking learning activity of humans in order to solve challenging problems. The LCA strategy is primarily motivated by observing how mothers and children prepare food. The fundamental idea of the LCA strategy is mathematically designed in two phases: (i) children learn from their mothers and (ii) children and mothers learn from a chef. The performance of the proposed LCA algorithm is evaluated on 51 different benchmark functions (which includes the first 23 functions of the CEC 2005 benchmark functions) and the CEC 2019 benchmark functions compared with state-of-the-art meta-heuristic algorithms. The simulation results and statistical analysis such as the t-test, Wilcoxon rank-sum test, and Friedman test reveal that LCA may effectively address optimization problems by maintaining a proper balance between exploitation and exploration. Furthermore, the LCA algorithm has been employed to solve seven real-world engineering problems, such as the tension/compression spring design, pressure vessel design problem, welded beam design problem, speed reducer design problem, gear train design problem, three-bar truss design, and cantilever beam problem. The results demonstrate the LCA's superiority and capability over other algorithms in solving complex optimization problems.
Collapse
Affiliation(s)
- S Gopi
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Prabhujit Mohapatra
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
6
|
Keshta HE, Hassaballah EG, Ali AA, Abdel-Latif KM. Multi-level optimal energy management strategy for a grid tied microgrid considering uncertainty in weather conditions and load. Sci Rep 2024; 14:10059. [PMID: 38698062 DOI: 10.1038/s41598-024-59655-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
Microgrids require efficient energy management systems to optimize the operation of microgrid sources and achieve economic efficiency. Bi-level energy management model is proposed in this paper to minimize the operational cost of a grid-tied microgrid under load variations and uncertainties in renewable sources while satisfying the various technical constraints. The first level is day ahead scheduling of generation units based on day ahead forecasting of renewable energy sources and load demand. In this paper, a recent meta-heuristic algorithm called Coronavirus Herd Immunity Optimizer (CHIO) is used to solve the problem of day-ahead scheduling of batteries, which is a complex constrained non-linear optimization problem, while the Lagrange multiplier method is used to determine the set-point of the Diesel Generator (DG). The second level of the proposed EMS is rescheduling and updating the set-points of sources in real-time according to the actual solar irradiance, wind speed, load, and grid tariff. In this paper, a novel real-time strategy is proposed to keep the economic operation during real-time under uncertainties. The obtained results show that the CHIO-based bi-level EMS demonstrates an optimal economic operation for a grid-connected microgrid in real-time when there are uncertainties in weather, utility tariffs, and load forecasts.
Collapse
Affiliation(s)
- H E Keshta
- Faculty of Engineering at Shoubra, Benha University, Banha, Egypt
| | - E G Hassaballah
- Faculty of Engineering, Helwan University, Cairo, Egypt.
- Greater Cairo Water Company, Cairo, Egypt.
| | - A A Ali
- Faculty of Engineering, Helwan University, Cairo, Egypt
| | | |
Collapse
|
7
|
Hussien AG, Pop A, Kumar S, Hashim FA, Hu G. A Novel Artificial Electric Field Algorithm for Solving Global Optimization and Real-World Engineering Problems. Biomimetics (Basel) 2024; 9:186. [PMID: 38534871 DOI: 10.3390/biomimetics9030186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
The Artificial Electric Field Algorithm (AEFA) stands out as a physics-inspired metaheuristic, drawing inspiration from Coulomb's law and electrostatic force; however, while AEFA has demonstrated efficacy, it can face challenges such as convergence issues and suboptimal solutions, especially in high-dimensional problems. To overcome these challenges, this paper introduces a modified version of AEFA, named mAEFA, which leverages the capabilities of Lévy flights, simulated annealing, and the Adaptive s-best Mutation and Natural Survivor Method (NSM) mechanisms. While Lévy flights enhance exploration potential and simulated annealing improves search exploitation, the Adaptive s-best Mutation and Natural Survivor Method (NSM) mechanisms are employed to add more diversity. The integration of these mechanisms in AEFA aims to expand its search space, enhance exploration potential, avoid local optima, and achieve improved performance, robustness, and a more equitable equilibrium between local intensification and global diversification. In this study, a comprehensive assessment of mAEFA is carried out, employing a combination of quantitative and qualitative measures, on a diverse range of 29 intricate CEC'17 constraint benchmarks that exhibit different characteristics. The practical compatibility of the proposed mAEFA is evaluated on five engineering benchmark problems derived from the civil, mechanical, and industrial engineering domains. Results from the mAEFA algorithm are compared with those from seven recently introduced metaheuristic algorithms using widely adopted statistical metrics. The mAEFA algorithm outperforms the LCA algorithm in all 29 CEC'17 test functions with 100% superiority and shows better results than SAO, GOA, CHIO, PSO, GSA, and AEFA in 96.6%, 96.6%, 93.1%, 86.2%, 82.8%, and 58.6% of test cases, respectively. In three out of five engineering design problems, mAEFA outperforms all the compared algorithms, securing second place in the remaining two problems. Results across all optimization problems highlight the effectiveness and robustness of mAEFA compared to baseline metaheuristics. The suggested enhancements in AEFA have proven effective, establishing competitiveness in diverse optimization problems.
Collapse
Affiliation(s)
- Abdelazim G Hussien
- Department of Computer and Information Science, Linköping University, 581 83 Linköping, Sweden
- Faculty of Science, Fayoum University, Faiyum 63514, Egypt
| | - Adrian Pop
- Department of Computer and Information Science, Linköping University, 581 83 Linköping, Sweden
| | - Sumit Kumar
- Australian Maritime College, College of Sciences and Engineering, University of Tasmania, Launceston 7248, Australia
| | - Fatma A Hashim
- Faculty of Engineering, Helwan University, Cairo 11795, Egypt
- MEU Research Unit, Middle East University, Amman 11831, Jordan
| | - Gang Hu
- Department of Applied Mathematics, Xi'an University of Technology, Xi'an 710054, China
| |
Collapse
|
8
|
Hubálovská M, Hubálovský Š, Trojovský P. Botox Optimization Algorithm: A New Human-Based Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics (Basel) 2024; 9:137. [PMID: 38534822 DOI: 10.3390/biomimetics9030137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
This paper introduces the Botox Optimization Algorithm (BOA), a novel metaheuristic inspired by the Botox operation mechanism. The algorithm is designed to address optimization problems, utilizing a human-based approach. Taking cues from Botox procedures, where defects are targeted and treated to enhance beauty, the BOA is formulated and mathematically modeled. Evaluation on the CEC 2017 test suite showcases the BOA's ability to balance exploration and exploitation, delivering competitive solutions. Comparative analysis against twelve well-known metaheuristic algorithms demonstrates the BOA's superior performance across various benchmark functions, with statistically significant advantages. Moreover, application to constrained optimization problems from the CEC 2011 test suite highlights the BOA's effectiveness in real-world optimization tasks.
Collapse
Affiliation(s)
- Marie Hubálovská
- Department of Technics, Faculty of Education, University of Hradec Kralove, 50003 Hradec Králové, Czech Republic
| | - Štěpán Hubálovský
- Department of Technics, Faculty of Education, University of Hradec Kralove, 50003 Hradec Králové, Czech Republic
| | - Pavel Trojovský
- Department of Technics, Faculty of Education, University of Hradec Kralove, 50003 Hradec Králové, Czech Republic
| |
Collapse
|
9
|
Al-Baik O, Alomari S, Alssayed O, Gochhait S, Leonova I, Dutta U, Malik OP, Montazeri Z, Dehghani M. Pufferfish Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics (Basel) 2024; 9:65. [PMID: 38392111 PMCID: PMC10887113 DOI: 10.3390/biomimetics9020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
A new bio-inspired metaheuristic algorithm named the Pufferfish Optimization Algorithm (POA), that imitates the natural behavior of pufferfish in nature, is introduced in this paper. The fundamental inspiration of POA is adapted from the defense mechanism of pufferfish against predators. In this defense mechanism, by filling its elastic stomach with water, the pufferfish becomes a spherical ball with pointed spines, and as a result, the hungry predator escapes from this threat. The POA theory is stated and then mathematically modeled in two phases: (i) exploration based on the simulation of a predator's attack on a pufferfish and (ii) exploitation based on the simulation of a predator's escape from spiny spherical pufferfish. The performance of POA is evaluated in handling the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100. The optimization results show that POA has achieved an effective solution with the appropriate ability in exploration, exploitation, and the balance between them during the search process. The quality of POA in the optimization process is compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that POA provides superior performance by achieving better results in most of the benchmark functions in order to solve the CEC 2017 test suite compared to competitor algorithms. Also, the effectiveness of POA to handle optimization tasks in real-world applications is evaluated on twenty-two constrained optimization problems from the CEC 2011 test suite and four engineering design problems. Simulation results show that POA provides effective performance in handling real-world applications by achieving better solutions compared to competitor algorithms.
Collapse
Affiliation(s)
- Osama Al-Baik
- Department of Software Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Saleh Alomari
- ISBM COE, Faculty of Science and Information Technology, Software Engineering, Jadara University, Irbid 21110, Jordan
| | - Omar Alssayed
- Department of Mathematics, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Saikat Gochhait
- Symbiosis Institute of Digital and Telecom Management, Constituent of Symbiosis International Deemed University, Pune 412115, India
- Neuroscience Research Institute, Samara State Medical University, 89 Chapaevskaya Street, 443001 Samara, Russia
| | - Irina Leonova
- Neuroscience Research Institute, Samara State Medical University, 89 Chapaevskaya Street, 443001 Samara, Russia
- Faculty of Social Sciences, Lobachevsky University, 603950 Nizhny Novgorod, Russia
| | - Uma Dutta
- Former Dean of Life Sciences and Head of Zoology Department, Celland Molecular Biology, Toxicology Laboratory, Department of Zoology, Cotton University, Guwahati 781001, India
| | - Om Parkash Malik
- Department of Electrical and Software Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Zeinab Montazeri
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 7155713876, Iran
| | - Mohammad Dehghani
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 7155713876, Iran
| |
Collapse
|
10
|
Yao T, Chen X, Wang H, Gao C, Chen J, Yi D, Wei Z, Yao N, Li Y, Yi D, Wu Y. Deep evolutionary fusion neural network: a new prediction standard for infectious disease incidence rates. BMC Bioinformatics 2024; 25:38. [PMID: 38262917 PMCID: PMC10804580 DOI: 10.1186/s12859-023-05621-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Previously, many methods have been used to predict the incidence trends of infectious diseases. There are numerous methods for predicting the incidence trends of infectious diseases, and they have exhibited varying degrees of success. However, there are a lack of prediction benchmarks that integrate linear and nonlinear methods and effectively use internet data. The aim of this paper is to develop a prediction model of the incidence rate of infectious diseases that integrates multiple methods and multisource data, realizing ground-breaking research. RESULTS The infectious disease dataset is from an official release and includes four national and three regional datasets. The Baidu index platform provides internet data. We choose a single model (seasonal autoregressive integrated moving average (SARIMA), nonlinear autoregressive neural network (NAR), and long short-term memory (LSTM)) and a deep evolutionary fusion neural network (DEFNN). The DEFNN is built using the idea of neural evolution and fusion, and the DEFNN + is built using multisource data. We compare the model accuracy on reference group data and validate the model generalizability on external data. (1) The loss of SA-LSTM in the reference group dataset is 0.4919, which is significantly better than that of other single models. (2) The loss values of SA-LSTM on the national and regional external datasets are 0.9666, 1.2437, 0.2472, 0.7239, 1.4026, and 0.6868. (3) When multisource indices are added to the national dataset, the loss of the DEFNN + increases to 0.4212, 0.8218, 1.0331, and 0.8575. CONCLUSIONS We propose an SA-LSTM optimization model with good accuracy and generalizability based on the concept of multiple methods and multiple data fusion. DEFNN enriches and supplements infectious disease prediction methodologies, can serve as a new benchmark for future infectious disease predictions and provides a reference for the prediction of the incidence rates of various infectious diseases.
Collapse
Affiliation(s)
- Tianhua Yao
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, NO.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xicheng Chen
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, NO.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Haojia Wang
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, NO.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Chengcheng Gao
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, NO.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Jia Chen
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, NO.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Dali Yi
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, NO.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Department of Health Education, College of Preventive Medicine, Army Medical University, NO.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Zeliang Wei
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, NO.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Ning Yao
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, NO.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yang Li
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, NO.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Dong Yi
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, NO.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| | - Yazhou Wu
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, NO.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
11
|
Xin J, Wang M, Qu L, Chen Q, Wang W, Wang Z. BIC-LP: A Hybrid Higher-Order Dynamic Bayesian Network Score Function for Gene Regulatory Network Reconstruction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:188-199. [PMID: 38127613 DOI: 10.1109/tcbb.2023.3345317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Reconstructing gene regulatory networks(GRNs) is an increasingly hot topic in bioinformatics. Dynamic Bayesian network(DBN) is a stochastic graph model commonly used as a vital model for GRN reconstruction. But probabilistic characteristics of biological networks and the existence of data noise bring great challenges to GRN reconstruction and always lead to many false positive/negative edges. ScoreLasso is a hybrid DBN score function combining DBN and linear regression with good performance. Its performance is, however, limited by first-order assumption and ignorance of the initial network of DBN. In this article, an integrated model based on higher-order DBN model, higher-order Lasso linear regression model and Pearson correlation model is proposed. Based on this, a hybrid higher-order DBN score function for GRN reconstruction is proposed, namely BIC-LP. BIC-LP score function is constructed by adding terms based on Lasso linear regression coefficients and Pearson correlation coefficients on classical BIC score function. Therefore, it could capture more information from dataset and curb information loss, compared with both many existing Bayesian family score functions and many state-of-the-art methods for GRN reconstruction. Experimental results show that BIC-LP can reasonably eliminate some false positive edges while retaining most true positive edges, so as to achieve better GRN reconstruction performance.
Collapse
|
12
|
Hubálovský Š, Hubálovská M, Matoušová I. A New Hybrid Particle Swarm Optimization-Teaching-Learning-Based Optimization for Solving Optimization Problems. Biomimetics (Basel) 2023; 9:8. [PMID: 38248582 PMCID: PMC10813294 DOI: 10.3390/biomimetics9010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/09/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
This research paper develops a novel hybrid approach, called hybrid particle swarm optimization-teaching-learning-based optimization (hPSO-TLBO), by combining two metaheuristic algorithms to solve optimization problems. The main idea in hPSO-TLBO design is to integrate the exploitation ability of PSO with the exploration ability of TLBO. The meaning of "exploitation capabilities of PSO" is the ability of PSO to manage local search with the aim of obtaining possible better solutions near the obtained solutions and promising areas of the problem-solving space. Also, "exploration abilities of TLBO" means the ability of TLBO to manage the global search with the aim of preventing the algorithm from getting stuck in inappropriate local optima. hPSO-TLBO design methodology is such that in the first step, the teacher phase in TLBO is combined with the speed equation in PSO. Then, in the second step, the learning phase of TLBO is improved based on each student learning from a selected better student that has a better value for the objective function against the corresponding student. The algorithm is presented in detail, accompanied by a comprehensive mathematical model. A group of benchmarks is used to evaluate the effectiveness of hPSO-TLBO, covering various types such as unimodal, high-dimensional multimodal, and fixed-dimensional multimodal. In addition, CEC 2017 benchmark problems are also utilized for evaluation purposes. The optimization results clearly demonstrate that hPSO-TLBO performs remarkably well in addressing the benchmark functions. It exhibits a remarkable ability to explore and exploit the search space while maintaining a balanced approach throughout the optimization process. Furthermore, a comparative analysis is conducted to evaluate the performance of hPSO-TLBO against twelve widely recognized metaheuristic algorithms. The evaluation of the experimental findings illustrates that hPSO-TLBO consistently outperforms the competing algorithms across various benchmark functions, showcasing its superior performance. The successful deployment of hPSO-TLBO in addressing four engineering challenges highlights its effectiveness in tackling real-world applications.
Collapse
Affiliation(s)
- Štěpán Hubálovský
- Department of Applied Cybernetics, Faculty of Science, University of Hradec Králové, 50003 Hradec Kralove, Czech Republic
| | - Marie Hubálovská
- Department of Technics, Faculty of Education, University of Hradec Králové, 50003 Hradec Kralove, Czech Republic;
| | - Ivana Matoušová
- Department of Mathematics, Faculty of Science, University of Hradec Králové, 50003 Hradec Kralove, Czech Republic;
| |
Collapse
|
13
|
Alsayyed O, Hamadneh T, Al-Tarawneh H, Alqudah M, Gochhait S, Leonova I, Malik OP, Dehghani M. Giant Armadillo Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics (Basel) 2023; 8:619. [PMID: 38132558 PMCID: PMC10741582 DOI: 10.3390/biomimetics8080619] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
In this paper, a new bio-inspired metaheuristic algorithm called Giant Armadillo Optimization (GAO) is introduced, which imitates the natural behavior of giant armadillo in the wild. The fundamental inspiration in the design of GAO is derived from the hunting strategy of giant armadillos in moving towards prey positions and digging termite mounds. The theory of GAO is expressed and mathematically modeled in two phases: (i) exploration based on simulating the movement of giant armadillos towards termite mounds, and (ii) exploitation based on simulating giant armadillos' digging skills in order to prey on and rip open termite mounds. The performance of GAO in handling optimization tasks is evaluated in order to solve the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100. The optimization results show that GAO is able to achieve effective solutions for optimization problems by benefiting from its high abilities in exploration, exploitation, and balancing them during the search process. The quality of the results obtained from GAO is compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that GAO presents superior performance compared to competitor algorithms by providing better results for most of the benchmark functions. The statistical analysis of the Wilcoxon rank sum test confirms that GAO has a significant statistical superiority over competitor algorithms. The implementation of GAO on the CEC 2011 test suite and four engineering design problems show that the proposed approach has effective performance in dealing with real-world applications.
Collapse
Affiliation(s)
- Omar Alsayyed
- Department of Mathematics, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Tareq Hamadneh
- Department of Matematics, Al Zaytoonah University of Jordan, Amman 11733, Jordan;
| | - Hassan Al-Tarawneh
- Department of Data Sciences and Artificial Intelligence, Al-Ahliyya Amman University, Amman 11942, Jordan;
| | - Mohammad Alqudah
- Department of Basic Sciences, German Jordanian University, Amman 11180, Jordan;
| | - Saikat Gochhait
- Symbiosis Institute of Digital and Telecom Management, Constituent of Symbiosis International Deemed University, Pune 412115, India;
- Neuroscience Research Institute, Samara State Medical University, 89 Chapaevskaya str., 443001 Samara, Russia;
| | - Irina Leonova
- Neuroscience Research Institute, Samara State Medical University, 89 Chapaevskaya str., 443001 Samara, Russia;
- Faculty of Social Sciences, Lobachevsky University, 603950 Nizhny Novgorod, Russia
| | - Om Parkash Malik
- Department of Electrical and Software Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Mohammad Dehghani
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 7155713876, Iran
| |
Collapse
|
14
|
Zhang Z, Wu C, Qu S, Liu J. A hierarchical chain-based Archimedes optimization algorithm. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:20881-20913. [PMID: 38124580 DOI: 10.3934/mbe.2023924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The Archimedes optimization algorithm (AOA) has attracted much attention for its few parameters and competitive optimization effects. However, all agents in the canonical AOA are treated in the same way, resulting in slow convergence and local optima. To solve these problems, an improved hierarchical chain-based AOA (HCAOA) is proposed in this paper. The idea of HCAOA is to deal with individuals at different levels in different ways. The optimal individual is processed by an orthogonal learning mechanism based on refraction opposition to fully learn the information on all dimensions, effectively avoiding local optima. Superior individuals are handled by an Archimedes spiral mechanism based on Levy flight, avoiding clueless random mining and improving optimization speed. For general individuals, the conventional AOA is applied to maximize its inherent exploration and exploitation abilities. Moreover, a multi-strategy boundary processing mechanism is introduced to improve population diversity. Experimental outcomes on CEC 2017 test suite show that HCAOA outperforms AOA and other advanced competitors. The competitive optimization results achieved by HCAOA on four engineering design problems also demonstrate its ability to solve practical problems.
Collapse
Affiliation(s)
- Zijiao Zhang
- School of Management, Harbin Institute of Technology, Harbin 150000, China
| | - Chong Wu
- School of Management, Harbin Institute of Technology, Harbin 150000, China
| | - Shiyou Qu
- School of Management, Harbin Institute of Technology, Harbin 150000, China
| | - Jiaming Liu
- School of Computer Science and Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
15
|
Hubalovska M, Major S. A New Human-Based Metaheuristic Algorithm for Solving Optimization Problems Based on Technical and Vocational Education and Training. Biomimetics (Basel) 2023; 8:508. [PMID: 37887639 PMCID: PMC10604091 DOI: 10.3390/biomimetics8060508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
In this paper, a new human-based metaheuristic algorithm called Technical and Vocational Education and Training-Based Optimizer (TVETBO) is introduced to solve optimization problems. The fundamental inspiration for TVETBO is taken from the process of teaching work-related skills to applicants in technical and vocational education and training schools. The theory of TVETBO is expressed and mathematically modeled in three phases: (i) theory education, (ii) practical education, and (iii) individual skills development. The performance of TVETBO when solving optimization problems is evaluated on the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100. The optimization results show that TVETBO, with its high abilities to explore, exploit, and create a balance between exploration and exploitation during the search process, is able to provide effective solutions for the benchmark functions. The results obtained from TVETBO are compared with the performances of twelve well-known metaheuristic algorithms. A comparison of the simulation results and statistical analysis shows that the proposed TVETBO approach provides better results in most of the benchmark functions and provides a superior performance in competition with competitor algorithms. Furthermore, in order to measure the effectiveness of the proposed approach in dealing with real-world applications, TVETBO is implemented on twenty-two constrained optimization problems from the CEC 2011 test suite. The simulation results show that TVETBO provides an effective and superior performance when solving constrained optimization problems of real-world applications compared to competitor algorithms.
Collapse
Affiliation(s)
- Marie Hubalovska
- Department of Technics, Faculty of Education, University of Hradec Kralove, CZ50003 Hradec Kralove, Czech Republic;
| | | |
Collapse
|
16
|
Dehghani M, Bektemyssova G, Montazeri Z, Shaikemelev G, Malik OP, Dhiman G. Lyrebird Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics (Basel) 2023; 8:507. [PMID: 37887638 PMCID: PMC10604244 DOI: 10.3390/biomimetics8060507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
In this paper, a new bio-inspired metaheuristic algorithm called the Lyrebird Optimization Algorithm (LOA) that imitates the natural behavior of lyrebirds in the wild is introduced. The fundamental inspiration of LOA is the strategy of lyrebirds when faced with danger. In this situation, lyrebirds scan their surroundings carefully, then either run away or hide somewhere, immobile. LOA theory is described and then mathematically modeled in two phases: (i) exploration based on simulation of the lyrebird escape strategy and (ii) exploitation based on simulation of the hiding strategy. The performance of LOA was evaluated in optimization of the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100. The optimization results show that the proposed LOA approach has high ability in terms of exploration, exploitation, and balancing them during the search process in the problem-solving space. In order to evaluate the capability of LOA in dealing with optimization tasks, the results obtained from the proposed approach were compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that LOA has superior performance compared to competitor algorithms by providing better results in the optimization of most of the benchmark functions, achieving the rank of first best optimizer. A statistical analysis of the performance of the metaheuristic algorithms shows that LOA has significant statistical superiority in comparison with the compared algorithms. In addition, the efficiency of LOA in handling real-world applications was investigated through dealing with twenty-two constrained optimization problems from the CEC 2011 test suite and four engineering design problems. The simulation results show that LOA has effective performance in handling optimization tasks in real-world applications while providing better results compared to competitor algorithms.
Collapse
Affiliation(s)
- Mohammad Dehghani
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 7155713876, Iran;
| | - Gulnara Bektemyssova
- Department of Computer Engineering, International Information Technology University, Almaty 050000, Kazakhstan;
| | - Zeinab Montazeri
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 7155713876, Iran;
| | - Galymzhan Shaikemelev
- Department of Computer Engineering, International Information Technology University, Almaty 050000, Kazakhstan;
| | - Om Parkash Malik
- Department of Electrical and Software Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Gaurav Dhiman
- Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon;
- Department of Computer Science and Engineering, University Centre for Research and Development, Chandigarh University, Mohali 140413, India
- Department of Computer Science and Engineering, Graphic Era Deemed to be University, Dehradun 248002, India
- Division of Research and Development, Lovely Professional University, Phagwara 144411, India
| |
Collapse
|
17
|
Dehghani M, Montazeri Z, Bektemyssova G, Malik OP, Dhiman G, Ahmed AEM. Kookaburra Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics (Basel) 2023; 8:470. [PMID: 37887601 PMCID: PMC10604064 DOI: 10.3390/biomimetics8060470] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
In this paper, a new bio-inspired metaheuristic algorithm named the Kookaburra Optimization Algorithm (KOA) is introduced, which imitates the natural behavior of kookaburras in nature. The fundamental inspiration of KOA is the strategy of kookaburras when hunting and killing prey. The KOA theory is stated, and its mathematical modeling is presented in the following two phases: (i) exploration based on the simulation of prey hunting and (ii) exploitation based on the simulation of kookaburras' behavior in ensuring that their prey is killed. The performance of KOA has been evaluated on 29 standard benchmark functions from the CEC 2017 test suite for the different problem dimensions of 10, 30, 50, and 100. The optimization results show that the proposed KOA approach, by establishing a balance between exploration and exploitation, has good efficiency in managing the effective search process and providing suitable solutions for optimization problems. The results obtained using KOA have been compared with the performance of 12 well-known metaheuristic algorithms. The analysis of the simulation results shows that KOA, by providing better results in most of the benchmark functions, has provided superior performance in competition with the compared algorithms. In addition, the implementation of KOA on 22 constrained optimization problems from the CEC 2011 test suite, as well as 4 engineering design problems, shows that the proposed approach has acceptable and superior performance compared to competitor algorithms in handling real-world applications.
Collapse
Affiliation(s)
- Mohammad Dehghani
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 7155713876, Iran;
| | - Zeinab Montazeri
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 7155713876, Iran;
| | - Gulnara Bektemyssova
- Department of Computer Engineering, International Information Technology University, Almaty 050000, Kazakhstan;
| | - Om Parkash Malik
- Department of Electrical and Software Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Gaurav Dhiman
- Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon;
- University Centre for Research and Development, Department of Computer Science and Engineering, Chandigarh University, Mohali 140413, India
- Department of Computer Science and Engineering, Graphic Era Deemed to be University, Dehradun 248002, India
- Division of Research and Development, Lovely Professional University, Phagwara 144411, India
| | - Ayman E. M. Ahmed
- Faculty of Computer Engineering, King Salman International University, El Tor 46511, Egypt;
| |
Collapse
|
18
|
Houssein EH, Oliva D, Samee NA, Mahmoud NF, Emam MM. Liver Cancer Algorithm: A novel bio-inspired optimizer. Comput Biol Med 2023; 165:107389. [PMID: 37678138 DOI: 10.1016/j.compbiomed.2023.107389] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
This paper introduces a new bio-inspired optimization algorithm named the Liver Cancer Algorithm (LCA), which mimics the liver tumor growth and takeover process. It uses an evolutionary search approach that simulates the behavior of liver tumors when taking over the liver organ. The tumor's ability to replicate and spread to other organs inspires the algorithm. LCA algorithm is developed using genetic operators and a Random Opposition-Based Learning (ROBL) strategy to efficiently balance local and global searches and explore the search space. The algorithm's efficiency is tested on the IEEE Congress of Evolutionary Computation in 2020 (CEC'2020) benchmark functions and compared to seven widely used metaheuristic algorithms, including Genetic Algorithm (GA), particle swarm optimization (PSO), Differential Evolution (DE), Adaptive Guided Differential Evolution Algorithm (AGDE), Improved Multi-Operator Differential Evolution (IMODE), Harris Hawks Optimization (HHO), Runge-Kutta Optimization Algorithm (RUN), weIghted meaN oF vectOrs (INFO), and Coronavirus Herd Immunity Optimizer (CHIO). The statistical results of the convergence curve, boxplot, parameter space, and qualitative metrics show that the LCA algorithm performs competitively compared to well-known algorithms. Moreover, the versatility of the LCA algorithm extends beyond mathematical benchmark problems. It was also successfully applied to tackle the feature selection problem and optimize the support vector machine for various biomedical data classifications, resulting in the creation of the LCA-SVM model. The LCA-SVM model was evaluated in a total of twelve datasets, among which the MonoAmine Oxidase (MAO) dataset stood out, showing the highest performance compared to the other datasets. In particular, the LCA-SVM model achieved an impressive accuracy of 98.704% on the MAO dataset. This outstanding result demonstrates the efficacy and potential of the LCA-SVM approach in handling complex datasets and producing highly accurate predictions. The experimental results indicate that the LCA algorithm surpasses other methods to solve mathematical benchmark problems and feature selection.
Collapse
Affiliation(s)
- Essam H Houssein
- Faculty of Computers and Information, Minia University, Minia, Egypt.
| | - Diego Oliva
- Depto. Innovación Basada en la Información y el Conocimiento, Universidad de Guadalajara, CUCEI, Guadalajara, Jal, Mexico.
| | - Nagwan Abdel Samee
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Noha F Mahmoud
- Rehabilitation Sciences Department, Health and Rehabilitation Sciences College, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Marwa M Emam
- Faculty of Computers and Information, Minia University, Minia, Egypt.
| |
Collapse
|
19
|
Zhong M, Wen J, Ma J, Cui H, Zhang Q, Parizi MK. A hierarchical multi-leadership sine cosine algorithm to dissolving global optimization and data classification: The COVID-19 case study. Comput Biol Med 2023; 164:107212. [PMID: 37478712 DOI: 10.1016/j.compbiomed.2023.107212] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/18/2023] [Accepted: 06/25/2023] [Indexed: 07/23/2023]
Abstract
The Sine Cosine Algorithm (SCA) is an outstanding optimizer that is appreciably used to dissolve complicated real-world problems. Nevertheless, this algorithm lacks sufficient population diversification and a sufficient balance between exploration and exploitation. So, effective techniques are required to tackle the SCA's fundamental shortcomings. Accordingly, the present paper suggests an improved version of SCA called Hierarchical Multi-Leadership SCA (HMLSCA) which uses an effective hierarchical multi-leadership search mechanism to lead the search process on multiple paths. The efficiency of the HMLSCA has been appraised and compared with a set of famous metaheuristic algorithms to dissolve the classical eighteen benchmark functions and thirty CEC 2017 test suites. The results demonstrate that the HMLSCA outperforms all compared algorithms and that the proposed algorithm provided a promising efficiency. Moreover, the HMLSCA was applied to handle the medicine data classification by optimizing the support vector machine's (SVM) parameters and feature weighting in eight datasets. The experiential outcomes verify the productivity of the HMLSCA with the highest classification accuracy and a gain scoring 1.00 Friedman mean rank versus the other evaluated metaheuristic algorithms. Furthermore, the proposed algorithm was used to diagnose COVID-19, in which it attained the topmost accuracy of 98% in diagnosing the infection on the COVID-19 dataset, which proves the performance of the proposed search strategy.
Collapse
Affiliation(s)
- Mingyang Zhong
- College of Artificial Intelligence, Southwest University, 400715, China.
| | - Jiahui Wen
- Defense Innovation Institute, 100085, China.
| | - Jingwei Ma
- School of Information Science and Engineering, Shandong Normal University, 250399, China.
| | - Hao Cui
- College of Artificial Intelligence, Southwest University, 400715, China.
| | - Qiuling Zhang
- College of Artificial Intelligence, Southwest University, 400715, China.
| | - Morteza Karimzadeh Parizi
- Department of Computer Engineering,Faculty of Shahid Chamran, Kerman Branch,Technical and Vocational University (TVU), Kerman, Iran.
| |
Collapse
|
20
|
Matoušová I, Trojovský P, Dehghani M, Trojovská E, Kostra J. Mother optimization algorithm: a new human-based metaheuristic approach for solving engineering optimization. Sci Rep 2023; 13:10312. [PMID: 37365283 DOI: 10.1038/s41598-023-37537-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023] Open
Abstract
This article's innovation and novelty are introducing a new metaheuristic method called mother optimization algorithm (MOA) that mimics the human interaction between a mother and her children. The real inspiration of MOA is to simulate the mother's care of children in three phases education, advice, and upbringing. The mathematical model of MOA used in the search process and exploration is presented. The performance of MOA is assessed on a set of 52 benchmark functions, including unimodal and high-dimensional multimodal functions, fixed-dimensional multimodal functions, and the CEC 2017 test suite. The findings of optimizing unimodal functions indicate MOA's high ability in local search and exploitation. The findings of optimization of high-dimensional multimodal functions indicate the high ability of MOA in global search and exploration. The findings of optimization of fixed-dimension multi-model functions and the CEC 2017 test suite show that MOA with a high ability to balance exploration and exploitation effectively supports the search process and can generate appropriate solutions for optimization problems. The outcomes quality obtained from MOA has been compared with the performance of 12 often-used metaheuristic algorithms. Upon analysis and comparison of the simulation results, it was found that the proposed MOA outperforms competing algorithms with superior and significantly more competitive performance. Precisely, the proposed MOA delivers better results in most objective functions. Furthermore, the application of MOA on four engineering design problems demonstrates the efficacy of the proposed approach in solving real-world optimization problems. The findings of the statistical analysis from the Wilcoxon signed-rank test show that MOA has a significant statistical superiority compared to the twelve well-known metaheuristic algorithms in managing the optimization problems studied in this paper.
Collapse
Affiliation(s)
- Ivana Matoušová
- Department of Mathematics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic.
| | - Pavel Trojovský
- Department of Mathematics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
| | - Mohammad Dehghani
- Department of Mathematics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
| | - Eva Trojovská
- Department of Mathematics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
| | - Juraj Kostra
- Faculty of Chemical Technology, Institute of Applied Physics and Mathematics, University of Pardubice, 532 10, Pardubice, Czech Republic
| |
Collapse
|
21
|
Gui P, He F, Ling BWK, Zhang D, Ge Z. Normal vibration distribution search-based differential evolution algorithm for multimodal biomedical image registration. Neural Comput Appl 2023; 35:1-23. [PMID: 37362574 PMCID: PMC10227826 DOI: 10.1007/s00521-023-08649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
In linear registration, a floating image is spatially aligned with a reference image after performing a series of linear metric transformations. Additionally, linear registration is mainly considered a preprocessing version of nonrigid registration. To better accomplish the task of finding the optimal transformation in pairwise intensity-based medical image registration, in this work, we present an optimization algorithm called the normal vibration distribution search-based differential evolution algorithm (NVSA), which is modified from the Bernstein search-based differential evolution (BSD) algorithm. We redesign the search pattern of the BSD algorithm and import several control parameters as part of the fine-tuning process to reduce the difficulty of the algorithm. In this study, 23 classic optimization functions and 16 real-world patients (resulting in 41 multimodal registration scenarios) are used in experiments performed to statistically investigate the problem solving ability of the NVSA. Nine metaheuristic algorithms are used in the conducted experiments. When compared to the commonly utilized registration methods, such as ANTS, Elastix, and FSL, our method achieves better registration performance on the RIRE dataset. Moreover, we prove that our method can perform well with or without its initial spatial transformation in terms of different evaluation indicators, demonstrating its versatility and robustness for various clinical needs and applications. This study establishes the idea that metaheuristic-based methods can better accomplish linear registration tasks than the frequently used approaches; the proposed method demonstrates promise that it can solve real-world clinical and service problems encountered during nonrigid registration as a preprocessing approach.The source code of the NVSA is publicly available at https://github.com/PengGui-N/NVSA.
Collapse
Affiliation(s)
- Peng Gui
- School of Computer Science, Wuhan University, Wuhan, 430072 People’s Republic of China
- AIM Lab, Faculty of IT, Monash University, Melbourne, VIC 3800 Australia
- Monash-Airdoc Research, Monash University, Melbourne, VIC 3800 Australia
| | - Fazhi He
- School of Computer Science, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Bingo Wing-Kuen Ling
- School of Information Engineering, Guangdong University of Technology, Guangzhou, 510006 People’s Republic of China
| | - Dengyi Zhang
- School of Computer Science, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Zongyuan Ge
- AIM Lab, Faculty of IT, Monash University, Melbourne, VIC 3800 Australia
- Monash-Airdoc Research, Monash University, Melbourne, VIC 3800 Australia
| |
Collapse
|
22
|
Xu M, Song Q, Xi M, Zhou Z. Binary arithmetic optimization algorithm for feature selection. Soft comput 2023; 27:1-35. [PMID: 37362265 PMCID: PMC10191101 DOI: 10.1007/s00500-023-08274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 06/28/2023]
Abstract
Feature selection, widely used in data preprocessing, is a challenging problem as it involves hard combinatorial optimization. So far some meta-heuristic algorithms have shown effectiveness in solving hard combinatorial optimization problems. As the arithmetic optimization algorithm only performs well in dealing with continuous optimization problems, multiple binary arithmetic optimization algorithms (BAOAs) utilizing different strategies are proposed to perform feature selection. First, six algorithms are formed based on six different transfer functions by converting the continuous search space to the discrete search space. Second, in order to enhance the speed of searching and the ability of escaping from the local optima, six other algorithms are further developed by integrating the transfer functions and Lévy flight. Based on 20 common University of California Irvine (UCI) datasets, the performance of our proposed algorithms in feature selection is evaluated, and the results demonstrate that BAOA_S1LF is the most superior among all the proposed algorithms. Moreover, the performance of BAOA_S1LF is compared with other meta-heuristic algorithms on 26 UCI datasets, and the corresponding results show the superiority of BAOA_S1LF in feature selection. Source codes of BAOA_S1LF are publicly available at: https://www.mathworks.com/matlabcentral/fileexchange/124545-binary-arithmetic-optimization-algorithm.
Collapse
Affiliation(s)
- Min Xu
- School of Physics and Electronic Engineering, Sichuan Normal University, Chengdu, 610101 Sichuan China
| | - Qixian Song
- School of Physics and Electronic Engineering, Sichuan Normal University, Chengdu, 610101 Sichuan China
| | - Mingyang Xi
- School of Physics and Electronic Engineering, Sichuan Normal University, Chengdu, 610101 Sichuan China
| | - Zhaorong Zhou
- School of Physics and Electronic Engineering, Sichuan Normal University, Chengdu, 610101 Sichuan China
- Meteorological Information and Signal Processing Key Laboratory of Sichuan Higher Education Institutes, Chengdu University of Information Technology, Chengdu, 610225 Sichuan China
| |
Collapse
|
23
|
Al-Betar MA, Awadallah MA, Makhadmeh SN, Alyasseri ZAA, Al-Naymat G, Mirjalili S. Marine Predators Algorithm: A Review. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:3405-3435. [PMID: 37260911 PMCID: PMC10115392 DOI: 10.1007/s11831-023-09912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/05/2023] [Indexed: 06/02/2023]
Abstract
Marine Predators Algorithm (MPA) is a recent nature-inspired optimizer stemmed from widespread foraging mechanisms based on Lévy and Brownian movements in ocean predators. Due to its superb features, such as derivative-free, parameter-less, easy-to-use, flexible, and simplicity, MPA is quickly evolved for a wide range of optimization problems in a short period. Therefore, its impressive characteristics inspire this review to analyze and discuss the primary MPA research studies established. In this review paper, the growth of the MPA is analyzed based on 102 research papers to show its powerful performance. The MPA inspirations and its theoretical concepts are also illustrated, focusing on its convergence behaviour. Thereafter, the MPA versions suggested improving the MPA behaviour on connecting the search space shape of real-world optimization problems are analyzed. A plethora and diverse optimization applications have been addressed, relying on MPA as the main solver, which is also described and organized. In addition, a critical discussion about the convergence behaviour and the main limitation of MPA is given. The review is end-up highlighting the main findings of this survey and suggests some possible MPA-related improvements and extensions that can be carried out in the future.
Collapse
Affiliation(s)
- Mohammed Azmi Al-Betar
- Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates
- Department of Information Technology, Al-Huson University College, Al-Balqa Applied University, Al-Huson, Irbid, Jordan
| | - Mohammed A. Awadallah
- Department of Computer Science, Al-Aqsa University, P.O. Box 4051, Gaza, Palestine
- Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates
| | - Sharif Naser Makhadmeh
- Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates
| | - Zaid Abdi Alkareem Alyasseri
- Information Technology Research and Development Center (ITRDC), University of Kufa, An Najaf, 54001 Iraq
- College of Engineering, University of Warith Al-Anbiyaa, Karbalä’, Iraq
| | - Ghazi Al-Naymat
- Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates
| | - Seyedali Mirjalili
- Center for Artificial Intelligence Research and Optimization, Torrens University, Adelaide, Australia
| |
Collapse
|
24
|
Rai R, Dhal KG. Recent Developments in Equilibrium Optimizer Algorithm: Its Variants and Applications. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:1-54. [PMID: 37359743 PMCID: PMC10096115 DOI: 10.1007/s11831-023-09923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/26/2023] [Indexed: 06/28/2023]
Abstract
There have been many algorithms created and introduced in the literature inspired by various events observable in nature, such as evolutionary phenomena, the actions of social creatures or agents, broad principles based on physical processes, the nature of chemical reactions, human behavior, superiority, and intelligence, intelligent behavior of plants, numerical techniques and mathematics programming procedure and its orientation. Nature-inspired metaheuristic algorithms have dominated the scientific literature and have become a widely used computing paradigm over the past two decades. Equilibrium Optimizer, popularly known as EO, is a population-based, nature-inspired meta-heuristics that belongs to the class of Physics based optimization algorithms, enthused by dynamic source and sink models with a physics foundation that are used to make educated guesses about equilibrium states. EO has achieved massive recognition, and there are quite a few changes made to existing EOs. This article gives a thorough review of EO and its variations. We started with 175 research articles published by several major publishers. Additionally, we discuss the strengths and weaknesses of the algorithms to help researchers find the variant that best suits their needs. The core optimization problems from numerous application areas using EO are also covered in the study, including image classification, scheduling problems, and many others. Lastly, this work recommends a few potential areas for EO research in the future.
Collapse
Affiliation(s)
- Rebika Rai
- Department of Computer Applications, Sikkim University, Sikkim, India
| | - Krishna Gopal Dhal
- Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, Midnapore, West Bengal India
| |
Collapse
|
25
|
Rajwar K, Deep K, Das S. An exhaustive review of the metaheuristic algorithms for search and optimization: taxonomy, applications, and open challenges. Artif Intell Rev 2023; 56:1-71. [PMID: 37362893 PMCID: PMC10103682 DOI: 10.1007/s10462-023-10470-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
As the world moves towards industrialization, optimization problems become more challenging to solve in a reasonable time. More than 500 new metaheuristic algorithms (MAs) have been developed to date, with over 350 of them appearing in the last decade. The literature has grown significantly in recent years and should be thoroughly reviewed. In this study, approximately 540 MAs are tracked, and statistical information is also provided. Due to the proliferation of MAs in recent years, the issue of substantial similarities between algorithms with different names has become widespread. This raises an essential question: can an optimization technique be called 'novel' if its search properties are modified or almost equal to existing methods? Many recent MAs are said to be based on 'novel ideas', so they are discussed. Furthermore, this study categorizes MAs based on the number of control parameters, which is a new taxonomy in the field. MAs have been extensively employed in various fields as powerful optimization tools, and some of their real-world applications are demonstrated. A few limitations and open challenges have been identified, which may lead to a new direction for MAs in the future. Although researchers have reported many excellent results in several research papers, review articles, and monographs during the last decade, many unexplored places are still waiting to be discovered. This study will assist newcomers in understanding some of the major domains of metaheuristics and their real-world applications. We anticipate this resource will also be useful to our research community.
Collapse
Affiliation(s)
- Kanchan Rajwar
- Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Kusum Deep
- Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Swagatam Das
- Electronics and Communication Sciences Unit, Indian Statistical Institute, Kolkata, West Bengal 700108 India
| |
Collapse
|
26
|
Trojovský P, Dehghani M. Subtraction-Average-Based Optimizer: A New Swarm-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics (Basel) 2023; 8:biomimetics8020149. [PMID: 37092401 PMCID: PMC10123613 DOI: 10.3390/biomimetics8020149] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
This paper presents a new evolutionary-based approach called a Subtraction-Average-Based Optimizer (SABO) for solving optimization problems. The fundamental inspiration of the proposed SABO is to use the subtraction average of searcher agents to update the position of population members in the search space. The different steps of the SABO’s implementation are described and then mathematically modeled for optimization tasks. The performance of the proposed SABO approach is tested for the optimization of fifty-two standard benchmark functions, consisting of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, and the CEC 2017 test suite. The optimization results show that the proposed SABO approach effectively solves the optimization problems by balancing the exploration and exploitation in the search process of the problem-solving space. The results of the SABO are compared with the performance of twelve well-known metaheuristic algorithms. The analysis of the simulation results shows that the proposed SABO approach provides superior results for most of the benchmark functions. Furthermore, it provides a much more competitive and outstanding performance than its competitor algorithms. Additionally, the proposed approach is implemented for four engineering design problems to evaluate the SABO in handling optimization tasks for real-world applications. The optimization results show that the proposed SABO approach can solve for real-world applications and provides more optimal designs than its competitor algorithms.
Collapse
Affiliation(s)
- Pavel Trojovský
- Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| | - Mohammad Dehghani
- Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| |
Collapse
|
27
|
Green Anaconda Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics (Basel) 2023; 8:biomimetics8010121. [PMID: 36975351 PMCID: PMC10046581 DOI: 10.3390/biomimetics8010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
A new metaheuristic algorithm called green anaconda optimization (GAO) which imitates the natural behavior of green anacondas has been designed. The fundamental inspiration for GAO is the mechanism of recognizing the position of the female species by the male species during the mating season and the hunting strategy of green anacondas. GAO’s mathematical modeling is presented based on the simulation of these two strategies of green anacondas in two phases of exploration and exploitation. The effectiveness of the proposed GAO approach in solving optimization problems is evaluated on twenty-nine objective functions from the CEC 2017 test suite and the CEC 2019 test suite. The efficiency of GAO in providing solutions for optimization problems is compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that the proposed GAO approach has a high capability in exploration, exploitation, and creating a balance between them and performs better compared to competitor algorithms. In addition, the implementation of GAO on twenty-one optimization problems from the CEC 2011 test suite indicates the effective capability of the proposed approach in handling real-world applications.
Collapse
|
28
|
Kottath R, Singh P, Bhowmick A. Swarm-based hybrid optimization algorithms: an exhaustive analysis and its applications to electricity load and price forecasting. Soft comput 2023; 27:1-32. [PMID: 37362291 PMCID: PMC10008129 DOI: 10.1007/s00500-023-07928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2023] [Indexed: 03/13/2023]
Abstract
In this work, we intend to propose multiple hybrid algorithms with the idea of giving a choice to the particles of a swarm to update their position for the next generation. To implement this concept, Cuckoo Search Algorithm (CSA), Grey Wolf Optimization (GWO), Harris Hawks Optimization (HHO), and Whale Optimization Algorithm (WOA) have been utilized. Exhaustive possible combinations of these algorithms are developed and benchmarked against the base algorithms. These hybrid algorithms have been validated on twenty-four well-known unimodal and multimodal benchmarks functions, and detailed analysis with varying dimensions and population size is discussed for the same. Further, the efficacy of these algorithms has been tested on short-term electricity load and price forecasting applications. For this purpose, the algorithms have been combined with Artificial Neural Networks (ANNs) to evaluate their performance on the ISO New Pool England dataset. The results demonstrate that hybrid optimization algorithms perform superior to their base algorithms in most test cases. Furthermore, the results show that the performance of CSA-GWO is significantly better than other algorithms.
Collapse
Affiliation(s)
- Rahul Kottath
- Digital Tower, Bentley Systems India Private Limited, Pune, India
- School of Electrical and Electronics Engineering, VIT Bhopal University, Bhopal, MP 466114 India
| | - Priyanka Singh
- Department of Computer Science and Engineering, SRM University-AP, Amaravati, AP 522502 India
| | - Anirban Bhowmick
- School of Electrical and Electronics Engineering, VIT Bhopal University, Bhopal, MP 466114 India
| |
Collapse
|
29
|
A novel metaheuristic algorithm inspired by COVID-19 for real-parameter optimization. Neural Comput Appl 2023; 35:10147-10196. [PMID: 37155551 PMCID: PMC9996600 DOI: 10.1007/s00521-023-08229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/06/2023] [Indexed: 03/11/2023]
Abstract
In this modern world, we are encountered with numerous complex and emerging problems. The metaheuristic optimization science plays a key role in many fields from medicine to engineering, design, etc. Metaheuristic algorithms inspired by nature are among the most effective and fastest optimization methods utilized to optimize different objective functions to minimize or maximize one or more specific objectives. The use of metaheuristic algorithms and their modified versions is expanding every day. However, due to the abundance and complexity of various problems in the real world, it is always necessary to select the most proper metaheuristic method; hence, there is a strong need to create new algorithms to achieve our desired goal. In this paper, a new and powerful metaheuristic algorithm, called the coronavirus metamorphosis optimization algorithm (CMOA), is proposed based on metabolism and transformation under various conditions. The proposed CMOA algorithm has been tested and implemented on the comprehensive and complex CEC2014 benchmark functions, which are functions based on real-world problems. The results of the experiments in a comparative study under the same conditions show that the CMOA is superior to the newly-developed metaheuristic algorithms including AIDO, ITGO, RFOA, SCA, CSA, CS, SOS, GWO, WOA, MFO, PSO, Jaya, CMA-ES, GSA, RW-GWO, mTLBO, MG-SCA, TOGPEAe, m-SCA, EEO and OB-L-EO, indicating the effectiveness and robustness of the CMOA algorithm as a powerful algorithm. As it was observed from the results, the CMOA provides more suitable and optimized solutions than its competitors for the problems studied. The CMOA preserves the diversity of the population and prevents trapping in local optima. The CMOA is also applied to three engineering problems including optimal design of a welded beam, a three-bar truss and a pressure vessel, showing its high potential in solving such practical problems and effectiveness in finding global optima. According to the obtained results, the CMOA is superior to its counterparts in terms of providing a more acceptable solution. Several statistical indicators are also tested using the CMOA, which demonstrates its efficiency compared to the rest of the methods. This is also highlighted that the CMOA is a stable and reliable method when employed for expert systems.
Collapse
|
30
|
Yuan Y, Shen Q, Wang S, Ren J, Yang D, Yang Q, Fan J, Mu X. Coronavirus Mask Protection Algorithm: A New Bio-inspired Optimization Algorithm and Its Applications. JOURNAL OF BIONIC ENGINEERING 2023; 20:1-19. [PMID: 37361682 PMCID: PMC9976690 DOI: 10.1007/s42235-023-00359-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 06/28/2023]
Abstract
Nowadays, meta-heuristic algorithms are attracting widespread interest in solving high-dimensional nonlinear optimization problems. In this paper, a COVID-19 prevention-inspired bionic optimization algorithm, named Coronavirus Mask Protection Algorithm (CMPA), is proposed based on the virus transmission of COVID-19. The main inspiration for the CMPA originated from human self-protection behavior against COVID-19. In CMPA, the process of infection and immunity consists of three phases, including the infection stage, diffusion stage, and immune stage. Notably, wearing masks correctly and safe social distancing are two essential factors for humans to protect themselves, which are similar to the exploration and exploitation in optimization algorithms. This study simulates the self-protection behavior mathematically and offers an optimization algorithm. The performance of the proposed CMPA is evaluated and compared to other state-of-the-art metaheuristic optimizers using benchmark functions, CEC2020 suite problems, and three truss design problems. The statistical results demonstrate that the CMPA is more competitive among these state-of-the-art algorithms. Further, the CMPA is performed to identify the parameters of the main girder of a gantry crane. Results show that the mass and deflection of the main girder can be improved by 16.44% and 7.49%, respectively.
Collapse
Affiliation(s)
- Yongliang Yuan
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454003 China
| | - Qianlong Shen
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454003 China
| | - Shuo Wang
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116024 China
| | - Jianji Ren
- School of Software, Henan Polytechnic University, Jiaozuo, 454003 China
| | - Donghao Yang
- School of Software, Henan Polytechnic University, Jiaozuo, 454003 China
| | - Qingkang Yang
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454003 China
| | - Junkai Fan
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454003 China
| | - Xiaokai Mu
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116024 China
| |
Collapse
|
31
|
Rai R, Dhal KG, Das A, Ray S. An Inclusive Survey on Marine Predators Algorithm: Variants and Applications. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:3133-3172. [PMID: 36855410 PMCID: PMC9951854 DOI: 10.1007/s11831-023-09897-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/08/2023] [Indexed: 05/13/2023]
Abstract
Marine Predators Algorithm (MPA) is the existing population-based meta-heuristic algorithms that falls under the category of Nature-Inspired Optimization Algorithm (NIOA) enthused by the foraging actions of the marine predators that principally pursues Levy or Brownian approach as its foraging strategy. Furthermore, it employs the optimal encounter rate stratagem involving both the predator as well as prey. Since its introduction by Faramarzi in the year 2020, MPA has gained enormous popularity and has been employed in numerous application areas ranging from Mathematical and Engineering Optimization problems to Fog Computing to Image Processing to Photovoltaic System to Wind-Solar Generation System for resolving continuous optimization problems. Such huge interest from the research fraternity or the massive recognition of MPA is due to several factors such as its simplicity, ease of application, realistic execution time, superior convergence acceleration rate, soaring effectiveness, its ability to unravel continuous, multi-objective and binary problems when compared with other renowned optimization algorithms existing in the literature. This paper offers a detailed summary of the Marine Predators Algorithm (MPA) and its variants. Furthermore, the applications of MPA in a number of spheres such as Image processing, classification, electrical power system, Photovoltaic models, structural damage detection, distribution networks, engineering applications, Task Scheduling, optimization problems etc., are illustrated. To conclude, the paper highlights and thereby advocates few of the potential future research directions for MPA.
Collapse
Affiliation(s)
- Rebika Rai
- Department of Computer Applications, Sikkim University, Sikkim, India
| | - Krishna Gopal Dhal
- Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, West Bengal India
| | - Arunita Das
- Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, West Bengal India
| | - Swarnajit Ray
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal India
| |
Collapse
|
32
|
Awadallah MA, Al-Betar MA, Doush IA, Makhadmeh SN, Al-Naymat G. Recent Versions and Applications of Sparrow Search Algorithm. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:2831-2858. [PMID: 36777699 PMCID: PMC9902258 DOI: 10.1007/s11831-023-09887-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 01/19/2023] [Indexed: 06/01/2023]
Abstract
This paper reviews the latest versions and applications of sparrow search algorithm (SSA). It is a recent swarm-based algorithm proposed in 2020 rapidly grew due to its simple and optimistic features. SSA is inspired by the sparrow living style of foraging and the anti-predation behavior of sparrows. Since its establishment, it has been utilized for a plethora of optimization problems in different research topics, such as mechanical engineering, electrical engineering, civil engineering, power systems, industrial engineering, image processing, networking, environment, robotics, planing and scheduling, and healthcare. Initially, the growth of SSA and its theoretical features are highlighted in terms of the number of published articles, citations, topics covered, etc. After that, the different extended versions of SSA are reviewed, where the main variations of SSA are produced to avoid premature convergence and to boost the diversity aspects. These extended versions are modifications and hybridization summarized with more focus on the motivations behind establishing these versions. Multi-objective SSA is also presented as another version to deal with Multi-objective optimization problems. The critical analysis of the main research gaps in the convergence behaviour of SSA is discussed. Finally, the conclusion and the possible future expansions are recommended based on the research works accomplished in the literature.
Collapse
Affiliation(s)
- Mohammed A. Awadallah
- Department of Computer Science, Al-Aqsa University, P.O. Box 4051, Gaza, Palestine
- Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates
| | - Mohammed Azmi Al-Betar
- Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates
- Department of Information Technology, Al-Huson University College, Al-Balqa Applied University, Irbid, Jordan
| | - Iyad Abu Doush
- Computing Department, College of Engineering and Applied Sciences, American University of Kuwait, Salmiya, Kuwait
- Computer Science Department, Yarmouk University, Irbid, Jordan
| | - Sharif Naser Makhadmeh
- Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates
| | - Ghazi Al-Naymat
- Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
33
|
Zhang Q, Gao H, Zhan ZH, Li J, Zhang H. Growth Optimizer: A powerful metaheuristic algorithm for solving continuous and discrete global optimization problems. Knowl Based Syst 2023. [DOI: 10.1016/j.knosys.2022.110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Alweshah M. Coronavirus herd immunity optimizer to solve classification problems. Soft comput 2023; 27:3509-3529. [PMID: 35309595 PMCID: PMC8922087 DOI: 10.1007/s00500-022-06917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2022] [Indexed: 11/28/2022]
Abstract
Classification is a technique in data mining that is used to predict the value of a categorical variable and to produce input data and datasets of varying values. The classification algorithm makes use of the training datasets to build a model which can be used for allocating unclassified records to a defined class. In this paper, the coronavirus herd immunity optimizer (CHIO) algorithm is used to boost the efficiency of the probabilistic neural network (PNN) when solving classification problems. First, the PNN produces a random initial solution and submits it to the CHIO, which then attempts to refine the PNN weights. This is accomplished by the management of random phases and the effective identification of a search space that can probably decide the optimal value. The proposed CHIO-PNN approach was applied to 11 benchmark datasets to assess its classification accuracy, and its results were compared with those of the PNN and three methods in the literature, the firefly algorithm, African buffalo algorithm, and β-hill climbing. The results showed that the CHIO-PNN achieved an overall classification rate of 90.3% on all datasets, at a faster convergence speed as compared outperforming all the methods in the literature. Supplementary Information The online version contains supplementary material available at 10.1007/s00500-022-06917-z.
Collapse
Affiliation(s)
- Mohammed Alweshah
- Prince Abdullah Bin Ghazi Faculty of Information and Communication Technology, Al-Balqa Applied University, Al-Salt, Jordan
| |
Collapse
|
35
|
Dehghani M, Trojovský P. Serval Optimization Algorithm: A New Bio-Inspired Approach for Solving Optimization Problems. Biomimetics (Basel) 2022; 7:204. [PMID: 36412732 PMCID: PMC9703967 DOI: 10.3390/biomimetics7040204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 07/23/2023] Open
Abstract
This article introduces a new metaheuristic algorithm called the Serval Optimization Algorithm (SOA), which imitates the natural behavior of serval in nature. The fundamental inspiration of SOA is the serval's hunting strategy, which attacks the selected prey and then hunts the prey in a chasing process. The steps of SOA implementation in two phases of exploration and exploitation are mathematically modeled. The capability of SOA in solving optimization problems is challenged in the optimization of thirty-nine standard benchmark functions from the CEC 2017 test suite and CEC 2019 test suite. The proposed SOA approach is compared with the performance of twelve well-known metaheuristic algorithms to evaluate further. The optimization results show that the proposed SOA approach, due to the appropriate balancing exploration and exploitation, is provided better solutions for most of the mentioned benchmark functions and has superior performance compared to competing algorithms. SOA implementation on the CEC 2011 test suite and four engineering design challenges shows the high efficiency of the proposed approach in handling real-world optimization applications.
Collapse
|
36
|
Makhadmeh SN, Al-Betar MA, Abasi AK, Awadallah MA, Doush IA, Alyasseri ZAA, Alomari OA. Recent Advances in Butterfly Optimization Algorithm, Its Versions and Applications. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2022; 30:1399-1420. [PMID: 36348702 PMCID: PMC9632574 DOI: 10.1007/s11831-022-09843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
The butterfly optimization algorithm (BOA) is a recent successful metaheuristic swarm-based optimization algorithm. The BOA has attracted scholars' attention due to its extraordinary features. Such as the few adaptive parameters to handle and the high balance between exploration and exploitation. Accordingly, the BOA has been extensively adapted for various optimization problems in different domains in a short period. Therefore, this paper reviews and summarizes the recently published studies that utilized the BOA for optimization problems. Initially, introductory information about the BOA is presented to illustrate the essential foundation and its relevant optimization concepts. In addition, the BOA inspiration and its mathematical model are provided with an illustrative example to prove its high capabilities. Subsequently, all reviewed studies are classified into three main classes based on the adaptation form, including original, modified, and hybridized. The main BOA applications are also thoroughly explained. Furthermore, the BOA advantages and drawbacks in dealing with optimization problems are analyzed. Finally, the paper is summarized in conclusion with the future directions that can be investigated further.
Collapse
Affiliation(s)
- Sharif Naser Makhadmeh
- Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates
| | - Mohammed Azmi Al-Betar
- Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates
| | - Ammar Kamal Abasi
- Machine Learning Department, Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), Abu Dhabi, United Arab Emirates
| | - Mohammed A. Awadallah
- Department of Computer Science, Al-Aqsa University, P.O. Box 4051, Gaza, Palestine
- Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates
| | - Iyad Abu Doush
- Computing Department, College of Engineering and Applied Sciences, American University of Kuwait, Salmiya, Kuwait
- Computer Science Department, Yarmouk University, Irbid, Jordan
| | - Zaid Abdi Alkareem Alyasseri
- ECE Department-Faculty of Engineering, University of Kufa, P.O. Box 21, An Najaf, Iraq
- Department of Business Administration, College of Administrative and Financial Sciences, Imam Ja’afar Al-Sadiq University, Baghdad, Iraq
- Information Technology Research and Development Center (ITRDC), University of Kufa, An Najaf, 54001 Iraq
| | - Osama Ahmad Alomari
- MLALP Research Group, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|
37
|
Barolli A, Bylykbashi K, Qafzezi E, Sakamoto S, Barolli L. Implementation of roulette wheel and random selection methods in a hybrid intelligent system: A comparison study for two Islands and Subway distributions considering different router replacement methods. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
An Improved Sea Lion Optimization for Workload Elasticity Prediction with Neural Networks. INT J COMPUT INT SYS 2022. [PMCID: PMC9617542 DOI: 10.1007/s44196-022-00156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The work in this paper presents a study into nature-inspired optimization applied to workload elasticity prediction using neural networks. Currently, the trend is for proactive decision support in increasing or decreasing the available resource in cloud computing. The aim is to avoid overprovision leading to resource waste and to avoid resource under-provisioning. The combination of optimization and neural networks has potential for the performance, accuracy, and stability of the prediction solution. In this context, we initially proposed an improved variant of sea lion optimization (ISLO) to boost the efficiency of the original in solving optimization problems. The designed optimization results are validated against eight well-known metaheuristic algorithms on 20 benchmark functions of CEC’2014 and CEC’2015. After that, improved sea lion optimization (ISLO) is used to train a hybrid neural network. Finally, the trained neural model is used for resource auto-scaling based on workload prediction with 4 real and public datasets. The experiments show that our neural network model provides improved results in comparison with other models, especially in comparison with neural networks trained using the original sea lion optimization. The proposed ISLO proved efficiency and improvement in solving problems ranging from global optimization with swarm intelligence to the prediction of workload elasticity.
Collapse
|
39
|
Gao C, Zhang R, Chen X, Yao T, Song Q, Ye W, Li P, Wang Z, Yi D, Wu Y. Integrating Internet multisource big data to predict the occurrence and development of COVID-19 cryptic transmission. NPJ Digit Med 2022; 5:161. [PMID: 36307547 DOI: 10.1038/s41746-022-00704-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022] Open
Abstract
With the recent prevalence of COVID-19, cryptic transmission is worthy of attention and research. Early perception of the occurrence and development risk of cryptic transmission is an important part of controlling the spread of COVID-19. Previous relevant studies have limited data sources, and no effective analysis has been carried out on the occurrence and development of cryptic transmission. Hence, we collect Internet multisource big data (including retrieval, migration, and media data) and propose comprehensive and relative application strategies to eliminate the impact of national and media data. We use statistical classification and regression to construct an early warning model for occurrence and development. Under the guidance of the improved coronavirus herd immunity optimizer (ICHIO), we construct a "sampling-feature-hyperparameter-weight" synchronous optimization strategy. In occurrence warning, we propose an undersampling synchronous evolutionary ensemble (USEE); in development warning, we propose a bootstrap-sampling synchronous evolutionary ensemble (BSEE). Regarding the internal training data (Heilongjiang Province), the ROC-AUC of USEE3 incorporating multisource data is 0.9553, the PR-AUC is 0.8327, and the R2 of BSEE2 fused by the "nonlinear + linear" method is 0.8698. Regarding the external validation data (Shaanxi Province), the ROC-AUC and PR-AUC values of USEE3 were 0.9680 and 0.9548, respectively, and the R2 of BSEE2 was 0.8255. Our method has good accuracy and generalization and can be flexibly used in the prediction of cryptic transmission in various regions. We propose strategy research that integrates multiple early warning tasks based on multisource Internet big data and combines multiple ensemble models. It is an extension of the research in the field of traditional infectious disease monitoring and has important practical significance and innovative theoretical value.
Collapse
Affiliation(s)
- Chengcheng Gao
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Rui Zhang
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Xicheng Chen
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Tianhua Yao
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Qiuyue Song
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Wei Ye
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - PengPeng Li
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Zhenyan Wang
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Dong Yi
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| | - Yazhou Wu
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
40
|
Oyelade ON, Ezugwu AE. Immunity-based Ebola optimization search algorithm for minimization of feature extraction with reduction in digital mammography using CNN models. Sci Rep 2022; 12:17916. [PMID: 36289321 PMCID: PMC9606367 DOI: 10.1038/s41598-022-22933-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/20/2022] [Indexed: 01/20/2023] Open
Abstract
Feature classification in digital medical images like mammography presents an optimization problem which researchers often neglect. The use of a convolutional neural network (CNN) in feature extraction and classification has been widely reported in the literature to have achieved outstanding performance and acceptance in the disease detection procedure. However, little emphasis is placed on ensuring that only discriminant features extracted by the convolutional operations are passed on to the classifier, to avoid bottlenecking the classification operation. Unfortunately, since this has been left unaddressed, a subtle performance impairment has resulted from this omission. Therefore, this study is devoted to addressing these drawbacks using a metaheuristic algorithm to optimize the number of features extracted by the CNN, so that suggestive features are applied for the classification process. To achieve this, a new variant of the Ebola-based optimization algorithm is proposed, based on the population immunity concept and the use of a chaos mapping initialization strategy. The resulting algorithm, called the immunity-based Ebola optimization search algorithm (IEOSA), is applied to the optimization problem addressed in the study. The optimized features represent the output from the IEOSA, which receives the noisy and unfiltered detected features from the convolutional process as input. An exhaustive evaluation of the IEOSA was carried out using classical and IEEE CEC benchmarked functions. A comparative analysis of the performance of IEOSA is presented, with some recent optimization algorithms. The experimental result showed that IEOSA performed well on all the tested benchmark functions. Furthermore, IEOSA was then applied to solve the feature enhancement and selection problem in CNN for better prediction of breast cancer in digital mammography. The classification accuracy returned by the IEOSA method showed that the new approach improved the classification process on detected features when using CNN models.
Collapse
Affiliation(s)
- Olaide N Oyelade
- School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Avenue, Pietermaritzburg Campus, Pietermaritzburg, 3201, KwaZulu-Natal, South Africa
| | - Absalom E Ezugwu
- School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Avenue, Pietermaritzburg Campus, Pietermaritzburg, 3201, KwaZulu-Natal, South Africa.
| |
Collapse
|
41
|
Dehghani M, Trojovská E, Zuščák T. A new human-inspired metaheuristic algorithm for solving optimization problems based on mimicking sewing training. Sci Rep 2022; 12:17387. [PMID: 36253404 PMCID: PMC9574811 DOI: 10.1038/s41598-022-22458-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/14/2022] [Indexed: 01/10/2023] Open
Abstract
This paper introduces a new human-based metaheuristic algorithm called Sewing Training-Based Optimization (STBO), which has applications in handling optimization tasks. The fundamental inspiration of STBO is teaching the process of sewing to beginner tailors. The theory of the proposed STBO approach is described and then mathematically modeled in three phases: (i) training, (ii) imitation of the instructor's skills, and (iii) practice. STBO performance is evaluated on fifty-two benchmark functions consisting of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, and the CEC 2017 test suite. The optimization results show that STBO, with its high power of exploration and exploitation, has provided suitable solutions for benchmark functions. The performance of STBO is compared with eleven well-known metaheuristic algorithms. The simulation results show that STBO, with its high ability to balance exploration and exploitation, has provided far more competitive performance in solving benchmark functions than competitor algorithms. Finally, the implementation of STBO in solving four engineering design problems demonstrates the capability of the proposed STBO in dealing with real-world applications.
Collapse
Affiliation(s)
- Mohammad Dehghani
- Department of Mathematics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
| | - Eva Trojovská
- Department of Mathematics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic.
| | - Tomáš Zuščák
- Department of Mathematics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
| |
Collapse
|
42
|
A novel metaheuristic optimisation approach for text sentiment analysis. INT J MACH LEARN CYB 2022. [DOI: 10.1007/s13042-022-01670-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractAutomated sentiment analysis is considered an area in natural language processing research that seeks to understand a text author's mood, thoughts, and feelings. New opportunities and challenges have arisen in this field due to the popularity and accessibility of a variety of resources of ideas, such as online review websites, personal blogs, and social media. Feature selection, which can be conducted using metaheuristic algorithms, is one of the steps of sentiment analysis. It is crucial to use high-performing algorithms for feature selection. This paper applies the Horse herd Optimisation Algorithm (HOA) for feature selection in text sentiment analysis. HOA is a metaheuristic algorithm and uses six key behaviours to simulate the social performance of horses of various ages, to solve high-dimensional optimisation problems. In order to improve HOA, this paper adds another behaviour of horses to the basic algorithm; thus, the new algorithm uses seven key behaviours of horses of different ages to imitate their social performance. It is then discretised and converted to a multi-objective algorithm. The improved algorithm's performance is evaluated using 15 CEC benchmark functions, and the results are compared to the Binary Social Spider Algorithm, the Binary Grey Wolf Optimizer, and the Binary Butterfly Optimization Algorithm. The new algorithm, the Multi-objective Binary Horse herd Optimisation Algorithm (MBHOA), excels at solving high-dimensional complex problems. To evaluate the algorithm's performance in feature selection, as a practical example, it is employed in text sentiment analysis and examined on various data sets. The simulation results indicate that MBHOA has a better performance in analysing sentiment compared to similar approaches.
Collapse
|
43
|
A comprehensive survey on the sine–cosine optimization algorithm. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractMetaheuristic algorithms based on intelligent rules have been successfully developed and applied to solve many optimization areas over the past few decades. The sine–cosine algorithm (SCA) imitates the behaviour of transcendental functions while the sine and cosine functions are presented to explore and exploit the search space. SCA starts by random population and executes iterative evolution processes to update the standard evolutionary algorithm’s destination or the best location. SCA used linear transition rules to balance the exploration and exploitation searches while searching for the best or optimal solutions. Since Mirjalili proposed it in 2016, SCA has attracted many researchers’ attention to deal with several optimization problems in many fields due to its strengths in solving optimization tasks that include the simple concept, easiness of implementation, and rapid convergence. This paper aims to provide researchers with a relatively comprehensive and extensive overview of the Sine–Cosine optimization algorithm in the literature to inspire further research. It examines the available publications, including improvements, binary, chaotic, hybridizations, multi-objective variants, and different applications. Some optimization formulations regarding single-objective optimization problems, multi-objective optimization problems, binary-objective optimization problems, and more classifications regarding the optimization types are discussed. An extensive bibliography is also included.
Collapse
|
44
|
EMİROGLU S, GÜMÜŞ TE. Optimal Control of Automatic Voltage Regulator System with Coronavirus Herd Immunity Optimizer Algorithm-Based PID plus Second Order Derivative Controller. ACADEMIC PLATFORM JOURNAL OF ENGINEERING AND SMART SYSTEMS 2022; 10:174-183. [DOI: 10.21541/apjess.1149455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Optimal control of the Automatic Voltage Regulator (AVR) system can improve the system behavior with the optimal parameters obtained based on optimization. The design of proposed Proportional Integral Derivative (PID) and Proportional Integral Derivative Plus Second Order Derivative (PIDD2) controllers are stated as an optimization problem including objective and constraint. The optimization problem is solved by using Coronavirus herd immunity optimizer (CHIO) algorithm to find the best controller parameters. In this paper, optimal design of PID and PIDD2 controllers for AVR system are presented with different objectives. The optimal design of controllers modeled as an optimization problem is solved with the help of the CHIO Algorithm. CHIO is inspired herd immunity against COVID-19 disease by social distancing. The performances of CHIO-based controllers in AVR system are compared with some well-known algorithms. Also, the obtained results demonstrate that the CHIO algorithm yields the least objective value in comparison with the other algorithms. When the results of the proposed approach are compared to those of some modern heuristic optimization algorithms, such as the Particle Swarm Optimization (PSO) algorithm, Differential Evolution (DE) algorithm, Artificial Bee Colony (ABC) algorithm etc. and the superiority of the proposed approach is demonstrated.
Collapse
|
45
|
Wu H, Zhang X, Song L, Zhang Y, Gu L, Zhao X. Wild Geese Migration Optimization Algorithm: A New Meta-Heuristic Algorithm for Solving Inverse Kinematics of Robot. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5191758. [PMID: 36337271 PMCID: PMC9630037 DOI: 10.1155/2022/5191758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/21/2022] [Accepted: 08/18/2022] [Indexed: 08/26/2023]
Abstract
This paper proposes a new meta-heuristic algorithm, named wild geese migration optimization (GMO) algorithm. It is inspired by the social behavior of wild geese swarming in nature. They maintain a special formation for long-distance migration in small groups for survival and reproduction. The mathematical model is established based on these social behaviors to solve optimization problems. Meanwhile, the performance of the GMO algorithm is tested on the stable benchmark function of CEC2017, and its potential for dealing with practical problems is studied in five engineering design problems and the inverse kinematics solution of robot. The test results show that the GMO algorithm has excellent computational performance compared to other algorithms. The practical application results show that the GMO algorithm has strong applicability, more accurate optimization results, and more competitiveness in challenging problems with unknown search space, compared with well-known algorithms in the literature. The proposal of GMO algorithm enriches the team of swarm intelligence optimization algorithms and also provides a new solution for solving engineering design problems and inverse kinematics of robots.
Collapse
Affiliation(s)
- Honggang Wu
- School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Xinming Zhang
- School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China
- School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China
| | - Linsen Song
- School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Yufei Zhang
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Lidong Gu
- School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Xiaonan Zhao
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
46
|
Prakaash AS, Sivakumar K, Surendiran B, Jagatheswari S, Kalaiarasi K. Design and Development of Modified Ensemble Learning with Weighted RBM Features for Enhanced Multi-disease Prediction Model. NEW GENERATION COMPUTING 2022; 40:1241-1279. [PMID: 36101778 PMCID: PMC9455943 DOI: 10.1007/s00354-022-00190-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/09/2022] [Indexed: 05/21/2023]
Abstract
In this computer world, huge data are generated in several fields. Statistics in the healthcare engineering provides data about many diseases and corresponding patient's information. These data help to evaluate a huge amount of data for identifying the unknown patterns in the diseases and are also utilized for predicting the disease. Hence, this work is to plan and implement a new computer-aided technique named modified Ensemble Learning with Weighted RBM Features (EL-WRBM). Data collection is an initial process, in which the data of various diseases are gathered from UCI repository and Kaggle. Then, the gathered data are pre-processed by missing data filling technique. Then, the pre-processed data are performed by deep belief network (DBN), in which the weighted features are extracted from the RBM regions. Then, the prediction is made by ensemble learning with classifiers, namely, support vector machine (SVM), recurrent neural network (RNN), and deep neural network (DNN), in which hyper-parameters are optimized by the adaptive spreading rate-based coronavirus herd immunity optimizer (ASR-CHIO). At the end, the simulation analysis reveals that the suggested model has implications to support doctor diagnoses.
Collapse
Affiliation(s)
- A. S. Prakaash
- Department of Mathematics, Panimalar Engineering College, Poonamallee, Chennai, 600 123 Tamilnadu India
| | - K. Sivakumar
- Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences(SIMATS), Thandalam, Chennai, 602 105 Tamil Nadu India
| | - B. Surendiran
- Department of Computer Science and Engineering, National Institute of Technology karaikal, Karaikal, India
| | - S. Jagatheswari
- Department of Mathematics, Vellore Institute of Technology, Vellore, India
| | - K. Kalaiarasi
- PG and Research Department of Mathematics, Cauvery College for Women Autonomous Trichy, Trichy, India
| |
Collapse
|
47
|
Akinola OO, Ezugwu AE, Agushaka JO, Zitar RA, Abualigah L. Multiclass feature selection with metaheuristic optimization algorithms: a review. Neural Comput Appl 2022; 34:19751-19790. [PMID: 36060097 PMCID: PMC9424068 DOI: 10.1007/s00521-022-07705-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
Abstract
Selecting relevant feature subsets is vital in machine learning, and multiclass feature selection is harder to perform since most classifications are binary. The feature selection problem aims at reducing the feature set dimension while maintaining the performance model accuracy. Datasets can be classified using various methods. Nevertheless, metaheuristic algorithms attract substantial attention to solving different problems in optimization. For this reason, this paper presents a systematic survey of literature for solving multiclass feature selection problems utilizing metaheuristic algorithms that can assist classifiers selects optima or near optima features faster and more accurately. Metaheuristic algorithms have also been presented in four primary behavior-based categories, i.e., evolutionary-based, swarm-intelligence-based, physics-based, and human-based, even though some literature works presented more categorization. Further, lists of metaheuristic algorithms were introduced in the categories mentioned. In finding the solution to issues related to multiclass feature selection, only articles on metaheuristic algorithms used for multiclass feature selection problems from the year 2000 to 2022 were reviewed about their different categories and detailed descriptions. We considered some application areas for some of the metaheuristic algorithms applied for multiclass feature selection with their variations. Popular multiclass classifiers for feature selection were also examined. Moreover, we also presented the challenges of metaheuristic algorithms for feature selection, and we identified gaps for further research studies.
Collapse
Affiliation(s)
- Olatunji O. Akinola
- School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Avenue, Pietermaritzburg Campus, Pietermaritzburg, 3201 KwaZulu-Natal South Africa
| | - Absalom E. Ezugwu
- School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Avenue, Pietermaritzburg Campus, Pietermaritzburg, 3201 KwaZulu-Natal South Africa
| | - Jeffrey O. Agushaka
- School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Avenue, Pietermaritzburg Campus, Pietermaritzburg, 3201 KwaZulu-Natal South Africa
| | - Raed Abu Zitar
- Sorbonne Center of Artificial Intelligence, Sorbonne University-Abu Dhabi, 38044 Abu Dhabi, United Arab Emirates
| | - Laith Abualigah
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, 19328 Jordan
- Faculty of Inforsmation Technology, Middle East University, Amman, 11831 Jordan
| |
Collapse
|
48
|
Sahoo SK, Saha AK, Ezugwu AE, Agushaka JO, Abuhaija B, Alsoud AR, Abualigah L. Moth Flame Optimization: Theory, Modifications, Hybridizations, and Applications. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2022; 30:391-426. [PMID: 36059575 PMCID: PMC9422949 DOI: 10.1007/s11831-022-09801-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/27/2022] [Indexed: 05/29/2023]
Abstract
The Moth flame optimization (MFO) algorithm belongs to the swarm intelligence family and is applied to solve complex real-world optimization problems in numerous domains. MFO and its variants are easy to understand and simple to operate. However, these algorithms have successfully solved optimization problems in different areas such as power and energy systems, engineering design, economic dispatch, image processing, and medical applications. A comprehensive review of MFO variants is presented in this context, including the classic version, binary types, modified versions, hybrid versions, multi-objective versions, and application part of the MFO algorithm in various sectors. Finally, the evaluation of the MFO algorithm is presented to measure its performance compared to other algorithms. The main focus of this literature is to present a survey and review the MFO and its applications. Also, the concluding remark section discusses some possible future research directions of the MFO algorithm and its variants.
Collapse
Affiliation(s)
- Saroj Kumar Sahoo
- Department of Mathematics, National Institute of Technology Agartala, Agartala, Tripura 799046 India
| | - Apu Kumar Saha
- Department of Mathematics, National Institute of Technology Agartala, Agartala, Tripura 799046 India
| | - Absalom E. Ezugwu
- School of Computer Science, University of KwaZulu-Natal, King Edward Road, Pietermaritzburg Campus, Pietermaritzburg, 3201 KwaZulu-Natal South Africa
| | - Jeffrey O. Agushaka
- School of Computer Science, University of KwaZulu-Natal, King Edward Road, Pietermaritzburg Campus, Pietermaritzburg, 3201 KwaZulu-Natal South Africa
| | - Belal Abuhaija
- Department of Computer Science, Wenzhou - Kean University, Wenzhou, China
| | - Anas Ratib Alsoud
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, 19328 Jordan
| | - Laith Abualigah
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, 19328 Jordan
- Faculty of Information Technology, Middle East University, Amman, 11831 Jordan
| |
Collapse
|
49
|
Khalid AM, Hosny KM, Mirjalili S. COVIDOA: a novel evolutionary optimization algorithm based on coronavirus disease replication lifecycle. Neural Comput Appl 2022; 34:22465-22492. [PMID: 36043205 PMCID: PMC9411047 DOI: 10.1007/s00521-022-07639-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 07/18/2022] [Indexed: 11/13/2022]
Abstract
This paper presents a novel bio-inspired optimization algorithm called Coronavirus Optimization Algorithm (COVIDOA). COVIDOA is an evolutionary search strategy that mimics the mechanism of coronavirus when hijacking human cells. COVIDOA is inspired by the frameshifting technique used by the coronavirus for replication. The proposed algorithm is tested using 20 standard benchmark optimization functions with different parameter values. Besides, we utilized five IEEE Congress of Evolutionary Computation (CEC) benchmark test functions (CECC06, 2019 Competition) and five CEC 2011 real-world problems to prove the proposed algorithm's efficiency. The proposed algorithm is compared to eight of the most popular and recent metaheuristic algorithms from the state-of-the-art in terms of best cost, average cost (AVG), corresponding standard deviation (STD), and convergence speed. The results demonstrate that COVIDOA is superior to most existing metaheuristics.
Collapse
|
50
|
Alyasseri ZAA, Alomari OA, Al-Betar MA, Makhadmeh SN, Doush IA, Awadallah MA, Abasi AK, Elnagar A. Recent advances of bat-inspired algorithm, its versions and applications. Neural Comput Appl 2022; 34:16387-16422. [PMID: 35971379 PMCID: PMC9366842 DOI: 10.1007/s00521-022-07662-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
Bat-inspired algorithm (BA) is a robust swarm intelligence algorithm that finds success in many problem domains. The ecosystem of bat animals inspires the main idea of BA. This review paper scanned and analysed the state-of-the-art researches investigated using BA from 2017 to 2021. BA has very impressive characteristics such as its easy-to-use, simple in concepts, flexible and adaptable, consistent, and sound and complete. It has strong operators that incorporate the natural selection principle through survival-of-the-fittest rule within the intensification step attracted by local-best solution. Initially, the growth of the recent solid works published in Scopus indexed articles is summarized in terms of the number of BA-based Journal articles published per year, citations, top authors, work with BA, top institutions, and top countries. After that, the different versions of BA are highlighted to be in line with the complex nature of optimization problems such as binary, modified, hybridized, and multiobjective BA. The successful applications of BA are reviewed and summarized, such as electrical and power system, wireless and network system, environment and materials engineering, classification and clustering, structural and mechanical engineering, feature selection, image and signal processing, robotics, medical and healthcare, scheduling domain, and many others. The critical analysis of the limitations and shortcomings of BA is also mentioned. The open-source codes of BA code are given to build a wealthy BA review. Finally, the BA review is concluded, and the possible future directions for upcoming developments are suggested such as utilizing BA to serve in dynamic, robust, multiobjective, large-scaled optimization as well as improve BA performance by utilizing structure population, tuning parameters, memetic strategy, and selection mechanisms. The reader of this review will determine the best domains and applications used by BA and can justify their BA-related contributions.
Collapse
Affiliation(s)
- Zaid Abdi Alkareem Alyasseri
- ECE Department, Faculty of Engineering, University of Kufa, P.O. Box 21, Najaf, Iraq
- College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
- Information Research and Development Center (ITRDC), University of Kufa, Najaf, Iraq
| | | | - Mohammed Azmi Al-Betar
- Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates
- Department of Information Technology, Al-Huson University College, Al-Balqa Applied University, Irbid, Jordan
| | - Sharif Naser Makhadmeh
- Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates
| | - Iyad Abu Doush
- Department of Computing, College of Engineering and Applied Sciences, American University of Kuwait, Salmiya, Kuwait
- Computer Science Department, Yarmouk University, Irbid, Jordan
| | - Mohammed A. Awadallah
- Department of Computer Science, Al-Aqsa University, P.O. Box 4051, Gaza, Palestine
- Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates
| | - Ammar Kamal Abasi
- Machine Learning Department, Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), Abu Dhabi, United Arab Emirates
| | - Ashraf Elnagar
- Department of Computer Science, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|